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1 Introduction

This is the �rst article to propose an implied volatility index for the stock market in Brazil.1

We call our implied volatility index �IVol-BR�. The methodology to compute the IVol-BR

combines state-of-the-art international methodology used in the US with adjustments we

propose that take into account the low liquidity in Brazilian option market. The average

daily volume traded in this market is US$ 20 million2 and, as consequence, few option strikes

are traded. The methodology we propose can be applied to other low-liquidity markets. This

the �rst contribution of the paper.

The IVol-BR has good empirical properties. First, by regressing future realized volatility

on the IVol-BR and a number of traditional volatility forecasting variables, we show that the

IVol-BR does contain information about future volatility. Second, we decompose the squared

IVol-BR into (i) the expected variance of stock returns and (ii) the equity variance premium

(the di�erence between the squared IVol-BR and the expected variance). This decomposition

is of interest since the equity variance premium directly relates to the representative investor's

risk aversion. Then, we use such a decomposition to pin down a time-varying risk aversion

measure for the Brazilian market. Finally, we show that both the risk aversion measure and

the variance premium have signi�cant predictive power over future stock returns. To the

best of our knowledge, this is the �rst article to relate variance premium, risk-aversion, and

future returns in an emerging market. This is the second contribution of this paper.

An implied volatility index is useful for both researchers and practitioners. It is commonly

referred to as the �fear gauge� of �nancial markets. The best known example is the VIX,

1The Chicago Board of Options Exchange (CBOE) produces a volatility index called VXEWZ, which
is constructed from options over a dollar-denominated index of the Brazilian stock market (called EWZ).
As such, the VXEWZ contains both the implied volatility of equities and the implied volatility of the
FX market (R$/US$). The index we propose, in turn, is a clean measure of the implied volatility of the
Brazilian stock market for local investors � not polluted by the exchange rate volatility. Other related works
are Kapotas et al. (2004), that studied implied volatility of options over Telemar stocks, and Dario (2006)
and Brostowicz Junior and Laurini (2010), that studied volatility indices for the Brazilian FX market.

2 A small fraction of the daily volume of options over S&P 500 traded in the US (about 1.5%).
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�rst introduced by the Chicago Board of Options Exchange (CBOE) in 1993.3 The squared

implied volatility of a stock market re�ects the dynamics of two very important variables.

The �rst relates to the level, or quantity, of risk that the representative investor faces: the

expected future variance of the market portfolio. The second relates to the price of such

risk, the risk aversion of this investor.

The economic intuition for this is the following. Since options' payo�s are asymmetric,

the value of any option is increasing in the expected variance of the underlying asset. Because

of that, options are often used as a protection against changes in variance. Since the typical

risk-averse investor dislikes variance, options are traded with a premium because of their

insurance value. As a consequence, the squared implied volatility (which is directly computed

from option prices) also has a premium with respect to the (empirical) expected variance:

the �rst should always be higher than the second. This is the so-called �variance premium�.

The more the investor dislikes variance, the more she is willing to pay for the insurance that

options provide. Therefore, the higher the risk aversion, the higher the variance premium

(see, for instance, Bollerslev et al. (2009) and Bollerslev et al. (2011)).

We decompose the squared IVol-BR (hereinafter �IVar�) into (i) the expected variance

conditional on the information set at time t and (ii) the variance premium at time t. We

estimate component (i) by searching for the best forecasting model for future variance, based

on Bekaert and Hoerova (2014). Following the recent literature on variance forecasting (Chen

and Ghysels (2011), Corsi (2009) and Corsi and Renò (2012)), we use high-frequency data

for this task. Then, we compute the variance premium, i.e. component (ii), as the di�erence

between the implied variance and the estimated expected variance. Finally, we use a closed-

form equation for the variance premium, based on Bollerslev et al. (2009), which is an

increasing function of the risk aversion coe�cient of the representative investor, to pin down

a time-varying risk aversion measure of the representative investor in the Brazilian market.

Our paper relates to Bekaert and Hoerova (2014) that shows the variance premium cal-

3See CBOE (2009)
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culated with an econometric model for expected variance has a higher predicting power over

future returns than the variance premium calculated under the assumption that the ex-

pected variance follows a random walk process, as in Bollerslev et al. (2009). In particular,

we con�rm Bekaert and Hoerova (2014) �nding that the predicting properties of the variance

premium can be signi�cant as early as a month in advance rather than only at the quarterly

frequency found by Bollerslev et al. (2009). However, we go beyond Bekaert and Hoerova

(2014) and directly relate the risk aversion series obtained from the variance premium with

future returns. We show the risk-aversion series is a strong predictor of future returns with

a slightly superior �t than the variance premium.

The US evidence on the predicting properties of the variance premium, �rst shown by

Bollerslev et al. (2009), has recently been extended to international developed markets.

Bollerslev et al. (2014) �nds that the variance premium is a strong predictor of stock returns

in France, Germany, Switzerland, The Netherlands, Belgium, the UK and, marginally, in

Japan. Our results con�rm Bollerslev et al. (2014) �ndings for the Brazilian market. To the

best of our knowledge, our study is the �rst to show this for an emerging economy.

The paper is divided as follows. Section 2 presents the methodology to compute the

IVol-BR. Section 3 decomposes the squared IVol-BR into expected variance and variance

premium, computes a time-varying risk-aversion measure of the representative investor in

the Brazilian market, and documents the predictive power of both the variance premium

and the risk-aversion measure over future stock returns. Section 4 concludes.

2 Implied Volatility Index for the Brazilian Stock Market

The methodology we use to compute an index that re�ects the implied volatility in the

Brazilian stock market (called IVol-BR) combines the one used in the calculation of the �new�

VIX (described in Carr and Wu (2009)) with some adjustments we propose, which take into
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account local aspects of the Brazilian stock market - mainly, a relatively low liquidity in

the options over the Brazilian main stock index (IBOVESPA) and, consequentially, a low

number of option strikes.

Options over IBOVESPA expire on even months: February, April, etc. Because of that,

we compute the IVol-BR in order to re�ect the implied volatility with a 2-month ahead

horizon. It is calculated as a weighted average of two volatility vertices: the �near-term�

and �next-term� implied volatilities of options over the IBOVESPA spot. On a given day t,

the near-term refers to the closest expiration date of the options over IBOVESPA, while the

next-term refers to the expiration date immediately following the near-term. For instance,

on any day in January 2015, the near-term refers to the options that expire in February

2015, while the next-term refers to the options that expires in April 2015. 4 On Table 1 we

show the quarterly daily averages of the number and �nancial volume of options contracts

traded.

The formula for the square of the near and next-term implied volatilities combines the

one used in the calculation of the �new� VIX (described in Carr and Wu (2009)) with a new

adjustment factor needed to deal with the low liquidity in Brazil:

σ2
k (t) =

2

Tk − t
∑
i

4Ki

K2
i

ert(Tk−t)Ot (Ki)−
j

Tk − t

[
F (t, Tk)

K0

− 1

]2

(1)

where

• k = 1 if the formula uses the near-term options and k = 2 is the formula uses the

next-term options � that is, σ2
1 (t) and σ2

2 (t) are, respectively, the squared near- and

the next-term implied volatilities on day t.5

4All options expire on the Wednesday closest to the 15th day of the expiration month.
5 The rollover of maturities occurs when the near-term options expire. We tested rolling-over 2, 3, 4, and

5 days prior to the near-term expiration to avoid microstructure e�ects, but the results do not change.
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• F (t, Tk) is the settlement price on day t of the IBOVESPA futures contract which

expires on day Tk (T1is the near-term expiration date and T2is the next-term expiration

date)

• K0 is the option strike value which is closest to F (t, Tk)

• Ki is the strike of the i-th out-of-the-money option: a call if Ki > K0, a put if Ki < K0

and both if Ki = K0

• ∆Ki = 1
2

(Ki+1 −Ki−1)

• rt is risk-free rate from day t to day Tk, obtained from the daily settlement price of the

futures interbank rate (DI)

• Ot (Ki) is the market price on day t of option with strike Ki

• j is a new adjustment factor that can take the values 0, 1 or 2 � in the methodology

described in Carr and Wu (2009) j is always equal to 1 (we explain this adjustment

below)

After calculating both the near- and next-term implied volatilities using equation (1), we

then aggregate these into a weighted average that corresponds to the 2-month (42 business

days) implied volatility, as follows:

IV olt = 100×

√[
(T1 − t)σ2

1

(
NT2 −N42

NT2 −NT1

)
+ (T2 − t)σ2

2

(
N42 −NT1

NT2 −NT1

)]
× N252

N42

(2)

where IV olt is the IVol-BR in percentage points and annualized at time t, NT1 is the number

of minutes from 5 pm of day t until 5 pm of the near-term expiration date T1, NT2 is the

number of minutes from 5 pm of day t until 5 pm of the next-term expiration date T2, N42
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is the number of minutes in 42 business days (42× 1440) and N252 is the number of minutes

in 252 business days (252× 1440).6

The market of options over IBOVESPA presents a low liquidity. The average daily volume

traded in this market is about US$ 20 million (about 1.5% of the daily volume of options over

S&P 500 traded in the US). As a consequence, we have few strikes to work with. On average,

10 di�erent strikes for the near-term and 10 di�erent strikes for the next-term, considering

both calls and puts. Table (1) reports the quarterly daily averages of the number of strikes

that we use.

[Table 1 about here]

The methodology presented above departs from the standard one described in Carr and

Wu (2009) for three reasons which are related to the relatively low liquidity and low number

of strikes traded in the options market in Brazil:

• we introduce the adjustment factor j in equation (1) to account for the following:

(i) there are days when only a call or a put at K0 is traded � Carr and Wu (2006)

have always both a call and a put; moreover, (ii) we have to de�ne K0 as the option

strike value which is closest to F (t, Tk) and, because of that, we may have either

K0 > F (t, Tk) or K0 < F (t, Tk) � Carr and Wu (2006) de�ne K0 as the option strike

value immediately below F (t, Tk). Depending on the situation we face regarding (i)

and (ii), the value of j is set to 0, 1, 2, as follows (an explanation about this can be

found in the Appendix):

6 On days when the weight of the second term of Equation (2) is negative, we do not use the next-term

volatility, i.e., the IVol-Br index equals the near-term volatility.
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Possible values of j

K0 < F K0 > F K0 = F

∃call, ∃put 1 1 1

∃call, @put 2 0 0

@call, ∃put 0 2 0

• we widen the time frame of options prices to the interval [3 p.m., 6 p.m.]. For each

strike, we use the last deal in this interval to synchronize the option price with the

settlement price of the IBOVESPA futures;

• we only calculate σ2
1(t) and σ2

2(t) if, for each vertex, there are at least 2 trades involving

OTM call options at di�erent strikes and 2 trades involving OTM put options also at

di�erent strikes - this is done in order to avoid errors associated with lack of liquidity

in the options market. If on a given day only one volatility vertex can be calculated, we

suppose that the volatility surface is �at and the IVol-Br is set equal to the computed

vertex. If both near- and next-term volatilities cannot be calculated, we report the

index for that day as missing.

The volatility index calculated according to equations (1) and (2) could be biased because

it considers only traded options at a �nite and often small number of strikes. To assess the

possible loss in the accuracy of the integral calculated with a small number of points, we

re�ne the grid of options via a linear interpolation using 2,000 points of the volatility smile

that can be obtained from the traded options (based on the procedure suggested by Carr

and Wu (2009)).7 The results did not change.

7The �coarse� volatility smile for both near and next-term is retrieved from the options market values and
the Black-76 formula. We then re�ne the grid of strike prices Ki using the implied volatilities and implied
deltas of the options with the formula:

Ki = F (t, T ) exp
[
−wσi

√
T − tN−1

(
|4i|+ 1

2σ
2
i (T − t)

)]
where w = 1 for calls and w = −1 for puts; N−1 (·) is the inverse of the standard normal cumulative

density function. To simplify the process of retrieving Ki , we transform all traded options in calls (via put-
call parity) and create a smile in the (∆call, σ) space. We then generate 2,000 points by linearly interpolating
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The IVol-BR series, computed according to the methodology described above, is available

for download at the webpage of the Brazilian Center for Research in Financial Economics

of the University of Sao Paulo (NEFIN).8 It is updated on a regular basis. Figure (1) plots

the IVol-Br for the period between August 2011 and February 2015, comprising 804 daily

observations.

[Figure 1 about here]

An implied volatility index should re�ect the dynamics of (i) the level, or quantity, of

risk that investors face � the expected future volatility and (ii) the price of such risk � the

risk-aversion of investors. Given that, the IVol-BR should be higher in periods of distress. As

expected, as Figure (1) shows, the series spikes around events that caused �nancial distress

in Brazil, such as the Euro Area debt crisis (2011), the meltdown of oil company OGX

(2012), the Brazilian protests of 2013, the second election of Mrs. Rousse� (2014) and the

corruption and �nancial crisis in Petrobras (2015).

It is also interesting to compare the IVol-Br with the VXEWZ, the CBOE's index that

tracks the implied volatility of a dollar-denominated index (EWZ) of the Brazilian stock

market. Figure (2) shows the evolution of both series.

[Figure 2 about here]

As Figure (2) presents, the VXEWZ is often higher than IVol-Br. This happens because

the VXEWZ, which is constructed using options over the EWZ index (that tracks the level

in dollars of the Brazilian stock market), embeds directly the exchange rate volatility. In

this smile considering two intervals: (i) the interval [∆max; ∆min] of deltas of the traded options; (ii) the
interval [99; 1] of deltas.

8http://www.fea.usp.br/ne�n
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turn, the IVol-Br is constructed using options over the IBOVESPA itself and, hence, re�ects

only the stock market volatility. Thus the IVol-BR is better suited to describe the implied

volatility of the Brazilian stock market for local investors or foreign investors that have

hedged away the currency risk. During the period depicted in Figure (2) there were important

changes in the exchange rate volatility that directly impacted the VXEWZ but not the IVol-

Br.

3 Empirical Analysis using the IVol-BR

In this section we use the squared IVol-BR series, which we call IVar, in some interest-

ing empirical exercises. We �rst decompose the IVar into (i) the actual expected variance

of stock returns and (ii) the variance premium.9 Then, from the variance premium, we

produce a time-varying risk-aversion measure for the Brazilian investor. Finally, we show

empirically that higher risk-aversion is accompanied with higher expected returns, as asset

pricing theory suggests. The reason for working with the IVar, instead of the IVol-BR, is

that theoretical models usually produce closed-form equations that relate risk aversion to

the variance premium and not the volatility premium.

In Section 3.1 we decompose the implied variance, calculated as the IVol-BR squared,

into (i) the expected variance of stock returns and (ii) the equity variance premium. To

do this, we �rst estimate a model that represents the conditional expectation of investors

of future variance. Then, by calculating the di�erence between the implied variance and

the estimated expected variance, we arrive at a daily measure of the variance premium. In

Section 3.2, from the volatility premium, we produce a time-varying risk aversion measure for

the Brazilian investor from the variance premium. In Section 3.3 we show that the variance

9It can be shown that the implied variance approximates the expected variance under the risk neutral
measure (see for instance Carr and Wu (2006)). Given that, what we call �variance premium� is the di�erence
between the expected variance under the risk neutral measure and the expected variance under the empirical,
or historical, measure.
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premium and the risk aversion measure are able to predict future stock returns as theory

suggests: when variance premium (risk-aversion) is higher, expected returns are higher.

3.1 Decomposing Implied Variance into Expected Variance and

Variance Premium

To decompose implied variance into expected variance and a premium, we �rst search

for the model that best forecasts variance. Because the implied variance, calculated by

squaring the IVol-BR, re�ects markets expectations for the two-months ahead, the measure

of expected variance of interest is also over the same two-month period.

The variance of returns is a latent, unobservable variable. Fortunately, we can obtain a

good estimator of the variance of returns from high frequency data and use the estimated

time-series, the so-called realized variance, as the dependent variable of our forecasting model.

Formally, the realized variance over a two-month period at day t is calculated by summing

squared 5-minute returns over the last 42 trading days:

RV
(42)
t =

252

42
×
b42/∆e∑
i=1

r2
i

where ∆ = 5/425 is the 5-minute fraction of a full trading day with 7 hours including the

opening observation, b·e is the operator that approximates to the closest integer, and ri =

100× [ln(Ibovi)− ln(Ibovi−i)] is a 5-minute log-return in percentage form on the IBOVESPA

index, except when i refers to the �rst price of the day, in which case ri corresponds to the

opening/close log-return.

Following the recent literature on variance forecasting (Chen and Ghysels (2011), Corsi

(2009), Corsi and Renò (2012) and Bekaert and Hoerova (2014)), we construct several ex-

planatory variables (predictors) from a 5-minute returns data set.10 First, we include in the

set of explanatory variables lags of realized variance at heterogeneous frequencies to account

10We thank BM&FBovespa for providing the intraday data set.
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for the clustering feature of stock returns variance. In the spirit of Corsi's (2009) HAR

model, lags of bimonthly, monthly, weekly and daily realized variances are included: RV
(42)
t ,

RV
(21)
t , RV

(5)
t and RV

(1)
t . Formally:

RV
(k)
t =

252

k
×
bk/∆e∑
i=1

r2
i

for each k = 42, 21, 5, 1.

One important feature of variance is the asymmetric response to positive and negative

returns, commonly referred to as leverage e�ect. To take this into account, Corsi and Renò

(2012) suggests including lags of the following �leverage� explanatory variables:

Lev
(k)
t = −42

k

bk/∆e∑
i=1

min [ri, 0]

with k = 42, 21, 5, 1. For a convenient interpretation of the estimated parameters, we take

the absolute value of the cumulative negative returns.

Andersen et al. (2007) show that jumps help in predicting variance. Following the theory

laid out by Barndor�-Nielsen and Shephard (2004), realized variance can be decomposed

into its continuous and jump components with the usage of the so-called bipower variation

(BPV). As shown by these authors, under mild conditions, the BPV is robust to jumps in

prices while the realized variance is not. This insight allows one to identify jumps indirectly

by simply calculating the di�erence:

J t = max [RVt −BPVt, 0]

where BPVt = (252/42)×
∑b42/∆e

i=1 |ri| |ri−1|. The maximum operator is included to account

for the situation when there are no jumps and the BPV is eventually higher than the realized

12



variance. The continuous component of the realized variance is de�ned as follows:

Ct = RVt − J t

Lagged variables of the continuous and jump components at other time frequencies are

also included. Using the same notation as before, the following eight variables are added

C
(k)
t , J

(k)
t with k = 42, 21, 5, 1.

Finally, we follow Bekaert and Hoerova (2014) and include the lagged implied variance

as explanatory variable. Importantly, as will be shown, this variable contains information

about future realized variance that is not contained in lagged realized variance and other

measures based on observed stock returns.

To �nd the best forecasting model, we apply the General-to-Speci�c (GETS) selection

method proposed by David Hendry (see for instance Hendry et al. (2009)). The starting

model, also called GUM or General Unrestricted Model, includes all the variables described

above plus a constant:

RVt+42 = c+ IV art + C
(42)
t + C

(21)
t + C

(5)
t + C

(1)
t + J

(42)
t + J

(21)
t + J

(5)
t + J

(1)
t

+Lev
(42)
t + Lev

(21)
t + Lev

(5)
t + Lev

(1)
t + εt

To avoid multicolinearity, the lagged realized variance measures were excluded from the

initial set of explanatory variables since by construction they are approximately equal to

RV
(k)
t ≈ C

(k)
t + J

(k)
t . However, in a robustness exercise below, we include these variables in

other forecasting models.

Following an iterative process, the method searches for variables that improve the �t

of the model but penalizes for variables with statistically insigni�cant parameters. The

regressions are based on daily observations. Table (2) shows the estimates of the �nal model

� the GETS model. Eight variables plus a constant remain in the GETS model: IV art,

C
(42)
t , C

(5)
t , J

(21)
t , J

(5)
t , Lev

(42)
t , Lev

(21)
t and Lev

(5)
t .
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[Table 2 about here]

Importantly, the coe�cient on the implied variance is positive (0.152) and highly signif-

icant. This indicates that, as expected, IVar does contain relevant information about future

variance, even after controlling for traditional variance forecasting variables.

From the GETS model, we calculate a time-series of expected variance. We name the

di�erence between implied variance and this time-series of expected variance as the variance

premium:

V ariance Premiumt = IV art − σ̂2
t, (3)

where σ̂2
t = Et [RVt+42] = Et

[
σ2
t,t+42

]
is the GETS model expected variance computed using

information up until day t; the subscript t + 42 emphasizes the fact that it is the expected

variance over the same horizon as the implied variance, IV art. Figure (3) shows both

series and Figure (4) shows the variance premium. We observe that the premium varies

considerably. The 3-month moving average shown in Figure (4) suggests that the average

premium varies and remains high for several months.

[Figure 3 and 4 about here]

3.2 The Variance Risk Premium and the Risk Aversion Coe�cient

An implied variance index re�ects the dynamics of two very important variables. The �rst

relates to the level, or quantity, of risk that investors face: the expected future variance of

the market portfolio, estimated above. The second relates to the price of such risk: the risk

aversion of the representative investor.

Since options' payo�s are asymmetric, the value of any option (call or put) is increasing

in the expected variance of the underlying asset. Because of that, options are often used
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as a protection against changes in expected variance. Since the typical risk-averse investor

dislikes variance, options are traded with a premium because of such an insurance value. As

a direct consequence, the implied variance (IVar, the IVol-BR squared), which is computed

directly from options prices, also has a premium with respect to the expected variance. That

is, the more risk-averse the investor is, the more she is willing to pay for the insurance that

options provide, i.e., the higher the variance premium.

In order to make this connection between risk aversion and variance premium more

precise, we need to impose some economic structure. To do this, we use Bollerslev et al.

(2009) economic model, which is an extension of the long-run risk model of Bansal and Yaron

(2004). We assume that the following closed-form equation for the variance premium holds

for each t:11

V ariance Premiumt =
ψ−1 − γt
1− ψ−1

× κ1 (1− γt)2

2
(

1−γt
1−ψ−1

)
(1− κ1ρσ)

q (4)

where ψ is the coe�cient of elasticity of intertemporal substitution, γt is the time-varying risk

aversion coe�cient, q the volatility of the volatility, and ρσ is the auto-regressive parameter

in the volatility of consumption.

Using the estimated weekly series for the variance premium computed above and usual

parameter calibration,12 we pin down a time-series for the time varying risk aversion coe�-

cient of the representative investor in Brazil.13 The resulting series is plotted in Figure (5).

The smallest value for γt is 1 on August 22, 2014 and the highest value is 57 on February

13, 2015. The average risk aversion level is 26. Such values are consistent with the results

in Zhou (2009) � an average risk aversion higher than 10 is needed to match the empirical

moments of the variance premium (see his Table 8).

11We use their simpler equation, where they assume a constant volatility of volatility (the process q is
constant at all t)

12We set ψ = 1.5, q = 10−6, κ1 = 0.9 and ρσ = 0.0078 following the calibration in Bansal and Yaron
(2004) and Bollerslev et al. (2009).

13Equation (4) is quadratic on the risk-aversion coe�cient γt. In order to avoid complex roots, we shift
the variance premium upward so that the minimum variance premium corresponds to the minimum value of
γt = 1.
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[Figure 5 about here]

3.3 Predicting Future Returns

If the variance premium positively commoves with investors risk-aversion, it should predict

future market returns: when risk aversion is high, prices are low; consequentially, future

returns (after risk aversion reverts to its mean) should be high. Moreover, the risk aversion

measure itself, computed in Section 3.2, should also predict future returns. In this Section

we test these predictions by regressing future market returns on both the variance premium

and the risk-aversion measure.

Table (3) shows the results of our main regression. The dependent variable is the return

on the market portfolio 4 weeks ahead. To limit the overlapping of time-series, we reduce

the frequency of our data set from daily to weekly by keeping only the last observation of

the week. Additionally, to account for the remaining serial correlation in the error term, the

standard errors are computed using Newey-West estimator. Columns (1) and (2) show that

implied variance IV art and expected variance σ̂
2
t alone are not very good predictors of future

returns. On the other hand, Column (3) shows that the variance premium, resulting from

a combination of both variables, IV art − σ̂2
t , strongly predicts future returns at the 4-week

horizon. The estimated coe�cient is positive, 0.089, and signi�cant at the 1% con�dence

level. Column (4) shows that the risk aversion measure also predicts future returns at

the 4-week horizon. The estimated coe�cient is positive, 0.180, and signi�cant at the 1%

con�dence level.

[Table 3 about here]

The predictive power of the variance premium and the risk aversion measure remains

after we include in the regression the divided yield log(Dt/Pt), another common predicting
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variable. Again, Columns (5) and (6) show that implied variance and expected variance

alone are poor predictors of returns. On the other hand, both the variance premium and

the risk aversion measure do predict future returns. Column (7) shows a positive coe�cient

for the variance premium, 0.066, signi�cant at the 5% con�dence level. Column (8) shows a

positive coe�cient for the risk-aversion measure, 0.135, also signi�cant at the 5% con�dence

level.

In Columns (1) through (8) of Tables (4) and (5), the regressions are the same as the one

in Column (7) and (8), respectively, of Table (3), except for the horizon of future returns.

As the signi�cance and values of the estimates indicate, the variance premium predictability

is stronger at the 4-week horizon (Columns (7) and (8)).

[Tables 4 and 5 about here]

A concern is that the standard errors in the �rst eight Columns in Tables (4) and (5) may

be biased due to the presence of a persistent explanatory variable such as the log dividend

yield (see for instance Stambaugh (1999)) combined with a persistent dependent variable

(overlapping returns). To address this concern, Columns (9) and (10) in both tables show

the same regressions of Columns (7) and (8) but based on non-overlapping 4-week returns.

As we can see, the coe�cients on the variance premium and risk-aversion remain positive

and signi�cant.

Another concern may be that the actual expected variance by market participants cannot

be observed. Hence, our measure of expected variance depends on the model chosen by the

econometrician. To address this concern, we also assess to which extent our results depend

on the chosen variance model.

Tables (6) and (7) show the estimates of several models. Table (6) brings the estimates of

Corsi's (2009) HAR model in Column (1), with the addition of a 42-day realized variance lag

in accordance with the frequency of the dependent variable. In Columns (2), (3) and (4) we
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include the lagged implied variance, IV art, that was shown to contain important predictive

information. Columns (3) and (4) include leverage variables to account for the asymmetric

response of variance to past negative returns.

[Table 6 about here]

In Table (7) we separate the realized variance into its continuous and jump components

and use these variables instead. Column (1) shows the estimates of the GUM model, the

starting model in the General-to-Speci�c selection method adopted in Section 3.1. The

GUM regression includes all the variables initially selected as candidate variables to forecast

variance. Columns (2) through (4) are variants of this more general model.

[Table 7 about here]

As we can conclude by comparing the statistical properties of each regression in Tables

(2), (6) and (7), the GETS model has the lowest information criterion, BIC, as the selection

method strongly penalizes the inclusion of variables and favors a more parsimonious model.

Models M4, M5 and M6 have comparable R2 to the GETS models, explaining more than

35% of the variation of the dependent variable, but with the inclusion of extra regressors.

We now assess how sensitive is our predictive regression to the selection of the variance

model. For each one of the regression models shown in Tables (6) and (7) we calculate a

volatility premium as in equation (3). The results of the predictability regressions at the 4-

week return horizon are shown in Table (8). In Column (1) we use a simple model to predict

future variance and set σ̂t
2 = σ2

t−1 following the de�nition of Bollerslev et al. (2009). Column

(2) replicates our main regression that uses the GETS model to predict variance. Columns

(3) through (10) show the predictability regressions for each of the 8 models presented in
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Tables (6) and (7). As can be seen, the results are largely robust to the selection of the

variance model.

[Table 8 about here]

4 Conclusion

This is the �rst article to propose an implied volatility index for the Brazilian stock market

based on option and futures prices traded locally. The methodology we propose has to deal

with the relatively low liquidity of contracts used. This is a �rst contribution of this paper.

We use our implied volatility index to calculate the so-called variance premium for Brazil.

Assuming Bollerslev et al. (2009) economic structure, we also pin down a time-varying risk

aversion measure of the representative investor in the Brazilian market. In line with in-

ternational evidence, we show the variance premium strongly predicts future stock returns.

Interestingly, we also �nd that our measure of risk aversion is a strong predictor of future

returns with a slightly superior �t than the variance premium. To the best of our knowledge,

this is the �rst analysis of this kind for an emerging market. This is the second contribution

of this paper.

Further extensions of this work include applying our methodology to construct implied

volatility indices for other markets with low liquidity. With respect to the risk aversion

measure, di�erent economic models and parameter calibration can be tested.
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A The j adjustment

In this Section we demonstrate how to obtain the adjustment term j. In the following

derivations we refer to an out-of-the-money option as OTM , and to an in-the-money option

as ITM .

Under the risk neutral measure, it can be shown that the variance is approximated by a

portfolio of OTM calls and puts. However, in practice, the portfolio used is

σ2(t) ≈ 2

T − t
∑
i

∆Ki

K2
i

ert(T−t)Ot(Ki) (5)

where

• Ki is the strike of the i-th out-of-the-money option: a call if Ki > K0, a put if Ki < K0

and both if Ki = K0

• K0 is the strike closest to the futures price F

• ∆Ki = 1
2

(Ki+1 −Ki−1)

• rt is risk-free rate from day t to day T , obtained from the daily settlement price of the

futures interbank rate (DI)

• Ot (Ki) is the market price on day t of option with strike Ki

Since we don't necessarily have a call and a put at K0, an adjustment in the formula above

is needed. The following 6 cases can arise:

Case 1: If K0 ≤ F and we have data on call and put prices at K0.

This is the standard case set by Carr and Wu (2006). It follows from the Put-Call parity

that:
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O(K0) =
P (K0) + C(K0)

2

=
P (K0) +

{
P (K0) + (F −K0)e−r(T−t)

}
2

Therefore, substituting for the O(K0) term in Equation (5), we obtain

2

T − t
∆K0

K2
0

ert(T−t)O(K0) = 2
∆K0

K2
0

P (K0)

T − t
ert(T−t)

+
1

T − t
∆K0

K2
0

(F −K0)

= 2
∆K0

K2
0

P (K0)

T − t
ert(T−t)

+
1

T − t

(
F

K0

− 1

)2

where, the last equality, follows from the assumption that ∆K0 = F −K0.

Substituting back in Equation (5) we obtain that the last term below is zero

σ2(t) =
2

T − t
∑
i

∆K

K2
i

er(T−t)Ot(Ki)

+
1

T − t
∆K0

K2
0

(F −K0)− 1

T − t

[
F

K0

− 1

]2

︸ ︷︷ ︸
=0

where at i = 0 we have O(K0) = P (K0), that is, all options are OTM.

Equivalently, we can write the above equation as

σ2(t) =
2

T − t
∑
i

∆K

K2
i

er(T−t)Ot(Ki)−
1

T − t

[
F

K0

− 1

]2

where O(K0) = P (K0)+C(K0)
2

and C(K0) is ITM.
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In Brazil, there are days when only a call or a put at K0 is traded. Besides, we have to

de�ne K0 as the option strike value which is closest to F (t, Tk) and, because of that, we may

have either K0 > F (t, Tk) or K0 < F (t, Tk). Given that, we have to create the following 5

additional cases.

Case 2: If F < K0 and we have data on call and put prices at K0.

In this case, P (K0) is ITM and, by the Put-Call parity, we obtain analogously:

σ2(t) =
2

T − t
∑
i

∆K

K2
i

er(T−t)Ot(K0)

+
1

T − t
∆K0

K2
0

(F −K0)− 1

T − t

[
F

K0

− 1

]2

where O(K0) = C(K0), that is, all options are OTM.

Equivalently,

σ2(t) =
2

T − t
∑
i

∆K

K2
i

er(T−t)Ot(Ki)−
1

T − t

[
F

K0

− 1

]2

where O(K0) = P (K0)+C(K0)
2

and P (K0) is ITM.

Case 3: If K0 ≤ F , we have data on put prices and don't have data on call prices at K0.

In this case, all options are OTM and no adjustment is needed. That is, we set j = 0 in

the formula:

σ2(t) =
2

T − t
∑
i

∆Ki

K2
i

ert(T−t)Ot(Ki)−
j

T − t

[
F

K0

− 1

]2

where O(K0) = P (K0).

Case 4: If K0 > F , we have data on call prices and don't have data on put prices at K0.

In this case, all options are OTM and no adjustment is needed. That is, we set j = 0 in

the formula:
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σ2(t) =
2

T − t
∑
i

∆Ki

K2
i

ert(T−t)O(Ki)−
j

T − t

[
F

K0

− 1

]2

where O(K0) = C(K0).

Case 5: If K0 ≤ F , we have data on call prices and don't have data on put prices at K0.

In this case, C(K0) is ITM and should be transformed into a OTM P (K0) by the Put-Call

parity. Using the result O(K0) = C(K0) = P (K0) + (F −K0)e−r(T−t), and substituting for

the O(K0) term in Equation (5) we obtain

2

T − t
∆K0

K2
0

ert(T−t)O(K0) =
2

T − t
∆K0

K2
0

P (K0)ert(T−t)

+
2

T − t
∆K0

K2
0

(F −K0)

Following the same steps of Case 1, we obtain

σ2(t) =
2

T − t
∑
i

∆K

K2
i

er(T−t)Ot(Ki)

+
2

T − t
∆K0

K2
0

(F −K0)− 2

T − t

[
F

K0

− 1

]2

︸ ︷︷ ︸
=0

where Q(K0) = P (K0), that is, all options are OTM.

Equivalently,

σ2(t) =
2

T − t
∑
i

∆Ki

K2
i

er(T−t)Ot(Ki)−
j

T − t

[
F

K0

− 1

]2

where now we have j = 2, O(K0) = C(K0), and C(K0) is ITM.

Case 6: If K0 > F , we have data on put prices and don't have data on call prices at K0.

This can be solved similarly as Case 5 with j = 2 and P (K0) ITM.
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B Tables and Figures

Figure 1: Implied Volatility in Brazil - the IVol-BR

This Figure shows the daily time-series of the IVol-Br in percentage points and annualized.
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Figure 2: Comparing IVol-BR and VXEWZ

This Figure shows the daily time-series of the IVol-Br and the VXEWZ. Both series are in
percentage points and annualized. VXEWZ is the implied volatility index on the Brazilian
stocks ETF EWZ and is calculated by CBOE.
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Figure 3: Implied Variance and Expected Variance

This Figure shows the weekly time-series of the implied variance � the squared of the IVol-Br
� and the estimated expected variance. The model for expected volatility is the GETS model
shown on Table (2). Both series are in percentage points and annualized.
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Figure 4: The Variance Premium

This Figure shows the weekly time-series of the variance premium calculated by the di�erence
of the implied variance and expected variance as predicted by the GETS model shown on
Table (2), and its three month moving average.
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Figure 5: Risk Aversion

This Figure show a time-series for the risk aversion index in Brazil. It is computed by

combining the weekly series for the variance premium with Bollerslev et al. (2009) functional

form for the variance premium, as explained in Section 3.3.
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Table 1: Number of Option Strikes Used in the IVol-BR

The Table shows the quarterly daily averages of the number of strikes that were used in the construction of

the IVol-BR.

Period
Near-Term Next-Term

Call Strikes Puts Strikes Total Strikes Call Strikes Put Strikes Total Strikes
2011Q3 3 5 8 2 4 6
2011Q4 5 5 10 4 4 9
2012Q1 4 6 10 4 5 9
2012Q2 5 5 10 4 4 9
2012Q3 5 6 11 4 5 9
2012Q4 5 6 11 5 4 10
2013Q1 5 6 11 5 5 10
2013Q2 6 6 12 5 5 10
2013Q3 5 6 11 4 4 9
2013Q4 3 3 7 4 3 7
2014Q1 4 5 9 3 4 7
2014Q2 4 5 8 3 4 7
2014Q3 4 5 9 5 7 12
2014Q4 4 5 9 4 5 9
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Table 2: General-to-Speci�c Best Model

The Table shows the estimates of the best variance forecasting model following the General-to-Speci�c se-

lection method. The starting model, also called GUM or General Unrestricted Model, comprises of all

independent variables. The standard errors reported in parenthesis are robust to heteroskedasticity. Regres-

sions are based on daily observations. The corresponding p-values are denoted by * if p < 0.10, ** if p <

0.05 and *** if p < 0.01.

(1)

IV art 0.152***
(0.040)

C
(42)
t 3.215***

(0.267)

C
(5)
t -0.656***

(0.123)

J
(21)
t -0.540***

(0.127)

J
(5)
t 0.307***

(0.082)

Lev
(42)
t -2.237***

(0.155)

Lev
(21)
t 0.722***

(0.084)

Lev
(5)
t 0.367***

(0.066)

Constant 950.186***
(73.048)

Number of Obs. 741
R2 0.400
Adjusted R2 0.393
RMQE 176.345
BIC 9818.8
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Table 6: Robustness - Variance Models

The Table shows the estimates of di�erent models of expected variance. The dependent variable is the

realized variance over the following 42 days, calculated from 5-minute returns on the Ibovespa portfolio. The

explanatory variables are: i) IV art is the expected implied variance on the next 8 weeks estimated from

prices of options contracts at time t − 1, ii) RV
(k)
t−1 is the realized volatility on the following k days at time

t − 1, where k = 42, 21, 5, 1, computed iii) Lev
(k)
t−1 is the cumulative negative 5-minute returns continuous

component of the realized variance on the following k days at time t−1, where k = 42, 21, 5, 1. The standard

errors reported in parenthesis. The corresponding p-values are denoted by * if p < 0.10, ** if p < 0.05 and

*** if p < 0.01.

M1 M2 M3 M4

RV
(42)
t -0.113* -0.166*** 1.273***

RV
(21)
t 0.256*** 0.247*** -0.532***

RV
(5)
t 0.139*** 0.069* -0.009

RV
(1)
t 0.021 0.011 0.000

IV art 0.214*** 0.218*** 0.194***

Lev
(42)
t -0.513*** -1.837***

Lev
(21)
t 0.484*** 1.031***

Lev
(5)
t 0.091** 0.101

Lev
(1)
t 0.029 0.031

Constant 324.831*** 271.370*** 251.331*** 691.146***

Number of Obs. 762 741 741 741
R2 0.209 0.228 0.277 0.369
Adjusted R2 0.205 0.223 0.272 0.361
RMQE 201.504 199.543 193.193 180.900
BIC 10276.7 9985.2 9937.3 9862.2
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Table 7: Robustness - Variance Models (Cont.)

The Table shows the estimates of di�erent models of expected realized variance. The dependent variable is

the realized variance over the following 8-weeks, calculated from 5-minute returns on the Ibovespa portfolio.

The explanatory variables are: i) IV art−1 is the expected implied variance on the next 8 weeks estimated

from prices of options contracts at time t− 1, ii) C
(k)
t−1 is the continuous component of the realized variance

during the following k days at time t−1, where k = 42, 21, 5, 1, iii) J
(k)
t−1 is the jump component of the realized

variance during the following k days at time t− 1, where k = 42, 21, 5, 1 and iv) Lev
(k)
t−1 is the absolute of

the sum 5-minute negative returns during the following k days at time t − 1, where k = 42, 21, 5, 1. The

standard errors reported in parenthesis. The regressions are based on daily observations. The corresponding

p-values are denoted by * if p < 0.10, ** if p < 0.05 and *** if p < 0.01.

M5 M6 M7 M8

IV art�1 0.147*** 0.142*** 0.286***

C
(42)
t�1 3.282*** 3.679*** -1.675***

C
(21)
t�1 -0.514 -1.171*** 1.545***

C
(5)
t�1 -0.461*** -0.225* 0.010

C
(1)
t�1 -0.057 -0.025 -0.015

J
(42)
t�1 0.294 1.583*** 1.308***

J
(21)
t�1 -0.540** -0.768*** -1.126***

J
(5)
t�1 0.247*** 0.052 0.163

J
(1)
t�1 0.021 0.007 0.026

Lev
(42)
t�1 -2.433*** -2.535*** -1.289***

Lev
(21)
t�1 1.023*** 1.178*** 0.802***

Lev
(5)
t�1 0.263*** 0.211*** 0.077

Lev
(1)
t�1 0.043 0.043 0.021

IV olt�1 13.969***

Constant 930.537*** 935.469*** 337.173*** 256.965***

Number of Obs. 741 741 741 741
R2 0.406 0.397 0.349 0.269
Adjusted R2 0.396 0.390 0.341 0.260
RMQE 175.994 176.881 183.726 194.766
BIC 9843.8 9828.9 9885.2 9971.7

37



T
a
b
le
8
:
R
o
b
u
st
n
e
ss
-
P
re
d
ic
ta
b
il
it
y
R
e
g
re
ss
io
n

T
h
e
T
a
b
le
sh
ow

s
th
e
es
ti
m
a
te
s
o
f
p
re
d
ic
ta
b
il
it
y
re
g
re
ss
io
n
s
h
av
in
g
th
e
4
-w
ee
k
a
h
ea
d
re
tu
rn

a
s
th
e
d
ep
en
d
en
t
va
ri
a
b
le
a
n
d
u
si
n
g
va
ri
o
u
s
m
ea
su
re
s
o
f

va
ri
a
n
ce

p
re
m
iu
m

a
s
re
g
re
ss
o
rs
.
E
a
ch

m
ea
su
re

o
f
va
ri
a
n
ce

p
re
m
iu
m

is
ca
lc
u
la
te
d
w
it
h
a
d
i�
er
en
t
m
o
d
el
fo
r
ex
p
ec
te
d
va
ri
a
n
ce
.
C
o
lu
m
n
(1
)
u
se
s
a

si
m
p
le
m
o
d
el
fo
r
ex
p
ec
te
d
va
ri
a
n
ce
:
σ̂
t
2

=
σ
2 t−

4
2
,
a
n
d
w
a
s
p
ro
p
o
se
d
b
y
B
o
ll
er
sl
ev

et
a
l.
(2
0
0
9
).

C
o
lu
m
n
(2
)
re
p
li
ca
te
s
o
u
r
m
a
in

re
g
re
ss
io
n
th
a
t
u
se
s

th
e
G
E
T
S
m
o
d
el
to

fo
re
ca
st
va
ri
a
n
ce
.
C
o
lu
m
n
s
(3
)
th
ro
u
g
h
(1
0
)
va
ri
es

th
e
ex
p
ec
te
d
va
ri
a
n
ce

m
o
d
el
fr
om

M
1
to
M

1
0
.
lo
g

(D
t
/
P
t
)
is
th
e
lo
g
d
iv
id
en
d

y
ie
ld
.
R
eg
re
ss
io
n
s
a
re

b
a
se
d
o
n
w
ee
k
ly

o
b
se
rv
a
ti
o
n
s.
T
o
a
cc
o
u
n
t
fo
r
er
ro
r
co
rr
el
a
ti
o
n
,
th
e
st
a
n
d
a
rd

er
ro
rs
a
re

co
m
p
u
te
d
u
si
n
g
N
ew

ey
-W

es
t
la
g
s.
T
h
e

st
a
n
d
a
rd

er
ro
rs

a
re

re
p
o
rt
ed

in
p
a
re
n
th
es
is
.
T
h
e
co
rr
es
p
o
n
d
in
g
p
-v
a
lu
es

ar
e
d
en
o
te
d
b
y
*
if
p
<
0
.1
0
,
*
*
if
p
<
0
.0
5
a
n
d
*
*
*
if
p
<
0
.0
1
.

(1
)

(2
)
G
E
T
S

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

C
on
st
an
t

50
.6
56
**
*

35
.5
94
*

37
.9
88
**

38
.1
08
**

37
.4
54
*

33
.0
82
*

34
.8
87
*

34
.7
88
*

33
.3
37
*

37
.2
30
*

(1
7.
42
3)

(1
9.
31
5)

(1
8.
85
2)

(1
9.
12
2)

(1
9.
38
6)

(1
9.
67
5)

(1
9.
39
4)

(1
9.
56
9)

(1
9.
60
1)

(1
9.
18
5)

lo
g
(D
/P

)
16
.2
34
**
*

11
.4
49
*

12
.1
88
**

12
.2
35
**

12
.0
07
*

10
.6
75
*

11
.2
33
*

11
.2
01
*

10
.7
51
*

11
.9
64
*

(5
.5
83
)

(6
.1
57
)

(6
.0
21
)

(6
.0
98
)

(6
.1
79
)

(6
.2
68
)

(6
.1
81
)

(6
.2
35
)

(6
.2
45
)

(6
.1
14
)

I
V
a
r t
�
σ

2 t�
1

0.
00
5*
**

(0
.0
02
)

I
V
a
r t
�
σ̂

2 t
0.
06
6*
*

(0
.0
31
)

I
V
a
r t
�
σ̂

2 t(
M

1)
0.
00
5*
*

(0
.0
02
)

I
V
a
r t
�
σ̂

2 t(
M

2)
0.
00
5*

(0
.0
03
)

I
V
a
r t
�
σ̂

2 t(
M

3)
0.
00
4*

(0
.0
02
)

I
V
a
r t
�
σ̂

2 t(
M

4)
0.
00
6*
*

(0
.0
03
)

I
V
a
r t
�
σ̂

2 t(
M

5)
0.
00
6*
*

(0
.0
03
)

I
V
a
r t
�
σ̂

2 t(
M

6)
0.
00
6*
*

(0
.0
03
)

I
V
a
r t
�
σ̂

2 t(
M

7)
0.
00
6*
*

(0
.0
03
)

I
V
a
r t
�
σ̂

2 t(
M

8)
0.
00
5*
*

(0
.0
03
)

N
u
m
b
er

of
O
b
s.

17
5

17
5

17
5

17
5

17
5

17
5

17
5

17
5

17
5

17
5

R
2

0.
15
0

0.
13
5

0.
12
7

0.
11
9

0.
11
4

0.
14
7

0.
14
0

0.
13
8

0.
14
3

0.
12
6

A
d
ju
st
ed

R
2

0.
14
0

0.
12
5

0.
11
6

0.
10
9

0.
10
4

0.
13
7

0.
13
0

0.
12
8

0.
13
3

0.
11
6

38


	Cover_WorkingPaper_Eduardo
	ASTORINO_CHAGUE_GIOVANNETTI_SILVA_WP

