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weighted average of treatment effects among ``marginal compliance'' groups, without having to resort to 
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Abstract. This note introduces a novel weighted local average treatment effect representation for

the two-stages least-squares (2SLS) estimand in the continuous instrument with binary treatment

case. Under standard conditions, we obtain weights that are nonnegative, integrate to unity, and

assign larger values to instrument support points that deviate from their average. Our representa-

tion does not require instruments to be discretized nor relies on limiting arguments, such as those

used in the definition of the marginal treatment effect (MTE). The pattern of the weights also has

a clear interpretation. We believe these features of the representation to be useful for applied re-

searchers when communicating their results. As a direct byproduct of our approach, we also obtain

a representation of the 2SLS estimand as a weighted average of treatment effects among “marginal

compliance” groups, without having to resort to the threshold-crossing representation underlying

the MTE construction. As an application, we consider the interpretation of “event-study 2SLS”

specifications with continuous instruments.

Keywords: instrumental variables, local average treatment effects, event-study.

JEL classification: C21, C23, C26.

1. Introduction

Instrumental variable (IV) methods constitute one of the worhorses in the research toolkit of

applied economists (Angrist and Krueger, 2001; Imbens, 2014; Abadie and Cattaneo, 2018). Since

the seminal work of Imbens and Angrist (1994), henceforth IA, it is well known that, in a po-

tential outcomes framework – and under exclusion, independence, relevance and monotonicity

assumptions –, the instrumental variable estimator with binary treatment and binary instrument

identifies a local average treatment effect (LATE) in the subpopulation whose treatment adoption

is affected by the instrument (compliers). This representation has been further extended to ac-

comodate discrete (Angrist and Imbens, 1995) and continuous (Angrist et al., 2000) treatments.
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Recent research on identification with instrumental variables methods in the potential outcomes

framework has explored, inter alia, the nature of monotonicity assumptions under choice-theoretic

perspectives (Heckman and Pinto, 2018; Mogstad et al., 2021); the interpetation of 2SLS estimands

under different approaches to controlling for covariates (Kolesár et al., 2013; Blandhol et al., 2022;

S loczyński, 2022), and the interpretation of distinct weighting schemes underlying different IV

estimands (Mogstad et al., 2018; Coussens and Spiess, 2021; Escanciano et al., 2023).

In this note, we revisit the interpretation of the 2SLS estimand in the case of a binary treatment

and continuous instrument. In this setting, applied researchers are often faced with two distinct

recommendations from the literature concerning the interpretation of 2SLS estimates. One branch

advises researchers to discretize their instruments (Angrist and Pischke, 2009, p. 139-140), in

which case available representations of IV estimands as weighted LATEs may be resorted to.

Another branch recommends results be interpreted as weighted averages of marginal treatment

effects (MTEs) (Heckman and Vytlacil, 2005; Heckman et al., 2006). These approaches have not

been unanimously adopted, though. First, the use of continuous (undiscretized) instruments is

quite common in the applied literature, as evidenced by the use of weather and distance-related

instrumental variables. Second, even though the threshold-crossing model that motivates the

definition of the MTE is known to be equivalent to the framework of IA Vytlacil (2002); and that,

in the former, the MTE may be seen as a limit-form of the LATE; applied researchers are much

more accostumed with non-limit forms of the LATE, often going large ways in interpreting their

estimates as such, even in cases where such interpretation is not warranted (Blandhol et al., 2022).

This note aims to complement the literature by providing, to the best of our knowledge, a novel

(non-limit) weighted LATE interpretation of 2SLS estimands in the continuous instrument cum

binary treatment case. We provide conditions under which a class of Wald estimands that nests

2SLS as a particular case may be interpreted as a weighted-average of complier treatment effects,

where compliance groups are defined with respect to treatment status at the (conditional on con-

trols) average instrument value. The weights are nonnegative, integrate to unity, and assign larger

values to instrument support points that deviate from the (conditional on controls) average. As we

argue below, such patterns lead to weighted averages with an intuitive interpretation. Our results

are derived under the same set of assumptions of IA (also Angrist et al., 1996), which we couple

with the requirement that, in the specification adopted, covariates are controlled for in a suffi-

ciently flexible manner. The latter restriction is known to be sufficient, under the IA assumptions,

for 2SLS estimands to produce nonnegative weights (Blandhol et al., 2022). We further show that,

as an immediate byproduct of our representation result, we obtain a representation of our class of

Wald IV estimands in terms of “marginal compliance” groups, without having to resort to the the

threshold-crossing model which generates the MTE representation.

As an application of our main result, we study the causal content of “event-study-IV” specifica-

tions with binary treatment and a continuous instrument. This type of specification, whose binary
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instrument counterpart is discussed in Hudson et al. (2017), leverages a time-invariant instrument

to assess the effects of a time-varying policy. We provide conditions that ensure 2SLS estimands

of this type of specification have a causal interpretation. We also provide conditions that justify

the practice of assessing pre-trends in these settings.

The remainder of this note is organized as follows. Section 2 introduces the class of Wald

estimands considered and presents the representation result. Section 3 applies the result in the

context of event-study IV. Section 4 concludes.

2. Weighted LATE representation of a class of Wald Estimands under a

continuous instrument

Suppose the researcher is interested in assessing the causal effect of a binary treatment D ∈ {0, 1}
on an outcome Y . The researcher has access to a continuous scalar instrument Z, and a set of

controls X. We assume that second moments of Y and Z exist. We consider a Wald estimand

which aims to estimate the causal effect of D by leveraging covariation between Z and D, after

partialling out covariation between Z and X. This estimand is given by:

βWald =
E[(Z − g∗(X))Y ]

E[(Z − g∗(X))D]
, (1)

where g∗ is the L2(P) projection of Z on a space G of scalar functions of X with finite second

moment, i.e.

g∗ ∈ argming∈G E[(Z − g∗(X))2] . (2)

The Wald estimand (1) explores variation of Z after controlling for potential confounding due to

X. These variables may be controlled for in a possibly nonlinear manner, for example by functions

g ∈ G that vary nonlinearly in X. As a special case, if one considers a transformation p from X

to Rk, and takes G = {γ ∈ Rk : γ′p(X)}, then an application of the partitioned inverse formula

shows that βWald is equal to the 2SLS estimand of β in the linear system:

D = αZ + γ′p(X) + u

Y = βD + ω′p(X) + v
. (3)

We consider the interpretation of (1) in a potential outcomes framework. Following IA (also

Angrist et al., 1996), we assume that:

Assumption 1. We assume that:

(1) Potential treatments: observed treatment status is given by D = D(Z), where D =

{D(z) : z ∈ Z} are the potential treatment statuses associated with different values of the

instrument, with Z ⊆ R denoting the instrument support.
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(2) Potential outcomes: observed outcomes are given by Y = DY (1, Z) + (1 −D)Y (0, Z),

where Y (d, z) are the potential outcomes associated with treatment status d ∈ {0, 1} and

instrument value z ∈ Z.

(3) Exclusion restriction: for each d ∈ {0, 1}, Y (d, z) = Y (d, z′) =: Y (d) ∀z, z′ ∈ Z.

(4) Conditional independence: conditionally on X, Z is independent of {Y (0), Y (1),D}.
(5) Monotonicity: either P[D(z) ≤ D(z′)] = 1 for every z, z′ ∈ Z with z ≤ z′; or P[D(z) ≥

D(z′)] = 1 for every z, z′ ∈ Z with z ≤ z′.

The next proposition is our main result.

Proposition 1. Suppose Assumption 1 holds. Let ψ(X) be a version of E[Z|X]. In addition,

suppose the following conditions hold:

(1) Support condition: the support Z is given by [z, z], where z, z ∈ R ∪ {−∞,∞}.
(2) Moments: Y (1),Y (0) and Z have finite second moments.

(3) Relevance: E[(Z − g∗(X))D] ̸= 0.

(4) Flexible specification: ψ ∈ G.

We then have that the estimand (1) is well-defined, and that:

βWald = E[w(X,Z)∆(X,Z)] ,

where

∆(x, z) = E[Y (1) − Y (0)|X = x,D(z) ̸= D(ψ(x))] ,

and w(x, z) = ω(x,z)
E[ω(X,Z)] , with:

ω(x, z) = |z − ψ(x)|P[D(z) ̸= D(ψ(x))|X = x] .

Proof. See Online Appendix A. □

Proposition 1 shows that, under the stated assumptions, the Wald estimand (1) may be writ-

ten as a weighted average of complier treatment effects. In the representation of Proposition 1,

compliance is defined with respect to potential treatment status at the average instrument value

E[Z|X = x], with weights being attached to average treatment effects in subpopulations that would

change their treatment status upon being offered a shift of instrument value from E[Z|X = x] to

z, for different values of z ∈ [z, z]. The weights in the representation are nonnegative and average

to unity. Moreover, due to the monotonicity assumption, the weights w(x, z) are nonincreasing in

z for z < E[Z|X = x] and nondecreasing in z for z > E[Z|X = x]. Consequently, the weighted

average assigns larger weights to more extreme values of z.
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The representation in Proposition 1 hinges crucially on the interval support assumption on

the instrument, as it ensures that the potential treatment status at the average E[Z|X = x]

is well-defined. In addition, we note that, since the representation uses a (conditional on X)

fixed reference potential treatment status in defining compliers, it may be easier to interpret than

varying-reference-level ones (Cornelissen et al., 2016). To see this point, first note that our fixed-

level representation involves overlapping subpopulations. Indeed, for any z′ > z > ψ(x), ∆(x, z′)

includes in its average all compliers averaged in ∆(x, z); the same holding true for z′ < z < ψ(x).

Since more extreme values of the instrument are precisely those assigned larger weights in the

representation, it follows that the representation assigns larger weights to the most encompassing

complier subpopulations, a useful feature in the interpretation of results.

In spite of the attractiveness of our representation, it should be noted that, in some settings, it

may be also useful to interpret the estimand as a weighted average of treatment effects in disjoint

subpopulations. As we show below, one immediate corollary of Proposition 1 is a representation

of (1) in terms of nonoverlapping “marginal compliance” groups. Interestingly, our result follows

without having to resort to the threshold-crossing representation that motivates the MTE, which

may be a further useful feature for applied researchers in communicating their empirical results.

In what follows, define the marginal compliance group of an individual as the variable C that

equals c if:

lim
z↑c

D(z) ̸= D(c) ,

i.e. C is the smallest instrument value required for an individual to change her behavior. If the

individual is not a complier, we set C = ∅.

Corollary 1. Suppose that the Assumptions required in Proposition 1 hold. Suppose that C|X,C ̸=
∅ admits a regular conditional Lebesgue density f ∗

C|X(·|·). We then have that:

βWald =

∫ ∫ z

z

w∗(x, c)∆∗(x, c) dc PX(dx) ,

where

∆∗(x, c) = E[Y (1) − Y (0)|X = x,C = c] ,

and w∗(x, c) = ω∗(x,c)∫ ∫ z
z ω

∗(a,b) db PX(da)
, with

ω∗(x, c) =

E[|Z − ψ(x)|1{Z ≤ c}|X = x]f ∗
C(c|x), if c < ψ(x)

E[|Z − ψ(x)|1{Z ≥ c}|X = x]f ∗
C(c|x), if c ≥ ψ(x)

Proof. Note that

E[(Y (1) − Y (0))1{D(z) ̸= D(ψ(x))}|X = x] =

∫ z

z

∆∗(x, c)1{c ∈ [z, ψ(x)] ∪ [ψ(x), z]}f ∗
C(c|x)dc .
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The conclusion then follows from Fubini theorem. □

Remark 1 (On the role of the flexible specification assumption). Proposition 1 is derived under the

requirement that the function class G is flexible enough so as to contain the conditional expectation

function E[Z|X = x]. It has been recently shown that this assumption is sufficient, in the IA

setup, for 2SLS estimands to be represented as weighted averages of complier treatment effects

with nonnegative weights (Blandhol et al., 2022). In the case that X has a finite number of support

points, the assumption is satisfied by relying on a saturated G, i.e. by considering p(X) as a vector

of indicator functions of all possible values x in the support of X. In settings where X is more

complex, e.g. it contains continuous entries or a finite but very large number of support points,

it may be preferable to rely on machine-learning methods that estimate representation (1) while

flexibly controlling for X (Belloni et al., 2012; Chernozhukov et al., 2018).

3. Application: Event-Study IV with continuous instrument

In this, section, we explore a setting where a researcher has access to a panel spanning periods

t ∈ {−T0,−(T0 + 1), . . . , 0, 1, . . . , T1}. The researcher would like to assess the causal effect of a

time-varying binary policy on an outcome Yit of interest. She has access to a continuous, time-

invariant instrument Zi, as well as a set of time-invariant controls Xi. Consider the case where

treatment starts at period t = 1 for a subset of the units in the population, and identify this

group by the indicator Di = 1. In these settings, a common approach consists in considering the

following linear system:

Yit = αi + γt +
∑
τ ̸=0

βτ1{t = τ}Di +
∑
τ ̸=0

1{t = τ}γ′τXi + ϵi,t , (4)

which is estimated by 2SLS, instrumenting {1{t = τ}Di}τ ̸=0 with {1{t = τ}Zi}τ ̸=0. This approach

may be interpreted as an event-study IV design, where the full-path of pre-treatment {βτ : τ < 0}
and post-treatment effects {βτ : τ > 0} is identified by generating a set of instruments through the

interaction of the time-invariant Zi with time dummies. The specification controls for unit and

time effects, as well as for differential trends according to the value of Xi.
1

We consider the causal interpretation of the βτ in the aforementioned approach in a potential

outcomes framework. For that, we note that, for each τ ̸= 0, the 2SLS estimand βτ in (4) is equal

to the 2SLS estimand βτ in the following system:

Di = c+ κZi + π′Xi + ui,t

Yi,τ − Yi,0 = ωτ + βτDi + θ′τXi + vi,t,τ
. (5)

1We do not consider the inclusion of time-varying controls Xit in the specification, as such inclusion may generate

negative weights in the representation of the estimand as an average treatment effect even in simple settings (Caetano

and Callaway, 2023).
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This shows that the event-study IV design is a version of the instrumented differences-in-

differences approach discussed in Hudson et al. (2017).

The following proposition gives a causal interpretation for the estimands βτ .

Proposition 2. Suppose the following conditions hold:

(1) potential treatments and instrument support: observed treatment status is given by

Di = Di(Z), where Di = {Di(z) : z ∈ [z, z]} are the potential treaments statuses, with

[z, z], z, z ∈ R ∪ {−∞,∞}, denoting the instrument support.

(2) potential outcomes and exclusion restriction: observed outcomes are given by: Yit =

Yit(0) if t ≤ 0 and Yit = DiYit(1) + (1 −Di)Yit(0) if t > 0, where Yit(d), d ∈ {0, 1}, are the

potential outcomes associated with the binary policy.

(3) (conditional) independence from potential treaments: P[D(z) = 1|X,Z] = P[D(z) =

1|X] for every z ∈ [z, z].

(4) monotonicity: either P[D(z) ≤ D(z′)] = 1 for every z, z′ with z ≤ z′; or P[D(z) ≥
D(z′)] = 1 for every z, z′ with z ≤ z′.

(5) moments: all random variables admit finite second moment.

(6) first-stage: in (5), π ̸= 0.

(7) linearity: E[Zi|Xi] = a+ b′Xi =: ψ(Xi).

We then have that:

• for τ < 0, if the following additional condition holds:

– absence of pre-trends: E[Yi,τ (0) − Yi,0(0)|Di, Xi, Zi] = E[Yi,τ (0) − Yi,0(0)|Di, Xi],

then

βτ = 0 .

.

• for τ > 0, if the following additional condition holds:

– parallel trends: E[Yi,τ (0)−Yi,0(0)|Di, Xi, Zi] = E[Yi,τ (0)−Yi,0(0)|Di, Xi] and E[Yi,τ (1)−
Yi,0(0)|Di, Xi, Zi] = E[Yi,τ (1) − Yi,0(0)|Di, Xi]

then

βτ = E[wτ (Xi, Zi)∆τ (Xi, Zi)] ,

where

∆τ (x, z) = E[Yi,τ (1) − Yi,τ (0)|Xi = x,Di(z) ̸= Di(ψ(x))] ,

and wτ (x, z) = ωτ (x,z)
E[ωτ (Xi,Zi)]

, with:

ωτ (x, z) = |z − ψ(x)|P[Di(z) ̸= Di(ψ(x))|Xi = x] .
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Proof. The proof of the proposition follows the same steps of the proof of Proposition 1, by working

with outcomes in first-differences and observing that the mean independence assumptions are

sufficient for establishing the weighted average representation. □

Proposition 2 provides a weighted LATE representation for the event-study IV specification.

Our results clarify the type of parallel trends assumption that justifies a causal interpretation of

the estimand. They also provide a justification for applied researchers to assess pre-trends in these

settings.

4. Conclusion

This note introduces a weighted LATE representation for the 2SLS estimand in the binary

treatment with continuous instrument case. We have shown our non-limit representation has an

intuitive interpretation. In Section 3, we apply our representation in the context of event-study

IV designs with continuous instruments, thus providing sufficient conditions for estimands to have

a causal interpretation.
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Online Appendix of “The interpetation of 2SLS with a continuous instrument: a

weighted LATE representation”

Appendix A. Proof of Proposition 1

Without loss of generality, we consider the monotonicity assumption in the direction P[D(z) ≤
D(z′)] = 1 for every z ≤ z′. Otherwise, we can redefine the instrument as Z∗ = −Z and the

following proof would also apply.

First, we note that, by the moment and relevance assumptions, the numerator and denominator

of βWald are well-defined. Next, we observe that the numerator is given by:

E[(Z − g∗(X))Y ] =

E[(Z − g∗(X))Y (0)] + E[(Z − g∗(X))D(Y (1) − Y (0))] =

E[(Z − g∗(X))E[Y (0)|X]] + E[(Z − g∗(X))D(Y (1) − Y (0))] ,

where the last equality uses iterated expectations, followed by the independence assumption. Now,

it follows from the flexible specification assumption that g∗ = ψ, from which we have that E[(Z −
g∗(X))E[Y (0)|X]] = 0.

As for the second term, we note that, for support points (x, z):

E[(Z − g∗(X))D(Y (1) − Y (0))|Z = z,X = x] =

(z − ψ(x))E[D(z)(Y (1) − Y (0))|X = x] =

(z − ψ(x))E[(D(z) −D(ψ(x)))(Y (1) − Y (0))|X = x]+

(z − ψ(x))E[D(ψ(x))(Y (1) − Y (0))|X = x] ,

(6)

where the last equality added and subtracted D(ψ(x)) inside the expectation. Observe that, for

PX-almost every x, D(ψ(x)) is well-defined, since P[ψ(X) ∈ [z, z]] = 1. Now, suppose z > ψ(x). In

this case, by the monotonicity assumption, D(z)−D(ψ(x)) takes either value 0 (always- or never-

taker in the comparison between instrument values ψ(x) and z), or 1 (complier). Consequently, in

this case:

(z − ψ(x))E[(D(z) −D(ψ(x)))(Y (1) − Y (0))|X = x] =

(z − ψ(x))︸ ︷︷ ︸
=|z=ψ(x)|

P[D(z) ̸= D(ψ(x))|X = x]E[Y (1) − Y (0)|X = x,D(z) ̸= D(ψ(x))] .

Symmetrically, if z < ψ(x), D(z) − D(ψ(x)) takes either value 0 or −1, with the latter corre-

sponding to compliance at the comparison between instrument values ψ(x) and z. Consequently,



we have that, in this case:

(z − ψ(x))E[(D(z) −D(ψ(x)))(Y (1) − Y (0))|X = x] =

−(z − ψ(x))︸ ︷︷ ︸
=|z−ψ(x)|

P[D(z) ̸= D(ψ(x))|X = x]E[Y (1) − Y (0)|X = x,D(z) ̸= D(ψ(x))] .

Combining the above results, and using that, for ξ(x) := E[D(ψ(x))(Y (1) − Y (0))|X = x],

E[(Z − ψ(X))ξ(X)] = 0, we have that:

E[(Z − g∗(X))Y ] = E[ω(X,Z)∆(X,Z)] .

A similar argument then shows that the denominator of βWald is equal to E[ω(X,Z)], which

proves the desired result.
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