Department of Economics- FEA/USP

Variance Premium and
Implied Volatility in a
Low-Liquidity Option
Market

EDUARDO ASTORINO
FERNANDO CHAGUE

BRUNO GIOVANNETTI
MARCOS EUGENIO DA SILVA

WORKING PAPER SERIES N¢ 2015-08


http://www.cefage.uevora.pt/pt/eventos/conferencias_em_lingua_portuguesa/cefage_ue_workshops_perspectivas_da_investigacao_em_portugal_11_painel_econometria
http://www.cefage.uevora.pt/pt/eventos/conferencias_em_lingua_portuguesa/cefage_ue_workshops_perspectivas_da_investigacao_em_portugal_11_painel_econometria
http://www.cefage.uevora.pt/pt/eventos/conferencias_em_lingua_portuguesa/cefage_ue_workshops_perspectivas_da_investigacao_em_portugal_11_painel_econometria
http://www.cefage.uevora.pt/pt/eventos/conferencias_em_lingua_portuguesa/cefage_ue_workshops_perspectivas_da_investigacao_em_portugal_11_painel_econometria

DEPARTMENT OF EcoNoMIcs, FEA-USP
WORKING PAPER N2 2015-08

Variance Premium and Implied Volatility in a Low-Liquidity Option Market

Eduardo Astorino(eduardo.astorino@usp.br)
Fernando Chague (fchague@usp.br)
Bruno Giovannetti (bcg@usp.br)

Marcos Eugenio da Silva (medsilva@usp.br)

Abstract:

We propose an implied volatility index for Brazil that we name "IVol-BR". The index is based on
daily market prices of options over IBOVESPA -- an option market with relatively low liquidity and
few option strikes. Our methodology combines standard international methodology used in high-
liquidity markets with adjustments that take into account the low liquidity in Brazilian option
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1 Introduction

This is the first article to propose an implied volatility index for the stock market in Brazil.!
We call our implied volatility index “IVol-BR”. The methodology to compute the IVol-BR
combines state-of-the-art international methodology used in the US with adjustments we
propose that take into account the low liquidity in Brazilian option market. The average
daily volume traded in this market is US$ 20 million? and, as consequence, few option strikes
are traded. The methodology we propose can be applied to other low-liquidity markets. This
the first contribution of the paper.

The IVol-BR has good empirical properties. First, by regressing future realized volatility
on the IVol-BR and a number of traditional volatility forecasting variables, we show that the
IVol-BR does contain information about future volatility. Second, we decompose the squared
IVol-BR into (i) the expected variance of stock returns and (ii) the equity variance premium
(the difference between the squared IVol-BR and the expected variance). This decomposition
is of interest since the equity variance premium directly relates to the representative investor’s
risk aversion. Then, we use such a decomposition to pin down a time-varying risk aversion
measure for the Brazilian market. Finally, we show that both the risk aversion measure and
the variance premium have significant predictive power over future stock returns. To the
best of our knowledge, this is the first article to relate variance premium, risk-aversion, and
future returns in an emerging market. This is the second contribution of this paper.

An implied volatility index is useful for both researchers and practitioners. It is commonly

referred to as the “fear gauge” of financial markets. The best known example is the VIX,

!The Chicago Board of Options Exchange (CBOE) produces a volatility index called VXEWZ, which
is constructed from options over a dollar-denominated index of the Brazilian stock market (called EWZ).
As such, the VXEWZ contains both the implied volatility of equities and the implied volatility of the
FX market (R$/US$). The index we propose, in turn, is a clean measure of the implied volatility of the
Brazilian stock market for local investors — not polluted by the exchange rate volatility. Other related works
are Kapotas et al. (2004), that studied implied volatility of options over Telemar stocks, and Dario (2006)
and Brostowicz Junior and Laurini (2010), that studied volatility indices for the Brazilian FX market.

2 A small fraction of the daily volume of options over S&P 500 traded in the US (about 1.5%).



first introduced by the Chicago Board of Options Exchange (CBOE) in 1993.3 The squared
implied volatility of a stock market reflects the dynamics of two very important variables.
The first relates to the level, or quantity, of risk that the representative investor faces: the
expected future variance of the market portfolio. The second relates to the price of such
risk, the risk aversion of this investor.

The economic intuition for this is the following. Since options’ payoffs are asymmetric,
the value of any option is increasing in the expected variance of the underlying asset. Because
of that, options are often used as a protection against changes in variance. Since the typical
risk-averse investor dislikes variance, options are traded with a premium because of their
insurance value. As a consequence, the squared implied volatility (which is directly computed
from option prices) also has a premium with respect to the (empirical) expected variance:
the first should always be higher than the second. This is the so-called “variance premium”.
The more the investor dislikes variance, the more she is willing to pay for the insurance that
options provide. Therefore, the higher the risk aversion, the higher the variance premium
(see, for instance, Bollerslev et al. (2009) and Bollerslev et al. (2011)).

We decompose the squared IVol-BR (hereinafter “IVar”) into (i) the expected variance
conditional on the information set at time ¢ and (ii) the variance premium at time ¢t. We
estimate component (i) by searching for the best forecasting model for future variance, based
on Bekaert and Hoerova (2014). Following the recent literature on variance forecasting (Chen
and Ghysels (2011), Corsi (2009) and Corsi and Reno (2012)), we use high-frequency data
for this task. Then, we compute the variance premium, i.e. component (ii), as the difference
between the implied variance and the estimated expected variance. Finally, we use a closed-
form equation for the variance premium, based on Bollerslev et al. (2009), which is an
increasing function of the risk aversion coefficient of the representative investor, to pin down
a time-varying risk aversion measure of the representative investor in the Brazilian market.

Our paper relates to Bekaert and Hoerova (2014) that shows the variance premium cal-

3See CBOE (2009)



culated with an econometric model for expected variance has a higher predicting power over
future returns than the variance premium calculated under the assumption that the ex-
pected variance follows a random walk process, as in Bollerslev et al. (2009). In particular,
we confirm Bekaert and Hoerova (2014) finding that the predicting properties of the variance
premium can be significant as early as a month in advance rather than only at the quarterly
frequency found by Bollerslev et al. (2009). However, we go beyond Bekaert and Hoerova
(2014) and directly relate the risk aversion series obtained from the variance premium with
future returns. We show the risk-aversion series is a strong predictor of future returns with
a slightly superior fit than the variance premium.

The US evidence on the predicting properties of the variance premium, first shown by
Bollerslev et al. (2009), has recently been extended to international developed markets.
Bollerslev et al. (2014) finds that the variance premium is a strong predictor of stock returns
in France, Germany, Switzerland, The Netherlands, Belgium, the UK and, marginally, in
Japan. Our results confirm Bollerslev et al. (2014) findings for the Brazilian market. To the
best of our knowledge, our study is the first to show this for an emerging economy.

The paper is divided as follows. Section 2 presents the methodology to compute the
[Vol-BR. Section 3 decomposes the squared IVol-BR into expected variance and variance
premium, computes a time-varying risk-aversion measure of the representative investor in
the Brazilian market, and documents the predictive power of both the variance premium

and the risk-aversion measure over future stock returns. Section 4 concludes.

2 Implied Volatility Index for the Brazilian Stock Market

The methodology we use to compute an index that reflects the implied volatility in the
Brazilian stock market (called IVol-BR) combines the one used in the calculation of the “new”

VIX (described in Carr and Wu (2009)) with some adjustments we propose, which take into



account local aspects of the Brazilian stock market - mainly, a relatively low liquidity in
the options over the Brazilian main stock index (IBOVESPA) and, consequentially, a low
number of option strikes.

Options over IBOVESPA expire on even months: February, April, etc. Because of that,
we compute the IVol-BR in order to reflect the implied volatility with a 2-month ahead
horizon. It is calculated as a weighted average of two volatility vertices: the “near-term”
and “next-term” implied volatilities of options over the IBOVESPA spot. On a given day ¢,
the near-term refers to the closest expiration date of the options over IBOVESPA, while the
next-term refers to the expiration date immediately following the near-term. For instance,
on any day in January 2015, the near-term refers to the options that expire in February
2015, while the next-term refers to the options that expires in April 2015. * On Table 1 we
show the quarterly daily averages of the number and financial volume of options contracts
traded.

The formula for the square of the near and next-term implied volatilities combines the
one used in the calculation of the “new” VIX (described in Carr and Wu (2009)) with a new

adjustment factor needed to deal with the low liquidity in Brazil:

2 AK; o i [FT ’
) =7 > G t)Ot(Ki)_Tk_t{ ( k>_1} (1)

where

e k = 1 if the formula uses the near-term options and k& = 2 is the formula uses the

next-term options — that is, of (t) and o3 (t) are, respectively, the squared near- and

the next-term implied volatilities on day ¢.5

4All options expire on the Wednesday closest to the 15th day of the expiration month.
5 The rollover of maturities occurs when the near-term options expire. We tested rolling-over 2, 3, 4, and

5 days prior to the near-term expiration to avoid microstructure effects, but the results do not change.



o [ (t,T}) is the settlement price on day t of the IBOVESPA futures contract which
expires on day Ty (T1is the near-term expiration date and This the next-term expiration

date)

e K is the option strike value which is closest to F' (t,T})

e [{; is the strike of the i-th out-of-the-money option: a call if K; > K, a put if K; < K|

and both if Kz = K()
o AK; = % (Ki—i-l - Ki—l)

e 1, is risk-free rate from day t to day T}, obtained from the daily settlement price of the

futures interbank rate (DI)
e O, (K;) is the market price on day t of option with strike K;

e 7 is a new adjustment factor that can take the values 0, 1 or 2 — in the methodology
described in Carr and Wu (2009) j is always equal to 1 (we explain this adjustment
below)

After calculating both the near- and next-term implied volatilities using equation (1), we
then aggregate these into a weighted average that corresponds to the 2-month (42 business

days) implied volatility, as follows:

N, — Nas N — Ny Noso
Vol, =1 Ty —t)o2 (2”2 (1 ) g2 i 2
Vol; =100 x \/{< 1=t <NT2 —NTl) (=t <NT2 —NTIN Ny 2

where [V ol, is the IVol-BR in percentage points and annualized at time ¢, Ny, is the number
of minutes from 5 pm of day ¢ until 5 pm of the near-term expiration date 7;, Np, is the

number of minutes from 5 pm of day ¢ until 5 pm of the next-term expiration date T, Ny



is the number of minutes in 42 business days (42 x 1440) and Nass is the number of minutes
in 252 business days (252 x 1440).5

The market of options over IBOVESPA presents a low liquidity. The average daily volume
traded in this market is about US$ 20 million (about 1.5% of the daily volume of options over
S&P 500 traded in the US). As a consequence, we have few strikes to work with. On average,
10 different strikes for the near-term and 10 different strikes for the next-term, considering
both calls and puts. Table (1) reports the quarterly daily averages of the number of strikes

that we use.

[Table 1 about here]

The methodology presented above departs from the standard one described in Carr and
Wu (2009) for three reasons which are related to the relatively low liquidity and low number

of strikes traded in the options market in Brazil:

e we introduce the adjustment factor j in equation (1) to account for the following:
(i) there are days when only a call or a put at Ky is traded — Carr and Wu (2006)
have always both a call and a put; moreover, (ii) we have to define Ky as the option
strike value which is closest to F'(t,T}) and, because of that, we may have either
Koy > F(t,Ty) or Ky < F(t,T)) — Carr and Wu (2006) define K as the option strike
value immediately below F' (t,T}). Depending on the situation we face regarding (i)
and (ii), the value of j is set to 0, 1, 2, as follows (an explanation about this can be

found in the Appendix):

6 On days when the weight of the second term of Equation (2) is negative, we do not use the next-term

volatility, i.e., the IVol-Br index equals the near-term volatility.



Possible values of j
KO < F Ko > F Ko =F

deall, dput 1 1 1
Jeall, Fput 2 0 0
Acall, Iput 0 2 0

e we widen the time frame of options prices to the interval [3 p.m., 6 p.m.|. For each
strike, we use the last deal in this interval to synchronize the option price with the

settlement price of the IBOVESPA futures;

e we only calculate o2(t) and o3(t) if, for each vertex, there are at least 2 trades involving
OTM call options at different strikes and 2 trades involving OTM put options also at
different strikes - this is done in order to avoid errors associated with lack of liquidity
in the options market. If on a given day only one volatility vertex can be calculated, we
suppose that the volatility surface is flat and the IVol-Br is set equal to the computed
vertex. If both near- and next-term volatilities cannot be calculated, we report the

index for that day as missing.

The volatility index calculated according to equations (1) and (2) could be biased because
it considers only traded options at a finite and often small number of strikes. To assess the
possible loss in the accuracy of the integral calculated with a small number of points, we
refine the grid of options via a linear interpolation using 2,000 points of the volatility smile
that can be obtained from the traded options (based on the procedure suggested by Carr
and Wu (2009)).” The results did not change.

"The “coarse” volatility smile for both near and next-term is retrieved from the options market values and
the Black-76 formula. We then refine the grid of strike prices K; using the implied volatilities and implied
deltas of the options with the formula:

K; =F (t,T)exp [—woi VT —tN7' (|2 + 302 (T —t))]

where w = 1 for calls and w = —1 for puts; N~!(.) is the inverse of the standard normal cumulative
density function. To simplify the process of retrieving K; , we transform all traded options in calls (via put-
call parity) and create a smile in the (A4, 0) space. We then generate 2,000 points by linearly interpolating



The IVol-BR series, computed according to the methodology described above, is available
for download at the webpage of the Brazilian Center for Research in Financial Economics
of the University of Sao Paulo (NEFIN).® It is updated on a regular basis. Figure (1) plots
the IVol-Br for the period between August 2011 and February 2015, comprising 804 daily

observations.

|[Figure 1 about here|

An implied volatility index should reflect the dynamics of (i) the level, or quantity, of
risk that investors face — the expected future volatility and (ii) the price of such risk — the
risk-aversion of investors. Given that, the IVol-BR should be higher in periods of distress. As
expected, as Figure (1) shows, the series spikes around events that caused financial distress
in Brazil, such as the Euro Area debt crisis (2011), the meltdown of oil company OGX
(2012), the Brazilian protests of 2013, the second election of Mrs. Rousseff (2014) and the
corruption and financial crisis in Petrobras (2015).

It is also interesting to compare the IVol-Br with the VXEWZ, the CBOE’s index that
tracks the implied volatility of a dollar-denominated index (EWZ) of the Brazilian stock

market. Figure (2) shows the evolution of both series.

|[Figure 2 about here|

As Figure (2) presents, the VXEWZ is often higher than IVol-Br. This happens because
the VXEWZ, which is constructed using options over the EWZ index (that tracks the level

in dollars of the Brazilian stock market), embeds directly the exchange rate volatility. In

this smile considering two intervals: (i) the interval [A,qq2; Amin] of deltas of the traded options; (ii) the
interval [99; 1] of deltas.
8http://www.fea.usp.br/nefin



turn, the IVol-Br is constructed using options over the IBOVESPA itself and, hence, reflects
only the stock market volatility. Thus the IVol-BR is better suited to describe the implied
volatility of the Brazilian stock market for local investors or foreign investors that have
hedged away the currency risk. During the period depicted in Figure (2) there were important
changes in the exchange rate volatility that directly impacted the VXEWZ but not the IVol-

Br.

3 Empirical Analysis using the IVol-BR

In this section we use the squared IVol-BR series, which we call IVar, in some interest-
ing empirical exercises. We first decompose the IVar into (i) the actual expected variance

9 Then, from the variance premium, we

of stock returns and (ii) the variance premium.
produce a time-varying risk-aversion measure for the Brazilian investor. Finally, we show
empirically that higher risk-aversion is accompanied with higher expected returns, as asset
pricing theory suggests. The reason for working with the IVar, instead of the IVol-BR, is
that theoretical models usually produce closed-form equations that relate risk aversion to
the variance premium and not the volatility premium.

In Section 3.1 we decompose the implied variance, calculated as the IVol-BR squared,
into (i) the expected variance of stock returns and (ii) the equity variance premium. To
do this, we first estimate a model that represents the conditional expectation of investors
of future variance. Then, by calculating the difference between the implied variance and
the estimated expected variance, we arrive at a daily measure of the variance premium. In

Section 3.2, from the volatility premium, we produce a time-varying risk aversion measure for

the Brazilian investor from the variance premium. In Section 3.3 we show that the variance

°Tt can be shown that the implied variance approximates the expected variance under the risk neutral
measure (see for instance Carr and Wu (2006)). Given that, what we call “variance premium” is the difference
between the expected variance under the risk neutral measure and the expected variance under the empirical,
or historical, measure.

10



premium and the risk aversion measure are able to predict future stock returns as theory

suggests: when variance premium (risk-aversion) is higher, expected returns are higher.

3.1 Decomposing Implied Variance into Expected Variance and

Variance Premium

To decompose implied variance into expected variance and a premium, we first search
for the model that best forecasts variance. Because the implied variance, calculated by
squaring the IVol-BR, reflects markets expectations for the two-months ahead, the measure
of expected variance of interest is also over the same two-month period.

The variance of returns is a latent, unobservable variable. Fortunately, we can obtain a
good estimator of the variance of returns from high frequency data and use the estimated
time-series, the so-called realized variance, as the dependent variable of our forecasting model.
Formally, the realized variance over a two-month period at day ¢ is calculated by summing
squared 5-minute returns over the last 42 trading days:

[42/A]

RV," = 222 r2

i=1
where A = 5/425 is the 5-minute fraction of a full trading day with 7 hours including the
opening observation, |-| is the operator that approximates to the closest integer, and r; =
100 % [In(Ibov;) — In(Ibov;_;)] is a b-minute log-return in percentage form on the IBOVESPA
index, except when i refers to the first price of the day, in which case r; corresponds to the
opening/close log-return.

Following the recent literature on variance forecasting (Chen and Ghysels (2011), Corsi
(2009), Corsi and Reno (2012) and Bekaert and Hoerova (2014)), we construct several ex-
planatory variables (predictors) from a 5-minute returns data set.!’ First, we include in the

set of explanatory variables lags of realized variance at heterogeneous frequencies to account

10We thank BM&FBovespa for providing the intraday data set.
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for the clustering feature of stock returns variance. In the spirit of Corsi’s (2009) HAR
model, lags of bimonthly, monthly, weekly and daily realized variances are included: RV;(Q)

RV RV and RV,Y. Formally:

=1

for each k =42, 21, 5, 1.
One important feature of variance is the asymmetric response to positive and negative
returns, commonly referred to as leverage effect. To take this into account, Corsi and Reno

(2012) suggests including lags of the following “leverage” explanatory variables:

with £ = 42, 21, 5, 1. For a convenient interpretation of the estimated parameters, we take
the absolute value of the cumulative negative returns.

Andersen et al. (2007) show that jumps help in predicting variance. Following the theory
laid out by Barndorff-Nielsen and Shephard (2004), realized variance can be decomposed
into its continuous and jump components with the usage of the so-called bipower variation
(BPV). As shown by these authors, under mild conditions, the BPV is robust to jumps in
prices while the realized variance is not. This insight allows one to identify jumps indirectly

by simply calculating the difference:
Ji = max [RV;, — BPV,,0]

where BPV; = (252/42) x ZZ.Lfl/M 73| |7;—1|. The maximum operator is included to account

for the situation when there are no jumps and the BPV is eventually higher than the realized

12



variance. The continuous component of the realized variance is defined as follows:
Ct = R‘/;g - Jt

Lagged variables of the continuous and jump components at other time frequencies are
also included. Using the same notation as before, the following eight variables are added
C® J® with k =42, 21, 5, 1.

Finally, we follow Bekaert and Hoerova (2014) and include the lagged implied variance
as explanatory variable. Importantly, as will be shown, this variable contains information
about future realized variance that is not contained in lagged realized variance and other
measures based on observed stock returns.

To find the best forecasting model, we apply the General-to-Specific (GETS) selection
method proposed by David Hendry (see for instance Hendry et al. (2009)). The starting
model, also called GUM or General Unrestricted Model, includes all the variables described

above plus a constant:

RViss = c+1IVar,+C™ 0% 1+ ¢® 1 ¢ 4 j* 4 g@Y 4 j® 4 g
—|—Lev§42) + Lev?l) + Levt(5) + Levg) + €&
To avoid multicolinearity, the lagged realized variance measures were excluded from the
initial set of explanatory variables since by construction they are approximately equal to
R‘/;(k) R~ Ct(k) + Jt(k). However, in a robustness exercise below, we include these variables in
other forecasting models.

Following an iterative process, the method searches for variables that improve the fit
of the model but penalizes for variables with statistically insignificant parameters. The
regressions are based on daily observations. Table (2) shows the estimates of the final model
— the GETS model. Eight variables plus a constant remain in the GETS model: 1Var,

0,5(42), Ct(‘r’), Jt(m, Jt(5), Levtm), Levt(m and Levt(g’).

13



|Table 2 about here]

Importantly, the coefficient on the implied variance is positive (0.152) and highly signif-
icant. This indicates that, as expected, IVar does contain relevant information about future
variance, even after controlling for traditional variance forecasting variables.

From the GETS model, we calculate a time-series of expected variance. We name the
difference between implied variance and this time-series of expected variance as the variance
premium:

Variance Premium, = IVar, — o: (3)

where 67 = E, [RV, 1] = E; [0},,45] is the GETS model expected variance computed using
information up until day ¢; the subscript ¢ + 42 emphasizes the fact that it is the expected
variance over the same horizon as the implied variance, IVar;. Figure (3) shows both
series and Figure (4) shows the variance premium. We observe that the premium varies
considerably. The 3-month moving average shown in Figure (4) suggests that the average

premium varies and remains high for several months.

|[Figure 3 and 4 about here]

3.2 The Variance Risk Premium and the Risk Aversion Coefficient

An implied variance index reflects the dynamics of two very important variables. The first
relates to the level, or quantity, of risk that investors face: the expected future variance of
the market portfolio, estimated above. The second relates to the price of such risk: the risk
aversion of the representative investor.

Since options’ payoffs are asymmetric, the value of any option (call or put) is increasing

in the expected variance of the underlying asset. Because of that, options are often used

14



as a protection against changes in expected variance. Since the typical risk-averse investor
dislikes variance, options are traded with a premium because of such an insurance value. As
a direct consequence, the implied variance (IVar, the IVol-BR squared), which is computed
directly from options prices, also has a premium with respect to the expected variance. That
is, the more risk-averse the investor is, the more she is willing to pay for the insurance that
options provide, i.e., the higher the variance premium.

In order to make this connection between risk aversion and variance premium more
precise, we need to impose some economic structure. To do this, we use Bollerslev et al.
(2009) economic model, which is an extension of the long-run risk model of Bansal and Yaron
(2004). We assume that the following closed-form equation for the variance premium holds

for each t:!!

vl m(l= )
F=0T o () (1= k)

q (4)

Variance Premium; =
1—g—1
where 1) is the coefficient of elasticity of intertemporal substitution, 7, is the time-varying risk
aversion coefficient, ¢ the volatility of the volatility, and p, is the auto-regressive parameter
in the volatility of consumption.

Using the estimated weekly series for the variance premium computed above and usual
parameter calibration,'? we pin down a time-series for the time varying risk aversion coeffi-
cient of the representative investor in Brazil.'® The resulting series is plotted in Figure (5).
The smallest value for v; is 1 on August 22, 2014 and the highest value is 57 on February
13, 2015. The average risk aversion level is 26. Such values are consistent with the results
in Zhou (2009) — an average risk aversion higher than 10 is needed to match the empirical

moments of the variance premium (see his Table 8).

HUWe use their simpler equation, where they assume a constant volatility of volatility (the process ¢ is
constant at all ¢)

12We set ¢p = 1.5, ¢ = 107%, k; = 0.9 and p, = 0.0078 following the calibration in Bansal and Yaron
(2004) and Bollerslev et al. (2009).

3Equation (4) is quadratic on the risk-aversion coefficient ;. In order to avoid complex roots, we shift
the variance premium upward so that the minimum variance premium corresponds to the minimum value of

=1

15



|[Figure 5 about here|

3.3 Predicting Future Returns

If the variance premium positively commoves with investors risk-aversion, it should predict
future market returns: when risk aversion is high, prices are low; consequentially, future
returns (after risk aversion reverts to its mean) should be high. Moreover, the risk aversion
measure itself, computed in Section 3.2, should also predict future returns. In this Section
we test these predictions by regressing future market returns on both the variance premium
and the risk-aversion measure.

Table (3) shows the results of our main regression. The dependent variable is the return
on the market portfolio 4 weeks ahead. To limit the overlapping of time-series, we reduce
the frequency of our data set from daily to weekly by keeping only the last observation of
the week. Additionally, to account for the remaining serial correlation in the error term, the
standard errors are computed using Newey-West estimator. Columns (1) and (2) show that
implied variance IV ar; and expected variance o7 alone are not very good predictors of future
returns. On the other hand, Column (3) shows that the variance premium, resulting from
a combination of both variables, IV ar; — 62, strongly predicts future returns at the 4-week
horizon. The estimated coefficient is positive, 0.089, and significant at the 1% confidence
level. Column (4) shows that the risk aversion measure also predicts future returns at
the 4-week horizon. The estimated coefficient is positive, 0.180, and significant at the 1%

confidence level.

[Table 3 about here]

The predictive power of the variance premium and the risk aversion measure remains

after we include in the regression the divided yield log(D,;/P;), another common predicting
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variable. Again, Columns (5) and (6) show that implied variance and expected variance
alone are poor predictors of returns. On the other hand, both the variance premium and
the risk aversion measure do predict future returns. Column (7) shows a positive coefficient
for the variance premium, 0.066, significant at the 5% confidence level. Column (8) shows a
positive coefficient for the risk-aversion measure, 0.135, also significant at the 5% confidence
level.

In Columns (1) through (8) of Tables (4) and (5), the regressions are the same as the one
in Column (7) and (8), respectively, of Table (3), except for the horizon of future returns.
As the significance and values of the estimates indicate, the variance premium predictability

is stronger at the 4-week horizon (Columns (7) and (8)).

|Tables 4 and 5 about here]

A concern is that the standard errors in the first eight Columns in Tables (4) and (5) may
be biased due to the presence of a persistent explanatory variable such as the log dividend
yield (see for instance Stambaugh (1999)) combined with a persistent dependent variable
(overlapping returns). To address this concern, Columns (9) and (10) in both tables show
the same regressions of Columns (7) and (8) but based on non-overlapping 4-week returns.
As we can see, the coefficients on the variance premium and risk-aversion remain positive
and significant.

Another concern may be that the actual expected variance by market participants cannot
be observed. Hence, our measure of expected variance depends on the model chosen by the
econometrician. To address this concern, we also assess to which extent our results depend
on the chosen variance model.

Tables (6) and (7) show the estimates of several models. Table (6) brings the estimates of
Corsi’s (2009) HAR model in Column (1), with the addition of a 42-day realized variance lag

in accordance with the frequency of the dependent variable. In Columns (2), (3) and (4) we
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include the lagged implied variance, IV ar;, that was shown to contain important predictive
information. Columns (3) and (4) include leverage variables to account for the asymmetric

response of variance to past negative returns.

[Table 6 about here]

In Table (7) we separate the realized variance into its continuous and jump components
and use these variables instead. Column (1) shows the estimates of the GUM model, the
starting model in the General-to-Specific selection method adopted in Section 3.1. The
GUM regression includes all the variables initially selected as candidate variables to forecast

variance. Columns (2) through (4) are variants of this more general model.

|[Table 7 about here|

As we can conclude by comparing the statistical properties of each regression in Tables
(2), (6) and (7), the GETS model has the lowest information criterion, BIC, as the selection
method strongly penalizes the inclusion of variables and favors a more parsimonious model.
Models M4, M5 and M6 have comparable R? to the GETS models, explaining more than
35% of the variation of the dependent variable, but with the inclusion of extra regressors.

We now assess how sensitive is our predictive regression to the selection of the variance
model. For each one of the regression models shown in Tables (6) and (7) we calculate a
volatility premium as in equation (3). The results of the predictability regressions at the 4-
week return horizon are shown in Table (8). In Column (1) we use a simple model to predict
future variance and set &;° = o2, following the definition of Bollerslev et al. (2009). Column
(2) replicates our main regression that uses the GETS model to predict variance. Columns

(3) through (10) show the predictability regressions for each of the 8 models presented in
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Tables (6) and (7). As can be seen, the results are largely robust to the selection of the

variance model.

[Table 8 about here]

4 Conclusion

This is the first article to propose an implied volatility index for the Brazilian stock market
based on option and futures prices traded locally. The methodology we propose has to deal
with the relatively low liquidity of contracts used. This is a first contribution of this paper.

We use our implied volatility index to calculate the so-called variance premium for Brazil.
Assuming Bollerslev et al. (2009) economic structure, we also pin down a time-varying risk
aversion measure of the representative investor in the Brazilian market. In line with in-
ternational evidence, we show the variance premium strongly predicts future stock returns.
Interestingly, we also find that our measure of risk aversion is a strong predictor of future
returns with a slightly superior fit than the variance premium. To the best of our knowledge,
this is the first analysis of this kind for an emerging market. This is the second contribution
of this paper.

Further extensions of this work include applying our methodology to construct implied
volatility indices for other markets with low liquidity. With respect to the risk aversion

measure, different economic models and parameter calibration can be tested.
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A The j adjustment

In this Section we demonstrate how to obtain the adjustment term j. In the following
derivations we refer to an out-of-the-money option as OT' M, and to an in-the-money option
as IT'M.

Under the risk neutral measure, it can be shown that the variance is approximated by a

portfolio of OTM calls and puts. However, in practice, the portfolio used is

2 AK,
R > T TO(K) (5)

i

where

e [; is the strike of the i-th out-of-the-money option: a call if K; > K, a put if K; < K|

and both if K; = K|
e K is the strike closest to the futures price F
o AK; = % (Ki—i-l - Ki—l)

e 1, is risk-free rate from day ¢ to day 7', obtained from the daily settlement price of the

futures interbank rate (DI)

e O, (K;) is the market price on day t of option with strike K;

Since we don’t necessarily have a call and a put at Kj, an adjustment in the formula above
is needed. The following 6 cases can arise:

Case 1: If Ky < F and we have data on call and put prices at Kj.

This is the standard case set by Carr and Wu (2006). It follows from the Put-Call parity

that:
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P(Ky) + C(Ky)
2
P(Ko) + {P(Ko) + (F = Ko)e """}
2

Therefore, substituting for the O(Ky) term in Equation (5), we obtain

_2 AKo . q AKy P(Ko)en(pt)

Ky) = 2
T—t K2 O(Ko) K2 T —t
1 AK,
T—t K2 (F = Ko)
_ BKP(KY) oy
K2 T —t

—i—l F 12
T -t \ Ko

where, the last equality, follows from the assumption that AKy = F' — K.

Substituting back in Equation (5) we obtain that the last term below is zero

2 AK
A D DY SO
1 AKO 1 [F 2
F—K))———|——1
+T—tK2( o) = 7= {KO ]

[\ J/

-~
=0

where at i = 0 we have O(K,) = P(K), that is, all options are OTM.

Equivalently, we can write the above equation as

2 AK 1 [F 2
2(4) = — = DO(K;) — ——— 1
0 = gy X IO ]

where O(Kj) = M and C'(Ky) is ITM.
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In Brazil, there are days when only a call or a put at Kj is traded. Besides, we have to
define K as the option strike value which is closest to F' (¢, T}) and, because of that, we may
have either Ky > F(t,T;) or Ky < F(t,T;). Given that, we have to create the following 5

additional cases.
Case 2: If F' < K and we have data on call and put prices at K.

In this case, P(Kj) is ITM and, by the Put-Call parity, we obtain analogously:

2 AK
2 r(T—
(1) = T_t; 7z ¢ VOuKD)
1 AK, 1 [F ?
e U B S L P |
+T—tK§( 0) T—t[KO ]
where O(Kj) = C(Kp), that is, all options are OTM.
Equivalently,
2 AK 1 [F ]
)= Y — T VOUK) — —— | — —1
o (t) Tt~ K7° S el

where O(K,) = ZEUICUED) 4nd P(Ky) is TTM.
Case 3: If Ky < F, we have data on put prices and don’t have data on call prices at Kj.
In this case, all options are OTM and no adjustment is needed. That is, we set j = 0 in

the formula:

2 AK; i [F 2
2 _ v re(T—t) N 4
o*(t) = E 2 e O:(K;) T3 [ 1]

where O(Kj) = P(Kj).
Case 4: If Ky > F, we have data on call prices and don’t have data on put prices at Kj.

In this case, all options are OTM and no adjustment is needed. That is, we set j = 0 in

the formula:
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where O(Kj) = C(K)).
Case 5: If Ky < I, we have data on call prices and don’t have data on put prices at K.
In this case, C'(Kp) is ITM and should be transformed into a OTM P(K)) by the Put-Call
parity. Using the result O(Ky) = C(Ky) = P(Ko) + (F — Ko)e™ """ and substituting for

the O(Ky) term in Equation (5) we obtain

2 AK, 2 AK
rt(Tft)O K, — OP K, ri(T—t)
Tt K2 © (Ko) = 7 K2 (Ko)e
2 AK,
———(F - K,
Following the same steps of Case 1, we obtain
2 AK -
G —~ K} 0K
2 AK, 2 [F ?
—— (- Ky) — —— | — —1
T—tKg( 0) T—t{KO }

=0

where Q(Ky) = P(Kj), that is, all options are OTM.

Equivalently,

2 AK; i [F 2
2(t) = " TVONK) — | = — 1
o (1) T—tzi: K2 © S o e
where now we have j = 2, O(K) = C(Ky), and C(K,) is ITM.
Case 6: If Ky > F, we have data on put prices and don’t have data on call prices at Kj.

This can be solved similarly as Case 5 with j = 2 and P(K,) ITM.
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B Tables and Figures

Figure 1: Implied Volatility in Brazil - the IVol-BR

This Figure shows the daily time-series of the IVol-Br in percentage points and annualized.
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Figure 2: Comparing I'Vol-BR and VXEWZ

This Figure shows the daily time-series of the [Vol-Br and the VXEWZ. Both series are in
percentage points and annualized. VXEWZ is the implied volatility index on the Brazilian
stocks ETF EWZ and is calculated by CBOE.
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Figure 3: Implied Variance and Expected Variance

This Figure shows the weekly time-series of the implied variance — the squared of the IVol-Br
— and the estimated expected variance. The model for expected volatility is the GETS model
shown on Table (2). Both series are in percentage points and annualized.
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Figure 4: The Variance Premium

This Figure shows the weekly time-series of the variance premium calculated by the difference
of the implied variance and expected variance as predicted by the GETS model shown on
Table (2), and its three month moving average.
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Figure 5: Risk Aversion

This Figure show a time-series for the risk aversion index in Brazil. It is computed by

combining the weekly series for the variance premium with Bollerslev et al. (2009) functional

form for the variance premium, as explained in Section 3.3.
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Table 1: Number of Option Strikes Used in the IVol-BR

The Table shows the quarterly daily averages of the number of strikes that were used in the construction of
the IVol-BR.

Period Near-Term Next-Term
Call Strikes Puts Strikes Total Strikes Call Strikes Put Strikes Total Strikes

2011Q3 3 5 8 2 4 6
2011Q4 5 5 10 4 4 9
2012Q1 4 6 10 4 5 9
2012Q2 5 5 10 4 4 9
2012Q3 5 6 11 4 5 9
2012Q4 5 6 11 5 4 10
2013Q1 5 6 11 5 5 10
2013Q2 6 6 12 5 5 10
2013Q3 5 6 11 4 4 9
2013Q4 3 3 7 4 3 7
2014Q1 4 5 9 3 4 7
2014Q2 4 5 8 3 4 7
2014Q3 4 5 9 5 7 12
2014Q4 4 5 9 4 5 9
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Table 2: General-to-Specific Best Model

The Table shows the estimates of the best variance forecasting model following the General-to-Specific se-
lection method. The starting model, also called GUM or General Unrestricted Model, comprises of all
independent variables. The standard errors reported in parenthesis are robust to heteroskedasticity. Regres-
sions are based on daily observations. The corresponding p-values are denoted by * if p < 0.10, ** if p <
0.05 and *** if p < 0.01.

(1)

IVar, 0.152%**
(0.040)
o 3.215%%*
(0.267)
c” 0.656%%*
(0.123)
J2Y L0.540%%*
(0.127)
J® 0.307%%*
(0.082)
Lev™ -2.237%F
(0.155)
LevV 0.722%%
(0.084)
Lev® 0.367%**
(0.066)
Constant 950.186%**
(73.048)
Number of Obs. 741
R? 0.400
Adjusted R? 0.393
RMQE 176.345
BIC 9818.8
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Table 6: Robustness - Variance Models

The Table shows the estimates of different models of expected variance. The dependent variable is the
realized variance over the following 42 days, calculated from 5-minute returns on the Ibovespa portfolio. The
explanatory variables are: i) IVar; is the expected implied variance on the next 8 weeks estimated from
prices of options contracts at time ¢ — 1, ii) R‘/;(_ki is the realized volatility on the following k days at time
t — 1, where k = 42, 21, 5, 1, computed iii) Lev&)1 is the cumulative negative 5-minute returns continuous
component of the realized variance on the following k days at time t—1, where k = 42, 21, 5, 1. The standard
errors reported in parenthesis. The corresponding p-values are denoted by * if p < 0.10, ** if p < 0.05 and

K 1 < 0.01.

M1 M2 M3 M4
RV, 0.113%  -0.166%** 1.273%%
RV, 0.256%%  0.247F* ~0.532%%*
RV,® 0.139%%%  0.069* -0.009
rv,Y 0.021 0.011 0.000
IVar, 0.214%%%  (.218%FF (. 194%%*
Lev™ ~0.513%F%  _1.837F**
Lev®V 0.484%F*%  1.031%**
Lev® 0.091%*  0.101
Lev " 0.029 0.031
Constant 324.831FF* 271.370%%*% 251.331%%% 691.146%**
Number of Obs. 762 741 741 741

R? 0.209 0.228 0.277 0.369
Adjusted R? 0.205 0.223 0.272 0.361
RMQE 201.504  199.543  193.193  180.900
BIC 10276.7  9985.2  9937.3  9862.2
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Table 7: Robustness - Variance Models (Cont.)

The Table shows the estimates of different models of expected realized variance. The dependent variable is
the realized variance over the following 8-weeks, calculated from 5-minute returns on the Ibovespa portfolio.
The explanatory variables are: i) IVar;_; is the expected implied variance on the next 8 weeks estimated
from prices of options contracts at time ¢t — 1, ii) Ct(f)l is the continuous component of the realized variance
during the following k days at time t—1, where k = 42, 21, 5, 1, iii) Jt(ﬂ is the jump component of the realized
variance during the following k days at time ¢ — 1, where k = 42, 21, 5, 1 and iv) Levt(ﬁ)l is the absolute of
the sum 5-minute negative returns during the following k days at time ¢ — 1, where k = 42, 21, 5, 1. The
standard errors reported in parenthesis. The regressions are based on daily observations. The corresponding

p-values are denoted by * if p < 0.10, ** if p < 0.05 and *** if p < 0.01.

M5 M6 M7 M8
IVar, 0.147%%%  (,142%%% 0.286%%*
o 3.282%%% 3 67O 1675
) 0514 -117IRR 1.545%%
o) L0.461%FF 0,225 0.010
ol 0.057  -0.025 0.015
A 0.294 1.583%%%  1.308%%*
J2 -0.540%* ~0.768%FF  _1.126%**
7 0,247 0.052 0.163
g 0.021 0.007 0.026
Lev*Y 12.433%FF D 535FEE ] 280*H

Lev?) 1.023%%% 1. 178%%F  (.802%%*

Lev) 0.263%%*  0.211%%%  0.077

Lev") 0.043 0.043 0.021

IVol, 4 13.969%*

Constant 030.537++* 935.469%** 337.173%1* 256.965%+*
Number of Obs. 741 741 741 741

R? 0.406 0.397 0.349 0.269
Adjusted R? 0.396 0.390 0.341 0.260
RMQE 175.994  176.881  183.726  194.766
BIC 9843.8  9828.9 98852 99717
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