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1. Introduction 

In this paper, we use Exchange Traded Funds (ETFs) instead of risk factors as 

benchmarks to examine active mutual fund performance distribution. While transaction 

costs are included in the ETF returns, that is not true regarding risk factors, making it 

more challenging to characterize extraordinary performances via alphas. We base our 

assessment on the False Discovery Rate (FDR) method developed by Barras et al. (2010), 

employing a sample of active U.S. asset mutual funds from 2005 to 2019. 

In regards to alphas, our results are distinct from those obtained using risk factors, 

and the difference is nearly the same as the transaction costs required for investing in risk 

factor portfolios (Frazzini et al., 2012). On the other hand, akin to the results obtained by 

approaches that use risk factors (Barras et al., 2010), we estimate that approximately 95% 

of the industry fails to generate value for its investors. Moreover, we point to the fact that 

a random selection of ETFs is unsuited to outperform active funds; however, this can be 

achieved by applying specific guided methods to select a set of ETFs. 

Using passive funds as benchmarks for active funds is not new. Malkiel (1995) 

argues that active managers should use passive funds as opportunity cost. Sharpe (1992) 

seminal paper explain fund returns by twelve different asset class index. The author shows 

evidence that a constrained regression produces nearly the same results as a regular 

regression, which leads to the conclusion that individual investors are able to replicate 

certain funds’ performance with a limited-leverage asset class index portfolio.  

Although ETFs have shown massive growth in terms of capital allocation, only a 

small number of studies4 have taken them into account. Using the Bloomberg database, 

we are able to find over 2,000 ETFs negotiated in the U.S. stock exchanges, which covers 

a significant variety of asset classes, geographic locations and investment strategies. By 

looking at ETFs focused only in the U.S. equity domestic markets, our dataset displays 

875 funds, accounting for an overall sum of 2.1 trillion dollars of assets under 

management – AUM – as of December, 2019. The Lettau & Madhavan’s (2018) survey 

suggests that this substantial growth might stem from the fact that ETFs are liquid 

instruments that include transaction costs, in addition to being able to replicate a wide 

range of investment strategies, including benchmarks. 

 

4 See Alexander & Barbosa (2008) and Poterba & Shoven (2002) as examples of ETF-related economic 
studies. 
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In order to estimate the proportion of skilled active funds, we choose to focus on 

individual investors’ net-of-fee performance and cost. We single out calculated alpha 

from net-of-fee excess returns, customarily used5 to measure individual investors’ 

economic returns. Therefore, in our terminology, a skilled fund is defined as any fund 

capable of delivering idiosyncratic returns after it is controlled by certain risks (a set of 

risk factors or, in our case, selected ETF excess returns). 

From an econometric perspective, assessing the proportion of skilled active funds 

is something far from trivial since we have to deal with lucky and unlucky funds (false 

positives / Type I error). However, a wide range of papers has already addressed that 

issue. Fama & French (2010) propose a bootstrap procedure to calculate zero-alpha fund 

distribution and come to a conclusion on how skill funds are distributed after comparing 

them to empirical distribution6. Pástor & Stambaugh (2002), on the other hand, apply 

Bayesian techniques, setting priors for unskilled, zero-alpha and skilled fund 

distributions7. Chen et al. (2017) assume a parametric mixture model of distribution for 

alpha funds. We follow the False Discovery Rate (FDR) approach devised by Barras et 

al. (2010). The methodology controls luck funds by calculating their actual proportion 

within the overall sample. Additionally, it poses the benefits of not requiring prior 

assumptions about alpha fund distributions and has been widely applied in fund industry 

research8. 

We propose specific algorithms that enable investors to choose a parsimonious set 

of ETFs suited to evaluate actively managed funds. We start with a random ETF selection. 

Repeating it serval times, we measure the average outperforming capacity of a random 

ETFs group within mutual funds. Second, we propose an algorithm that chooses ETFs 

based on their ability to outperform mutual funds and to explain fund return variability. 

At last, applying lasso and forward selection, we select ETFs by looking into the risk 

factor space. 

 

5 See Carhart (1997); Fama & French (2010); Malkiel (1995), Carhart (1997), Barras et al. (2010); Crane 
& Crotty  (2018). 
6 See also Kosowski et al. (2006) and Ferson & Chen (2015). 
7 See also Baks et a. (2001) and Avramov & Wermers (2006). 
8 See Patton & Ramadorai (2013) and Criton & Scaillet (2014) for other empirical studies that apply the 
FDR estimator in the mutual fund industry. 
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This paper aims, above all, to help introduce a chapter on ETFs to the discussion 

of active versus passive fund performance evaluation. Our findings support the current 

lack of skills existing in the active mutual fund industry. 

2. Methodology 

To evaluate whether actively managed funds generate value for their investors by 

outperforming passive investments, we follow standard procedures set forth in academic 

literature, as well as benchmarked funds against the investment opportunity set that 

passive investors have to deal with, in this case, the ETF net return. 

Following the traditional viewpoint conveyed in the literature (Ardia & Boudt, 

2018; Barras et al., 2010; Fama & French, 2010), we define performance as fund 

managers’ ability to generate higher alphas. Therefore, we begin our analysis with the 

following linear risk factor model: 

 !," = #! + $%&'(" + )!," (1) 

where  !," is the * mutual fund excess return for period -, &'(. is a (0 × 1) vector of 0 

selected ETF fund excess returns, * ∈ (1, … , 4), and - ∈ (1, … , 5). It is essential to point 

out that both mutual and ETF fund returns are net-of-fees and expenses measuring 

individual investors’ direct returns. 

Based on the model (1), we assume that the actively managed mutual fund 

population is comprised of three distinct performance categories: unskilled funds (# < 0), zero-alpha funds (# = 0), and skilled funds (# > 0). Therefore, if mutual fund * is a skilled fund (#! > 0), it yields an idiosyncratic positive excess return and 

outperforms those selected benchmarks. 

For any given ETF selection, our main interest is to evaluate the true proportion 

of skilled mutual funds within our sample. By estimating (1) for * = (1, … , 4), as is 

already widely known in the literature, the direct inference of the proportion of skilled 

funds collecting p-values from 7!8: #! = 0 against 7!9: #! ≠ 0 turns into an issue since it 

fails to control false positives (Type I error)9. These false positives became known as 

 

9 See Barras et al. (2010); Chen et al. (2017); Fama & French (2010); Kosowski, Timmermann, Wermers, 
& White (2006); and Pástor & Stambaugh (2002). 
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lucky and unlucky funds. To address this problem, we apply the FDR (False discovery 

rate) approach devised by Storey (2002), initially used in the mutual industry fund by 

Barras et al. (2010). 

As Andrikogiannopoulou & Papakonstantinou (2019) stress, in order to achieve a 

meaningful FDR estimator of skilled proportion funds, we need to make sure that 

individual tests estimated with the model (1) do not yield low power. Therefore, we must 

choose a sparse set of ETFs to calculate (1) by OLS, including an adequate time series 

length. As we describe in the following subsections, we employ four different types of 

ETF selections to achieve a sparse set of predictors. 

To compare results attained from our different ETF selections, we set the risk 

factor model below as our benchmark: 

 !," = #! + $!?" + )!," (2) 

where ?" is a @0A × 1B risk factor vector. 

2.1 FDR Approach to Estimate Skilled Proportion Funds 

The FDR methodology is used to control false-positive results, estimating their 

proportion from the overall sample. It sets the proportion of false-positive results 

classified as skilled (unskilled) funds to CDE @CDFB 10. By defining G8 as the proportion of 

zero-alpha funds for a given H level of significance, the expected value of CDE can be 

written as: 

I@CDEB = G8 H2 (3) 

After p-values from 7!8: #! = 0 against 7!9: #! ≠ 0 for the model (1) 11 are 

computed, we proceed to measure the proportion of funds that yield a significant positive-

alpha as follows: 

KLDE = ∑ N OP̂! > H2R!∈STUV 4  (4) 

 

10  CDE @CDFB are known in the mutual fund industry literature as lucky (unlucky) funds. 
11  See appendix A.1. for a complete description of the p-value estimation procedure. 
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where N OP̂! > DWR is an indicator function equal to 1 if P̂! > DW and zero otherwise; and 4XUV =  {*: #Y! > 0}. Therefore, the expected proportion of skilled funds in the population, 

corrected by the proportion of false-positive, can be estimated as: 

I(GE) = I@KDEB − I@CDEB (5) 

Hence, with an estimator of the proportion of zero-alpha funds (GY8), and a H∗ 

optimal significance level, we can calculate I(GE) as follows: 

GYE = KLD∗E − GY8 H∗2  (6) 

Since the sum of the proportion of unskilled, zero-alpha and skilled funds must be 

1, we can calculate I(GF) with: 

GYF = 1 − GY8 − GYE (7) 

It is worth noting that the entire process from (3) to (7) can be adjusted by 

estimating GYF by (6), and GYE by (7). Therefore, one needs simply to reverse the variable 

subscriptions +/-. In fact, this decision depends on the number of the elements of sets 4XUV  

and 4XU\12. If 4XU\  has more elements than 4XUV , we calculate GYF using (6), and GYE using (7), 

otherwise, we follow the exact same process given by models (3) to (7). In both cases, 

the optimal significance level (H∗) is determined by the bootstrap procedure detailed in 

appendix A.3. The G8 estimation procedure is described in the following section. 

2.1.1 Calculation Procedure for ]^ 

By definition, and pursuant to null hypothesis 7!8: #! = 0, the multiple test for 7!8: #! =  0 against 7!9: #! ≠ 0 generates a series of p-values ({P!}!_9S ) that results in a 

uniform distribution across the [0,1] interval13. In other words, if the null hypothesis is 

true, we can, therefore, state that: 

78,!: #! = 0 ⟹ P!~c(0,1) (8) 

 

12  4XU\ = {*: #Y! < 0}. 
13 Hung, O’Neill, Bauer, & Kohne (1997), and Murdoch, Tsai, & Adcock (2008) submit a feature on the 
condition of the null hypothesis and p-value distribution. 
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In our second assumption, we presume that p-values larger than a threshold d∗ can 

only originate from zero-alpha funds. Hence, considering the p-value empirical 

distribution, the area given by 
∑ N(eYfgh∗)ifjk S  becomes the proportion of the uniform 

distribution of p-values from zero-alpha funds in the [d∗, 1] interval 14. In assuming that 

the area is equal to the [0,1] range, we can determine the proportion of the entire uniform 

distribution relating to the full p-value mass, thereby computing the G8 estimator as: 

GY8(d∗) = ∑ N(P̂! > d∗)S!_94 × (1 − d∗)  (9) 

where the optimal threshold level (d∗) is determined by the bootstrap procedure described 

in appendix A.2. 

2.1.2 Simulated Example 

In this section we illustrate the calculation of ] = (GF, G8, GE) using the FDR 

approach for a simulated dataset. We were able to generate 1,000 alpha ETFs from #~m(−0.025, 0.01) (unskilled funds), 8,000 alphas from #~m(0, 0.01) (zero-alpha 

funds), and 1,000 alphas from #~m(0.025, 0.01) (skilled funds). By construction, it is a 

known fact that the true parameters are ] = (0.10, 0.80, 0.10). 

For each generated alpha, we test 7!8: #! = 0 against 7!9: #! ≠ 0, after which point 

we compute the estimated p-values (P̂!), as described in the previous section. Figure 1 

plots the histogram of P̂!, and we realize that the optimal d∗ for this synthetic data is 0.40. 

The light grey area is the proportion of funds by which P̂! > d∗, and by assumption, we 

infer that it comes only from zero-alpha funds. Looking at equation (9), we can see that 

the dark grey area in Figure 1 depicts the deduction of the uniform distribution of zero-

alpha funds for the [0, d∗) interval, and since the light grey area is by assumption the 

uniform distribution area for [d∗, 1], GY8(d∗) is the result of the sum of the light and dark 

grey areas. The black area in Figure 1 refers to proposition funds that are either unskilled 

or skilled. 

Panel B of Figure 2 displays t-statistics-related empirical distribution. As one can 

see, if we fail to correct the proportion of positive significant alphas @KLD∗E B with the false 

 

14 4 is an indicator function that is equal to 1 if P̂! > d∗or, otherwise, to zero. 
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positive (CD∗E  area in Panel A from Figure 2), we would attain a 13.6% proportion of 

skilled funds instead of a 9.62% proportion for our final calculation of GYE. Table 1 

summarizes our procedural results for the simulated dataset, and we can consider ]U =(0.106, 0.789, 0.962) to be close to the original parameters of ] = (0.10, 0.80, 0.10). 

Figure 1: Estimated p-values from BY t%̂ : u% = ^ for the simulated dataset 

 

Note: The figure represents the p-value histogram of 10,000 simulated funds. We managed to generate 

1,000 alphas from #~m(−0.025,0.01) (unskilled funds), 8,000 alphas from #~m(0, 0.01) (zero-alpha 

funds), and 1,000 alphas from #~m(0.025, 0.01) (skilled funds). Original parameters are ] =(0.10, 0.80, 0.10). 

Figure 2: T-statistics distribution from t%̂ : u% = ^ for the simulated dataset 

 

Note: Panel A displays t-statistic distribution in funds across three skill groups (zero-alpha, unskilled, 

and skilled funds). True non-zero alphas are set to −2.5%, and +2.5% for unskilled and skilled funds. 

Panel B depicts the cross-sectional t-statistic distribution. It is a combination of the three distributions 

in Panel A, where the weight on each distribution depends on the proportion of zero-alpha, unskilled, 

and skilled funds, whose population values are GF = 0.10, G8 =  0.80, GE = 0.10. 

P-values of unskilled 

and skilled funds 

(above the line)

=0.40

Threshold defining the zero-

alpha fund area  

0.798

Proportion of funds with : 

Proportion of positive significant 

Alphas

• Includes False Positives

Proportion of negative significant 

Alphas

• Includes False Positives

Probability of 

being lucky

• False Positive

Probability of 

being unlucky

• False Positive
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Table 1: FDR approach results for skilled proportion funds in the simulated dataset 

Value GF G8 G8 

Simulated Example 

Proportion 9.62% 79.77% 10.61% 
Number 962 7,977 1,061 
Std. 0.0036 0.0083 0.0073 

Note: The table reports proportions of zero-alpha, skilled, and unskilled (G8, GE, GF) funds based on the 

risk factor model used for the simulated example set. H∗ = 0.40 and d∗ = 0.10 values are obtained with 

the selection algorithms proposed by (Barras et al., 2010). 

2.2 Random ETF Selection 

Here, we use a random ETF selection as our first methodology to define the set 

for the &'(. vector for the model (1). Random selection is the most straightforward 

technique applied to establish sets of ETFs. Furthermore, it provides an average measure 

of the outperforming capacity of a random group of selected ETFs within mutual funds, 

but the procedure must be repeated several times. Since &'(. is a (0 × 1) vector, we 

define a dimension threshold of 0∗ = 10 so as 0 = 1, … , 0∗. By establishing a low level 

for 0∗, we are manually able to set a low dimension for &'(.. 
For each 0 dimension, this procedure starts by randomly selecting a w subsample 

(&'((x),(y),") from the original ETF dataset. With this subsample data, we fit the 

following model to * = 1, … , 4 mutual funds: 

 !," = #! + $%&'((x),(y)," + )!," (10) 

After estimating the model (10), we can compute: z(x),(y),!W , #Y(e),(y),! both for * =1, … , 4, and ]U(x),(y). 
We repeat this procedure | = 500 times so as w = 1, … , | in order to measure 

the following statistics:  

z(x)W = 1|4 � � z(x),(y),!WS
!_9

�
y_9  (11) 

#Y(x) = 1|4 � � #Y(e),(y),!
S

!_9
�

y_9  (12) 
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GY(0) = 1| � GU(0),(w)
|

w=1  (13) 

Hence, for a selected 0 of the &'(. vector dimension, we calculate the average 

adjusted-R² (11), the average calculated alpha (12), and the average fund category 

proportion (13) across all subsamples and all mutual funds. 

2.3 Proposed ETF Algorithm Selection (PS) 

In this section we describe a proposed algorithm selection that chooses ETFs 

based on their ability to outperform mutual funds (high GYE), as well as their ability to 

explain fund return variability (high average adjusted-zW)15. 

We define I as the overall number of ETFs available in our original dataset so 

that &'(" = @I5C(9),", … , I5C(�),"B. We kick off the first step of our algorithm by 

calculating: 

 !," = #! + �!I5C(�)," + )!," (14) 

where � = (1, … , I). 

For each I5C(�),", we compute the average adjusted-zW @z(�)W B16 and the estimated 

skilled fund proportion @GY(�),EB. Additionally, we select a set of ETFs featuring an z(�)W  

higher than a zW(∗) threshold17 so that: 

&'(9,"�� = ��: z(�)W ≥ zW(∗)� (15) 

Next, based on the &'("��
set, we choose the ETF yielding the lowest GY(�),E so 

that: 

I5C(�k)," = ��: � = � ��*��∈���k,��� GY(�),E� (16) 

 

15 The highest possible adjusted-R² is required to address the issues as pointed out by Andrikogiannopoulou 
& Papakonstantinou (2019). 

16 z(�)W = ∑ �(�),f�ifjkS  where, z(�),!W  is the adjusted zW from the fitted model  !," = #! + �!I5C(�)," + )!,". 

17 We set zW(∗) = 0.85 for our empirical research. 
 

Electronic copy available at: https://ssrn.com/abstract=3634701



 

 11 

where I5C(�k)," is the ETF selected in the first step. 

In the second step, we measure: 

 !," = #! + �!,�kI5C(�k)," + �!I5C(�)," + )!," (17) 

where � = (1, … , I) ∖ {�9}.  

We then select a pair of ETF sets that produce a higher adjusted zW than that of 

the previous sole I5C(�k)," so that: 

I5CW,"�� = ��: z(�)W ≥ z(�k)W � (18) 

Next, we pick the second ETF using: 

I5C(��)," = ��: � = � ��*��∈����,��� GY(�),E ⋀ GY(�),E <  GY(�k),E� (19) 

Model (16) enables us to conclude that, in order to be selected, the second ETF 

must also enhance its outperformance across mutual funds by attaining a lower estimated 

skilled fund proportion. 

We proceed with the algorithm until &'(�,"�� = ∅, or I5C(��)," = ∅, where � is the number 

of steps. Therefore, the final selection can be expressed as &'(�," = ⋃�_9� �I5C(��),"�. 

2.4 Lasso Selection regarding Risk Factors 

Given the well-known fact that risk factors outperform industry mutual funds18, 

one can attain a more sophisticated ETF selection by looking into the risk factor space. 

Based on the Fama & French (2010) and Barras et al. (2010), we focus on the four-risk 

factor model proposed by Carhart (1997), setting our risk factor to ?" =  @ ¡"¢,",  �¡�,",  £¡¤,",  ¥¡¤,"B. As highlighted in the Fama (1998), desirable 

properties from a multifactor risk model like (2) are neither an idiosyncratic risk (#! = 0) 

nor a satisfactory explanatory power (significant betas and high adjusted-zW). 

Consequently, for each   risk factor19, we look for ETFs that might spam the risk factor 

space, applying the following model: 

 

18 See Fama & French (2010) and Barras et al. (2010). 
19   = (¦§-, K¦|, 7¦¨, ©¦¨). 
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 A," = $?&'(. + )A," (20) 

Since original ETF datasets pose a great number of predictors, as well as the fact 

that we are interested in selecting a sparse number of predictors, we apply the Lasso 

estimator20 to (20) with the loss function, as follows:  

¨@$AB = 12 �@ A," − $?&'(.BW�
"_9 + dA‖$A‖9 (21) 

$«¤¬��,A = � ��*�$®¨@$AB (22) 

ETFs selected with risk factor   are defined as &'(¤¬��,A," =�&'(.: $«¤¬��,A ≠  ^�. Hence, the final set of ETFs selected by the Lasso procedure can 

be attained calculating: &'(¤¬��," = ⋃A∈��&'(¤¬��,A,"�. 

2.5 Forward Selection regarding Risk Factors 

We also apply the forward fund selection algorithm as an alternative method to 

select ETFs in model (20). We define a grid of § = 1, … , ¯21 with ¯ being the threshold 

for the &'(. vector dimension in equation (14) Therefore, the sparsity level in the 

forward fund selection algorithm is directly controlled by the value of ¯. 

For each risk factor   we start the procedure by setting § = 1, and adjusting all 

possible models to (14). It is worth noting that since § = 1, in this first step the number 

of regressions is exactly the same as the number of elements in the original ETF dataset. 

We choose the ETF that yields the highest adjusted zW. Then, we move on to the second 

step by setting § = 2, and adjusting all possible models to (14) with the ETF selected in 

the previous step defined as the first predictor, whereas all other remaining ETFs from 

the original dataset remain potential candidates for the second predictor. Again, we select 

the ETF set yielding the highest adjusted-zW and repeat those same steps until § = ¯, at 

which point we pick the final ¯ ETF (�&'(�,A,"�). As in the Lasso procedure, the final 

selection is a combination of every selection we make for each risk factor (&'(�," =⋃A∈��&'(�,A,"�). 

 

20 See Hastie, Tibshirani, & Friedman (2009) for an extensive description of Lasso estimator properties. 
21 We select two ETF sets with this methodology, one with ¯ = 1, and other with ¯ = 2. 
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3 Data 

Fund data is collected from the CRSP Survivor-Bias-Free U.S. Mutual Fund 

Database22 from January 1980 to December 2019 on a monthly basis. We pick only U.S. 

domestic equity market funds. To avoid incubation bias, we remove all funds’ 

observations before said funds' AUM reaches 5.0 million 2000 dollars23. Once the funds 

are included in the dataset, we keep analyzing them until its AUM drops below 1.0 

thousand 2000 dollars. Next, we remove funds that have less than 30 months of 

observable data. After all adjustments are made, our dataset displays an unbalanced panel 

with 13,922 funds from January 2005 to December 2019. Risk factor and risk-free rate 

historical returns were obtained from the French Library24. 

Figure 3 depicts the number of analyzed funds in our final dataset universe per 

month. The figure clearly shows a positive trend in the number of funds over the years. 

Consequently, most funds are observed in recent years and mainly within our time-sample 

from January 2005 to December 2019. 

Figure 3: Monthly number of funds from January 1980 to December 2019 

 

Note: The figure shows the historical evolution of the 13,922 mutual funds selected from 1980 to 2019. 

Numbers were gathered from the CRSP U.S. domestic mutual fund database with the AUM ranging from 

5.0 million to 1.0 thousand 2000 dollars, including over 30 months of observable data. 

Figure 4 displays the evolution in number of ETFs from 1994 to 2019. We can 

observe that there are more than 800 ETFs available in this period. Moreover, even though 

 

22 See CRSP (2012) for a complete description of this dataset. 
23 Following Berk & van Binsbergen (2015); Fama & French (2010); Harvey & Liu (2019); and Franzoni 
& Schmalz (2017). 
24 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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ETFs are a considerable market nowadays, they are also a recent financial innovation. 

Hence, there is a trade-off between the time series length and the number of ETFs 

available. Under this context, we begin our time-sample in January 2005, which leads to 

a balanced panel of 100 ETFs issued up to this date. 

Figure 4: Number of ETF funds in the Bloomberg dataset 

 

Note: The figure displays the number of ETFs available in the Bloomberg database. 

In Figure 5 we compare the AUM of the Bloomberg ETF population to our 

selected sample. The selected ETFs represent more than 85% of the overall AUM 

database, amounting to over 2.0 trillion dollars of AUM. Here, we must point out that our 

ETF sample encompasses a significant share of the ETF market, as well as the fact that 

liquidity is not an issue for individual investors. 

Figure 5: ETF AUM from January 1994 to December 2019 

 

Note: The figure displays the evolution of AUM (US$ trillions) for the Bloomberg ETF sample and the 

selected ETF. 

Table 2 brings statistics for our final dataset universe, ranging from January 2005 

to December 2019. Panel A and Panel B consolidate domestic equity mutual funds, as 
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well as the selected ETF sample, respectively, and further detail average excess returns, 

Sharpe ratios, AUM (US$ Bi), time series lengths, and the number of funds/ETFs. 

Panel C, in turn, submits average risk factor returns and Sharpe ratios. 

Table 2: Final dataset statistics 

Panel A: Mutual Funds 

Description Mean Std. Min p05 Median p95 Max 

Av. Excess Return (% p.m.) 0.51% 1.30% -3.90% -0.39% 0.56% 1.13% 139.84% 
S.R. (ex-post) 0.13 0.12 -1.34 -0.08 0.13 0.30 0.69 
Av. AUM (US Bi) 0.37 1.54 0.00 0.01 0.06 1.35 47.37 
Time Series Length 126 80 30 34 105 292 180 
# Total Number of Funds 13,922       

Panel B: Selected ETFs 

Description Mean Std. Min p05 Median p95 Max 

Av. Excess Return (% p.m.) 0.56% 0.19% 0.13% 0.26% 0.55% 0.94% 0.98% 
S.R. (ex-post) 0.12 0.04 0.03 0.04 0.13 0.18 0.19 
Av. AUM (US Bi) 6.80 15.77 0.10 0.23 2.51 20.72 137.89 
# Total Number of Funds 100       

Panel C: Risk Factors 

Description Av. Excess Return (% p.m.) S.R. (ex-post) 

Mkt 0.72% 0.17 
SMB 0.02% 0.01 
HML -0.12% -0.05 
WML 0.10% 0.02 

Note: The table displays Statistics for the final dataset. Panel A refers to the mutual fund sample, Panel 

B to the selected ETF, and Panel C to risk factors. The table includes average excess returns, Sharpe 

ratios, time series length, as well as the number of funds and ETFs. 

As we can see in the figure, both mutual funds and ETFs, as well as excess 

returns and Sharpe ratio averages are positive, although lower than numbers reported for 

the market risk factor (Panel C). As Cochrane (2009) points out, the fact that the market 

risk factor yields higher Sharpe ratios than average fund Sharpe ratios may suggest that 

said risk factors may be able to spam most funds’ excess returns, whereas only a small 

number of funds would be able to generate alpha. In fact, this result is confirmed by 

Barras et al. (2010) for the period ranging from 1975 to 2006. In Panel B of Table 2, we 

notice that average ETF Sharpe numbers are closer to average fund Sharpe ratios, thereby 

implying that funds, on most cases, are not alpha when benchmarked by ETFs. On 

average, each fund is examined monthly over a 10-year-term, resulting in an appropriate 

time-series length. 

4 Results 

4.1 Benchmark potential of ETFs 

In this section we show the potential ETFs have to explain fund return 

distributions. We start by applying the risk factor model to evaluate results, used herein 
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as our performance guideline. To do so, we look at the proportion of skills across three 

subsamples: the first one encompasses the entire period ranging from 1980 to 2019; the 

second brings observations from 1980 to 2004, a timeframe similar to the one examined 

in the Barras et al. (2010) paper; finally, the third and main period used herein covers the 

years from 2005 to 2019. 

Proportions of unskilled, zero-alpha and skilled funds are shown in Table 3, in 

accordance with the sub-sample that was analyzed. 

Table 3: Proportions of zero-alpha, unskilled, and skilled funds 

Value GF G8 GE 

Panel A: Period 01/1980 to 12/2019 

Proportion 37.86% 60.95% 1.19% 
Number 5,271 8,485 163 
Std. 0.0052 0.0109 0.0083 

Panel B: Period 01/1980 to 12/2004 

Proportion 26.29% 73.17% 0.54% 
Number 1,494 4,158 30 
Std. 0.0077 0.0138 0.0099 

Panel C: Period 01/2005 to 12/2019 

Proportion 41.27% 57.56% 1.17% 
Number 4,829 6,732 137 
Std. 0.0056 0.0116 0.0088 

Note: The table displays proportions of zero-alpha, skilled, and unskilled (G8, GE, GF) funds based on the 

risk factor model for three different time samples. Panel A shows estimated proportions for the entire 

fund population (13,922 funds) from 1980 to 2019. Panel B submits estimated proportions from the entire 

sample from 1980 to 2004 (5,682 funds). Panel C exhibits estimated proportions in the sample from 2005 

to 2019 (11,700 funds). H∗ and d∗ values are obtained using the selection algorithms devised by (Barras 

et al., 2010). 

The table replicates specific patterns documented by academic literature, these 

being: predominance of unskilled and zero-alpha funds, whose joint proportions exceed 

98% in all subsamples; and an increase in the volume of unskilled funds over time with 

the proportion rising from 26.29% in the 1980/2004 period to 41.27% in the 2005/2019 

period. Barras et al. (2010) also report both results. 

Nevertheless, these conclusions are reached by comparing fund returns with 

traditional risk factors, these being theoretical portfolios that pose several caveats in 

regards to their practical elaboration (Frazzini et al., 2012; Novy-Marx & Velikov, 2016). 

Under this context, we consider the sensitivity of these results whenever funds are 

exposed to ETF portfolios instead of traditional risk factors. Using the method detailed in 

section 2.2, we proceed to randomly pick ETF combinations and assess combinations 

with 1 to 10 ETFs. First, we define the number of ETFs that we will use as benchmarks, 
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after which point we choose 500 random combinations, whose average alpha and average 

adjusted-R² distributions are evaluated. 

The results are summarized in Figure 6. The upper panel represents the average 

alpha according to the number of ETFs used across the 500 random combinations tested, 

as well as their 95% confidence interval. The lower panel, in turn, shows the adjusted-R², 

according to the number of ETFs considered. Each point in the figure illustrates an 

average number of 500 random combinations, whose individual values are calculated 

from a distribution of 11,700 funds, as detailed in section 2.2. The red dotted lines refer 

to average alpha risk factors of -0.13% and the average adjusted-R² of 87.7%. 

Figure 6: Random ETF Selection Potential vs Risk Factors 

 

Note: The figure shows the average alpha (#) and the adjusted-R² estimated using the risk factor model 

based on Random ETF selection, conditional to the number of ETFs selected. The red dotted line 

represents risk factor estimates, whereas the solid black line denotes estimates based on Random ETF 

selection: avg. alpha of – 0.13% and avg. adjusted-R² of 87.7%.  

Figure 6 enables us to note that the average alpha stabilizes when we take into 

consideration combinations of around 4 ETFs. Furthermore, the value stabilizes at levels 

of 0.02%, showing that it is approximately 0.15% higher than the average alpha calculated 

with risk factors. This substantial difference is close to the estimated transaction cost of 

0.18% used to devise risk factors, according to Frazzini et al. (2012). 
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Regards to the adjusted-R², the results are also noteworthy since whenever we 

evaluate combinations of 4 or more ETFs, this measure is also close to the one we obtain 

with risk factors. When we examine combinations with 8 ETFs, the adjusted-R² reaches 

average numbers akin to those obtained with risk factors (87.7%), whereas from 4 ETFs 

onwards the average already exceeds 85%. 

Thereafter, we proceed to analyze Figure 7, where we show average proportions 

of unskilled, zero-alpha and skilled funds, according to the number of ETFs evaluated in 

random combinations. The solid black line refers to average proportions among random 

combinations concerning different numbers of ETFs that we analyzed. The gray area 

delimits intervals from the 2.5th to the 97.5th percentiles of random combinations used. 

The red dotted line denotes proportions estimated with risk factors, as seen in Panel C of 

Table 3: 41.27%, 57.56%, and 1.17% for unskilled, zero-alpha and skilled funds, 

respectively. 

Figure 7: Expected skill proportion based on Random ETF Selection  

 

Note: The figure shows average proportions of unskilled, zero-alpha, and skilled funds, according to the 

number of ETFs tested in the random selection. The solid black line refers to average values of each 

proportion among random combinations tested pursuant to the number of ETFs analyzed. The gray area 

delimits intervals from the 2.5th to the 97.5th percentiles. The red dotted line indicates skill proportions 

estimated using risk factors.  

Starting with the proportion of unskilled funds, the figure backs our results 

previously shown in Figure 6. The proportion of unskilled funds does not correspond to 

the number obtained with risk factors when we use ETFs. Benchmarking fund returns 

with ETF combinations entail unskilled fund proportions with stable averages of around 

10%, regardless of the number of ETFs used. When we consider risk factors, however, 

this proportion reaches 41.27%. This behavior can also be explained by the absence of 
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transaction costs in risk factor returns. Without transaction costs, risk factor averages are 

potentially higher, thus, the use of such variables as benchmarks signal potentially lower 

alphas, in addition to a higher unskilled proportion. Such a pattern is consistent with the 

conclusion found in Figure 6, in which we point out that the average alpha is higher when 

we use ETFs as a reference as opposed to when we use risk factors. 

In contrast, although proportions of unskilled funds are stable, proportions of zero-

alpha and skilled funds seem to be sensitive to the number of ETFs analyzed, behaving 

in a total opposite way. As we look at more and more ETF combinations, proportions of 

calculated zero-alphas go up, while proportions of estimated skilled funds go down. In 

truth, we expect the opposite to happen, since all three proportions add up to 100%, and 

the unskilled fund proportion remains stable. Nevertheless, when we examine intervals 

from the 2.5th to the 97.5th percentiles, we note that ETF combinations yielding results 

akin to those obtained with risk factors exist since the gray area intersects with the red 

dotted line which represents the risk factors. Additionally, in regards to average 

proportions, it becomes clear that the best results, in order to explain fund performance, 

are obtained using combinations that range from 3 to 5 ETFs due to the fact that zero-

alpha proportions reach their peak in this interval, whereas proportions of skilled funds 

sink to their lowest point. 

Another pattern, shown in Figure 7, refers to the positive trend concerning 

proportions of skilled funds, which may help to tell us that, as we proceed to test 

combinations with increasing numbers of ETFs, the proportion of skilled funds will also 

rise. At first, the pattern may seem unusual, however, one must keep in mind that ETFs 

are selected randomly, consequently, insofar as we start to consider combinations with 

greater numbers of ETFs, the number of possibilities expands rapidly, thereby making it 

difficult to evaluate the same combinations again only with the increase of specific 

ETFs25. 

Our assessment in this section enables us to conclude that ETFs demonstrate a 

capacity to generate results that come close to those obtained when we compare fund 

returns to risk factors, although they show inconsistencies concerning the proportion of 

estimated unskilled funds, which, again, are potentially explained by differences in 

 

25 For instance, when combinations of 4 out of 100 ETF options are drawn, the total number of options is 
3,921,225 (= 100!/([4! (100-4)!)]). However, when we look at combinations of 6 ETFs, the number of 
options is 186,087,894,300 (= 100! / ([8! (100-8)!])). 
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transaction costs. On the other hand, when we choose to single out proportions of skilled 

funds for evaluation, we observe that combinations around 4 ETFs are best suited to 

generate close results to the ones attained using risk factors. 

In summary, we conclude that: (i) ETFs can be used as benchmarks to assess fund 

performance; (ii) we should only compare skilled fund proportions since transaction costs 

suggest differences between proportions of unskilled funds obtained with risk factors and 

ETFs; (iii) finally, the optimal ETF combination should not stray far from the range of 3 

to 5 ETFs. 

4.2 ETF Selection 

Given the results of section 4.1, the following are the dedicated methodologies we 

employ to identify optimal ETF combinations. Unlike the previous section, this one does 

not intend to evaluate random ETF combinations, but rather combinations chosen through 

specific procedures. 

These procedures are divided into two approaches. The first one is detailed in 

section 4.2.1 and selects a set of ETFs aimed at replicating the best possible results 

concerning proportions of skilled, adjusted-R² and alpha funds. The second approach, in 

turn, is described in subsection 4.2.2 and uses a procedure to identify a set of ETFs that 

replicates risk factor dimensions. Both approaches have the same purpose: to select the 

best benchmarking set for the fund sample. However, the first one addresses this through 

fund return dimensions, whereas the second takes on an approach based on the 

perspective of risk factors. 

4.2.1 ETF selection based on fund performance 

In this section we disclose the results obtained selecting ETFs after we examined 

fund return dimensions. The approach aims to identify ETF combinations capable of 

explaining fund return variability (high adjusted-R²); to generate a low proportion of 

skilled funds (low GE), and to recommend low average values for risk-adjusted excess 

returns (low #). 

As described in section 2.3, the procedure used consists of selecting ETFs 

sequentially so that an ETF is picked in each iteration, thereby generating the lowest 

possible proportion of skilled funds with an average adjusted-R² greater than 85%, as well 

as higher than the adjusted-R² obtained with the last selected ETF. Therefore, the first 
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ETF is selected in order to minimize both the proportion and the skilled funds, though 

conditioned to an average adjusted-R² equal to or greater than 85%. We then continue to 

add further ETFs, always minimizing the proportion of skilled funds, and only 

considering options that generate an average adjusted-R² greater than or equal to the one 

obtained in the previous iteration. The procedure concludes when we establish that 

additional ETFs are not capable of reducing the estimated proportion of skilled funds. 

A minimum adjusted-R² average is required to help avoid regressions that show 

weak adherence to data, as well as to reduce potential calculations of p-values with 

volatile distribution for both skilled and unskilled funds. As Andrikogiannopoulou & 

Papakonstantinou (2019) point out, excessively volatile calculated p-values can lead to 

significantly high values, even for non-zero-alpha funds. In this case, we see an 

overestimation of the proportion of zero-alphas, which, in turn, leads to an 

underestimation of proportions of non-zero alpha funds. 

After applying the aforementioned procedure, we proceed to select five ETFs: 

VV.U; IJT; SLYV; XLY; and XLV. Results concerning performance metrics distribution 

used in this proposed selection (combining the four benchmarking ETFs), in addition to 

the estimated proportions of unskilled, zero-alpha and skilled funds, are found in Table 

4. With the aim of helping to compare outcomes obtained, and taking into account risk 

factors and randomly selected ETFs, we also include them in the table. Panel A shows 

performance distribution metrics, whereas Panel B displays skill proportions. 

The results exceed those attained simply by randomly selecting ETFs, considering 

every metric analyzed. Moreover, they are close to values obtained with risk factors, 

except for the average alpha, which in spite of being negative, is still approximately 

0.11% higher than the estimated risk factors. 

Finally, as one can see, the estimated proportion of skilled funds accounts for only 

5.73%. Therefore, based on the selected ETF combination, we estimate that 94.27% of 

both population and funds fail to demonstrate adequate management skills required to 

generate positive risk-adjusted returns. The result underscores evidence that has already 

been shown in a wide host of papers, nevertheless, when considering all transaction costs, 

it is still attained herein. Similar results can be achieved by analyzing funds’ gross returns, 

i.e., before expenses. However, as studies have also shown, there are far too many 

distortions in the available expense ratio data (Berk & van Binsbergen, 2015, 2017). 

Electronic copy available at: https://ssrn.com/abstract=3634701



 

 22 

Table 4: ETF selection results based on fund performance distribution 

Panel A: Performance measures 

Benchmark  
  Mean Std. Min p05 Median p95 Max 

 # 

Risk factors  -0.12% 0.92% -0.93% -0.46% -0.13% 0.13% 0.42% 
Random selection  0.03% 1.84% -0.82% -0.32% 0.03% 0.26% 0.48% 
Proposed Selection (PS)  -0.01% 0.67% -0.87% -0.35% 0.00% 0.24% 0.56% 

  �°±²�-�° − z² 

Risk factors  87.72% 16.58% 3.20% 51.94% 92.91% 97.78% 99.08% 
Random selection  86.43% 15.65% 4.14% 55.13% 91.29% 95.75% 97.24% 
Proposed Selection (PS)  86.15% 16.97% -1.13% 51.16% 91.41% 97.16% 98.63% 

Panel B: Skill distribution 

  GF G8 GE 

Risk factors  41.28% 57.54% 1.18% 
Random selection  9.67% 71.31% 19.02% 
Proposed Selection (PS)  5,63% 88.64% 5.73% 

Note: Panel A of the table displays the distribution of alpha and adjusted-R² in the funds that we analyzed, 

in accordance with the evaluated benchmark: Risk factors, Random Selection or Proposed Selection (PS). 

In regards to random selection, average estimated parameters for each fund are shown, taking into 

account models with 1 to 15 ETFs. Panel B reports proportions of unskilled, zero-alpha, and skilled funds. 

Still, it is worth pointing out that despite some impressive results, they might be 

impacted by overfitting fund data samples that we analyzed. This stems from the fact that 

several variables are evaluated to choose the best set of ETFs. Consequently, we also 

examine out-of-sample results in the following section. 

4.2.1.1 Cross-validation 

This section employs the same ETF selection procedure as the one described in 

section 4.1, however, here we proceed to compare both the in-sample and out-of-sample 

performance. To achieve this, fund populations were randomly divided into two groups: 

the training-set and the testing-set. The training-set sample, which covers 70% of the fund 

sample, is used to select ETFs. The testing-set sample, in turn, contains the remaining 

30% funds, and its sole purpose is to ensure an overfitting-free performance. To better 

assess the method performance, we execute repeated cross-validation, wherein we carry 

out the described procedure 100 times, in addition to evaluating distributions of average 

alpha, average adjusted-R² and the estimated GE. 

The results are in Table 5, where we disclose parameter distributions for all 100 

cross-validation samples. Furthermore, as a reference parameter, we report the results we 

obtained with the proposed algorithm selection (PS) for every sample shown in the 

previous section. It is essential to point out that full sample results are estimated only 

once, thus, there is only one value for the average #, the average adjusted-R², and GE. 
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Table 5: Cross-validation for ETF selection based on fund performance 

Sample Full sample Training Testing 

Average u 

Mean -0.01% 0.02% 0.02% 

Std. - 0.03% 0.04% 

Min - -0.04% -0.04% 

p05 - -0.02% -0.03% 

Median - 0.02% 0.01% 

p95 - 0.07% 0.11% 

Max - 0.09% 0.15% 

Average adjusted-R² 

Mean 87.72% 86.07% 86.03% 

Std. - 0.25% 0.41% 

Min - 85.45% 85.08% 

p05 - 85.59% 85.30% 

Median - 86.08% 86.04% 

p95 - 86.47% 86.76% 

Max - 86.71% 87.09% ]E 

Mean 5.73% 6.07% 7.38% 

Std. - 1.00% 2.02% 

Min - 4.34% 3.44% 

p05 - 4.65% 4.65% 

Median - 5.95% 7.47% 

p95 - 7.58% 10.92% 

Max - 8.52% 12.39% 

Note: Panel A of the table displays the distribution of the average alpha and the average adjusted-R² 

throughout the cross-validation samples for the proposed algorithm selection (PS), in accordance with 

the evaluated sample. We only disclose the mean for the Full sample since the only number available is 

the estimated result from Table 4 section 4.2.1. For Training-sets and Testing-sets, numbers shown relate 

to average # and average adjusted-R² parameters estimated throughout all 100 cross-validation samples. 

As we can see, results obtained with training-sets and testing-sets are close, as 

well as results reported for the entire fund sample disclosed in the previous section. The 

alphas’ training and testing distributions are very similar to each other, and both present 

estimated averages around 0.02% close to the full sample result of -0.01%. Besides that, 

the training and testing samples have adjusted-R² averages around 86%, which is close to 

the 88% full sample estimated value. The standard deviations for the alphas and adjusted-

R² are low for the training and testing samples. Proportions of skilled funds have higher 

variabilities, with average values slightly above those calculated in the full sample. The 

training sample has an estimated proportion of 6.07%, while the testing sample records 

7.38%. Nevertheless, both numbers are close to the full sample result of 5.73%. 

Figure 8 allows us to compare the distribution of estimated metrics for both 

training-sets and testing-sets across all simulations performed. Again, it is possible to 

verify that distribution percentages are close, signaling that the procedure has a low 

overfitting risk, which helps to underscore the results we have already disclosed. 
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Figure 8: Measure distributions among training-sets and testing-sets 

 

Note: The figure displays alpha distributions (#), the proportion of skilled funds (GE), and the adjusted-

R² obtained with the cross-validation procedure. Histograms in dark gray and solid lines denote the 

distribution of estimated parameters in the training sample, while histograms in light gray and the dotted 

line represent distributions in the testing sample. 

It is also worth evaluating the sensitivity of the results in regards to the number of 

ETFs selected. When we look at the entire fund sample, we select five ETFs reinforcing 

the quantity indicated in the random ETF selection analysis described in section 4.1. 

Likewise, Figure 9, which illustrates how the selected ETFs are distributed, shows that 

nearly 86% of cases are performed with a number of ETFs ranging from 3 to 5. Again, 

close to the pattern observed with the entire data sample. 

Figure 9: Cross-validation distribution for the number of selected ETFs 

 

Note: The figure displays the distribution of the number of ETFs selected with the cross-validation 

procedure. The vertical axis refers to the number of ETFs selected, while the horizontal axis represents 

their frequency. 
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Finally, Figure 10 shows how the selected ETF combinations are distributed. 

Combinations are arranged from lowest to highest in terms of frequency. Furthermore, 

combinations picked only once are grouped in the “Other” category. 

Figure 10: ETF combination frequency in cross-validation  

 

Note: The table shows the frequency by which each ETF combination was selected using the cross-

validation procedure. The vertical axis depicts ETF combinations, whereas the horizontal axis illustrates 

the frequency in which they occur. Combinations that occur only once are grouped in the "Other" 

category. 

As we can see, the set of selected ETFs does not exhibit a pattern. In other words, 

the procedure does not seem to suggest that any optimal ETF combination exists, although 

there are several possibilities. This becomes clear when we take into account the fact that 

most combinations are selected once, at most, and that the most common combination 

takes place in approximately only 9% of the cases. 

4.2.2 ETF selection based on risk factors 

In this section, we employ specific procedures intending to select a set of ETFs 

capable of mimicking risk factor returns. In doing so, our goal is to attempt to find a set 

of ETFs that can replicate results when fund returns are exposed to risk factors. 

The first tested procedure is based on the Lasso methodology and considers the 

set of ETFs as potential explanatory variables for risk factors. Thus, we apply a Lasso 

methodology for each risk factor to pinpoint sets of ETFs capable of explaining risk factor 

variability. The methodology’s hyperparameters are set following the five-fold cross-
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validation method. ETFs selected for each risk factor are found in Table 6. The lower row 

of the table reports the adjusted-R² obtained after regressing risk factors by the selected 

ETFs. 

Table 6: Selected ETFs by Lasso 

ETF Description 
Selected 

Mkt SMB HML WML 

  XLF Blend Funds x  x x 
  IYM Blend Materials x    
  IYG Blend Funds   x  
  IWO Small-Cap Growth x x   
  XNTK Growth Technology x    
  SOXX Blend Technology x    

adjusted -R² 95.5% 74.5% 53.4% 33.9% 

Note: The table lists ETFs selected using the Lasso method. Each row refers to a selected ETF. The first 

column represents the name of the ETF. The second row brings a brief description of the asset investment 

guideline. The other columns show which risk factor is linked to each ETF. Finally, the last row reports 

the adjusted-R² attained from the regression between the selected ETFs and each risk factor. 

As we can see, the procedure selects five ETFs to explain the Mkt risk factor 

variability, however, two of them were also selected through HML, WML and SMB. The 

HML factor requires two ETFs to be chosen. Finally, SMB and WML call for the 

selection of one additional ETF, each. In all, there are six ETFs selected, whereas in 

regards to the adjusted-R², they range from 95.5% to 33.9%. 

The second selection procedure is based on the forward selection methodology. 

More specifically, said procedure consists of selecting a set of ETFs for each risk factor 

to obtain the highest possible adjusted-R². This approach picks one ETF for each risk 

factor in each iteration. Unless the same ETF is selected to explain different risk factors, 

the procedure selects a set with four ETFs in each new iteration. 

Only results obtained with, at most, 2 ETFs for each risk factor were evaluated. 

Selected ETFs are shown in Table 7, where Forward 1 and Forward 2 submit, 

respectively, results obtained when one to two ETFs are selected for each risk factor. 

Results show that ETFs selected for each risk factor do not intersect, thus, we 

picked an overall number of four ETFs in the first iteration (Forward 1), plus an additional 

four in the second iteration (Forward 2). The adjusted-R² ranges from 99.6% to 33.2% 

when we use one ETF, and from 99.6% to 45.5% when we select two ETFs. 

Final results obtained using the procedure described are found in Table 8, in 

addition to results attained with risk factors and random ETF selection. The table is split 

into two panels. Panel A shows the distribution of alpha and adjusted-R² for each set of 
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benchmarks. Panel B, in turn, reports proportions of unskilled, zero-alpha, and skilled 

funds. 

Table 7: Selected ETFs by Forward Selection 

ETF Benchmark 
Selected 

Mkt SMB HML WML 

Panel A: Forward 1 

  XLF Blend Funds    x 
  IWM Small-Cap Blend  x   
  SPTM Broad Market Blend x    
  PEY Large-Cap Blend   x  

adjusted -R² 99.6% 94,5% 57.4% 33.2% 

Panel B: Forward 2 

  XLF Blend Funds    x 
  IWM Small-Cap Blend  x   
  SPTM Broad Market Blend x    
  PEY Large-Cap Blend   x  
  SPTM Broad Market Blend x    
  FVL Broad Market Blend    x 
  JKE Large-Cap Growth   x  
  PEY Large-Cap Blend   x  
  SPTM Broad Market Blend x    

adjusted -R² 99.6% 94.7% 80.6% 45.5% 

Note: The table lists ETFs selected with the Forward Selection method. Each row refers to a selected 

ETF. The first column represents the name of the ETF. The second row brings a brief description of the 

asset investment guideline. The other columns report which risk factor is linked to each ETF. The last 

row shows the adjusted-R² from the regression attained between the selected ETFs and each risk factor. 

Panel A displays the selected ETFs with one method iteration, while Panel B depicts ETFs selected using 

two iterations. 

When we begin looking at Lasso selection results, it is noticeable that this 

procedure entails the worst results, these being even lower than those we achieved with 

the random ETF selection. Applying it generates an average alpha of 0.13%, an average 

adjusted-R² of 84.98%, and a proportion of skilled funds corresponding to 39.37%. On 

the other hand, both Forward 1 and 2 selection methods deliver better results than those 

attained using the random ETF selection. In regards to the calculated average alpha for 

these funds, it is worth pointing out that the average of both approaches comes close to 

zero (0.02% and 0.01%). We also see satisfactory results for the adjusted-R², which are 

even closer to the outcome we obtained with the risk factors. Finally, when it comes to 

the estimated proportion of skilled funds, said ratio varies close to 11%. 

The procedures applied suggest that it is increasingly possible to select ETFs that 

are able to explain returns posted by actively managed investment funds. However, 

although these results exceed those obtained with random ETF selection, the estimated 

proportion of skilled funds remains substantially higher than the proportion estimated 

using risk factors. It is also worth noting that said procedures are not impacted by potential 
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data snooping since we select ETFs here by analyzing risk factor dimensions, instead of 

directly from the funds. 

Table 8: Selection results based on risk factors 

Panel A: Performance measures 

Benchmark  
  Mean Std. Min p05 Median p95 Max 

 # 

Risk factors  -0.12% 0.92% -0.93% -0.46% -0.13% 0.13% 0.42% 
Random selection  0.03% 1.84% -0.82% -0.32% 0.03% 0.26% 0.48% 
Lasso  0.13% 0.90% -0.81% -0.29% 0.14% 0.44% 0.71% 
Forward 1  0.02% 1.35% -0.83% -0.35% 0.02% 0.29% 0.58% 
Forward 2  0.01% 1.93% -0.88% -0.36% 0.01% 0.27% 0.57% 

  z² 

Risk factors  87.72% 16.58% 3.20% 51.94% 92.91% 97.78% 99.08% 
Random selection  86.43% 15.65% 4.14% 55.13% 91.29% 95.75% 97.24% 
Lasso  84.98% 16.02% 0.31% 52.88% 89.94% 95.63% 97.70% 
Forward 1  87.38% 16.61% 1.37% 53.46% 92.56% 97.53% 98.80% 
Forward 2  88.79% 16.16% 2.37% 56.35% 93.88% 98.00% 99.08% 

Panel B: Skill distribution 

  GF G8 GE 

Risk factors  41.28% 57.54% 1.18% 
Random selection  9.67% 71.31% 19.02% 
Lasso  4.59% 56.04% 39.37% 
Forward 1  4.36% 84.39% 11.25% 
Forward 2  8.48% 79.89% 11.63% 

Note: Panel A of the table displays the distribution of alpha and adjusted-R² in the funds we analyzed, in 

accordance with the evaluated benchmark. In regards to random selection, we report the average 

parameter estimated for each fund, considering models with 1 to 15 ETFs. Panel B, in turn, shows 

proportions of unskilled, zero-alpha, and skilled funds. 

4.2.3 Growth impact on the number of ETFs 

As illustrated in section 3, recent years have seen a substantial increase in the 

volume of ETFs available for investors. Previous sections of this paper examined data 

from 2005 with 100 ETFs. Nevertheless, when we analyze the database starting from 

2009, we can evaluate 299 ETFs in all. That being said, this section describes our results 

after analyzing this period that features a greater number of ETFs. 

More specifically, we examine all prior results in this section, i.e., risk factors, 

random selection, selection based on fund returns, and selection based on risk factor 

returns. Nevertheless, we do so by looking at the 2009 to 2019 period, which includes a 

pool of 299 ETFs. 

The results obtained are shown in Table 9. Panel A displays parameters of the 

calculated alpha distribution for each benchmark set, whereas Panel B illustrates the 

adjusted-R² distribution. Finally, Panel C brings each fund’s skill ratios, also in 

accordance with the analyzed benchmark set. 
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Table 9: Results obtained with larger ETF samples 

Panel A: Performance measures 

Benchmark  
  Mean Std. Min p05 Median p95 Max 

 # 

Risk factors  -0.15% 0.21% -0.97% -0.48% -0.13% 0.12% 0.38% 
 Random selection  0.03% 0.20% -0.73% -0.29% 0.04% 0.29% 0.52% 
Lasso  -0.07% 0.23% -0.95% -0.42% -0.07% 0.25% 0.61% 
Forward 1   0.01% 0.21% -0.89% -0.32% 0.02% 0.29% 0.55% 
Forward 2  0.02% 0.22% -0.79% -0.29% 0.04% 0.32% 0.61% 
PS  -0.01% 0.20% -0.79% -0.32% 0.00% 0.27% 0.58% 

  z² 

Risk factors  87.48% 17.00% 3.23% 49.16% 93.03% 97.89% 99.12% 
Random selection  82.61% 16.11% 2.39% 47.99% 87.69% 93.10% 94.95% 
Lasso  86.98% 16.57% 1.77% 52.73% 92.27% 97.68% 98.74% 
Forward 1   86.44% 16.95% 1.86% 50.16% 91.80% 97.33% 98.67% 
Forward 2  87.18% 16.57% 2.11% 51.47% 92.52% 97.16% 98.24% 
PS  85.57% 17.40% -0.36% 47.52% 91.14% 97.00% 98.47% 

Panel B: Skill distribution 

  GF G8 GE 

Risk factors  44.94% 52.25% 2.81% 
Random selection  13.19% 65.43% 21.38% 
Lasso  19.51% 78.48% 2.01% 
Forward 1   4.27% 86.04% 9.69% 
Forward 2  5.79% 79.51% 14.70% 
PS  1.19% 98.79% 0.02% 

Note: The table refers to results obtained from observations made in 2009 and 2019, including a sample 

of 299 ETFs. Panel A of the table reports the distribution of alpha and adjusted-R² in the funds we 

analyzed, in accordance with the evaluated benchmark. In regards to random selection, the table shows 

the average parameter estimated for each fund, considering models with 1 to 15 ETFs. Panel B displays 

proportions of unskilled, zero-alpha, and skilled funds. 

As we can see, results attained with the new ETF set time-sample are not different 

from those observed earlier. According to risk factors assessed, we estimate an average 

alpha of -0.15%. Furthermore, we conclude that 97% of the mutual fund industry fails to 

generate value. When randomly selecting ETFs, we reach an average alpha of 0.03% and 

an unskilled fund proportion of 79%. To conclude, we can say that the PS method delivers 

reliable results again with an average alpha of -0.01%, while signaling that 99.98% of 

funds fail to generate value for their investors. 

5 Conclusion 

The number of ETFs has grown massively over the past years. In this paper, we 

examine this fact to better understand skill distribution relating to active fund 

performance. We have shown how several combinations within the ETF population are 

suited to be used as benchmarks to evaluate active management funds. Results obtained 

in regards to the estimated proportion of skilled managers are similar to those estimated 

with traditional risk factors. Nevertheless, ETFs are a better fit for the task since, unlike 

risk factors, they are legitimate financial instruments that are actually traded in the market. 
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Therefore, their observed performance takes into account transactional costs involved in 

their operation. 

After analyzing random selections of ETF combinations, we are able to verify 

that: (i) ETFs can be used as benchmarks to assess fund performance; (ii) we should only 

compare skilled fund proportions since transaction costs suggest differences between 

proportions of unskilled funds obtained with risk factors and ETFs; (iii) finally, we find 

that the optimal ETF combination should not stray far from the range of 3 to 5 ETFs. 

Nonetheless, we also find that several ETF combinations lead to substantial 

differences in regards to observed behaviors in the active fund population. Thus, this 

proves the need for a guided method to select ETFs featuring the appropriate traits 

required to evaluate funds. 

Under this context, we proceeded to test a set of selection algorithms, establishing 

that it is possible to find suitable combinations. We have also examined cross-validation-

based algorithm performances, which led us to the finding that, based on an assessed set 

of approximately 5 ETFs, 95% of the active mutual fund industry does not have neither 

the necessary skills nor the ability to generate value for their investors. 
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Appendix  

A1. Procedure to compute alpha p-value for each fund @Ý%B 

For each estimation attained by model (1) (* = (1, … , 4)), we compute the t-

statistics for test 7!8: #! = 0 against 7!9: #! ≠ 0 by -̂! = XUfµUTf, where ¶YX* is a HAC estimator 

(Newey & West, 1987). As Kosowski et al. (2006) point out, t-statistic distribution in 

mutual funds is usually not normal, thus, we employ a bootstrap procedure to compute 

the p-value for the test. Following the guidelines set by Barras et al. (2010), we generate | bootstrap samples26 for each fund return (� !,"y �y_9�
) and compute a series of t-statistics 

·¸-¹*wºw=1| ». The estimated p-value for each fund can be expressed as: 

P̂! = 2�*� ¼1| � N@-̂!y > -̂!B�
½_9 , 1| � N@-̂!y < -̂!B�

½_9 ¾ (23) 

where N is an indicator function that is equal to 1 if -̂!y > -̂! or, otherwise, to zero. 

A2. Procedure to compute optimal lambda from the data (¿∗) 

Using Barras et al. (2010) as our standard again, we set a grid for d so that d =
(d1,  … , d¯)27.. For each value of d¢ so that d¢ ∈ d, we calculate GY8(d¢) = 9S ∑ N(eYfghÀ)ifjk(9FhÀ) , 

where N is an indicator that is equal to 1 if P̂! > d¢ or, otherwise, to zero. Next, we 

generate | p-value bootstrap samples for each fund * (�P̂!y�y_9�
) and compute �GY8y(d¢)�y_9�

 

for each d¢28. The mean square error of GY8(d¢) is as follows: 

¦KIÁ (d¢) = 1| � OGY8y(d¢) − �*�h∈hGY8(d)RW�
y_9  (24) 

The optimal lambda (d∗) is defined as: 

d∗ = � ��*�h∈h¦KIÁ (d) (25) 

 

26 We set | = 1,000, in accordance with the Barras et al. (2010) procedure. 
27 We follow the Barras et al. (2010) specifications and set  ¿ = (0.30,  0.32, … ,0.70) and | = 1,000. 

28 GY8y(d¢) = 9S ∑ NOeYfÃghÀRifjk(9FhÀ) , where N is a indicate that is equal to 1 if P̂!y > d¢ or, otherwise, to zero. 
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A3. Procedure to compute optimal gamma from the data (Ä∗)  

Akin to the procedure we used to set d∗, we start by defining a grid Ä = @H1,  … , H¯B29. 

First, we compute GYE(H¢) = KLDÀE − GY8(d∗) DÀW  for each value of H¢ (d§ ∈ d). Second, we 

generate | p-value bootstrap samples for each fund * (�P̂!y�y_9�
) and calculate �GYEy (H)�y_9�

 

30 for each H¢. The mean square error of GYE(H¢) is:  

¦KIÁ (H¢) = 1| � OGYEy(H¢) − ��ÅD∈DGYE(H)RW�
y_9  (26) 

The optimal gamma (H∗) is defined as: 

H∗ = � ��*�D∈D¦KIÁ (H) (27) 

A4. Standard Deviation Estimators  

In accordance with Barras et al. (2010), we assume that GY estimators are stochastic 

processes indexed by H and d that converge to a Normal distribution if 4 → ∞. Hence, ¶YÈU0 

can be estimated as31: 

¶YÈU0 = É@∑ N@PU* > d∗B4*=1 B ∗ @4 − ∑ N@PU* > d∗B4*=1 B43@1 − d∗B2 Ê12
 (28) 

If we estimate GYE by (6) and GYF by (7), ¶YÈU+ and ¶YÈU− are given by: 

¶YÈU+ = Ë·K«H∗+ O1 − K«H∗+ R»4 + @H∗¶UGU0B24 + OH∗K«H∗+ R@1 − d∗B + @∑ N@PU* > d∗B4*=1 B42 Ì
12
 (29) 

¶YÈU− = ¼¶UGU02 + ¶UGU+2 − 2K«H∗+ @∑ 4@PU* > d∗B4*=1 B@1 − d∗B42 − H∗¶UGU02 ¾
12
 (30) 

If we use (6) to calculate GYF and (7) to estimate GYE in order to obtain ¶YÈU+ and ¶YÈU− 

expressions, we merely change subscriptions + to −, and − to +, for equations (29) and 

(30).  

 

29 Again, we set Ä = (0.05,  0.10, … ,0.50) and | = 1,000 conforming Barras et al. (2010). 

30 GYEy(H) = ∑ NOeYfÃgDRifjk S − GY8y(d∗) DW, where N is a indicator that is equal to 1 if P̂!y > H or, otherwise, to zero. 
31 See Proposition 3.2 from Genovese & Wasserman (2004). 
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