Individual Investors Look at Price Tags*

Fernando Chague
Rodrigo De Losso
Bruno Giovannetti

Individual Investors Look at Price Tags*

Fernando Chague (Fernando.chague@gmail.com)
Rodrigo De Losso (delosso@usp.br)
Bruno Giovannetti (bruno.giovannetti@gmail.com)

Abstract

: We show that a stock price fall, in itself, induces individual investors to buy the stock. Our identification strategy uses two distinct events which generate "fictitious price falls." The first is the mechanical stock price adjustment on ex-dividend dates. The second explores the so-called leftdigit effect, the well-documented empirical fact that individuals disproportionally focus on left digits. Buying after price falls with no further analysis is harmful to investors since price falls tend to be followed by further price falls.

Keywords: individual investors; cursed beliefs; prospect theory; contrarian behavior,

JEL Codes: G11, G12, G14, G40, D84.

Individual Investors Look at Price Tags*

Fernando Chague ${ }^{\dagger}$ Rodrigo De-Losso ${ }^{\ddagger}$ Bruno Giovannetti ${ }^{\S}$

October 25, 2018

Abstract

We show that a stock price fall, in itself, induces individual investors to buy the stock. Our identification strategy uses two distinct events which generate "fictitious price falls." The first is the mechanical stock price adjustment on ex-dividend dates. The second explores the so-called left-digit effect, the well-documented empirical fact that individuals disproportionally focus on left digits. Buying after price falls with no further analysis is harmful to investors since price falls tend to be followed by further price falls.

JEL Codes: G11, G12, G14, G40, D84.
Keywords: individual investors, cursed beliefs, prospect theory, contrarian behavior, left-digit effect

[^0]
1 Introduction

A stock price fall, say from $\$ 30$ to $\$ 28$, should not necessarily induce an investor to buy the stock. Before deciding to do so, the investor should account for the reasons (if any) for the $\$ 2$ price fall. In this paper, however, we show that a price fall in itself induces individuals to buy the stock; they see a price fall and buy the stock with no further analysis. In other words, the nominal price of a stock (its "price tag") has a causal effect on the demand by individual investors.

From a theoretical perspective, a direct effect of stock price tags on individual investors' demand can occur in two distinct frameworks. First, if individuals ignore that a price fall may contain negative information, they will be willing to buy the stock once its price falls. Recent behavioral models indeed assume the existence of investors who neglect the information contained in prices to explain the observed high levels of trading activity (Carrillo and Palfrey, 2011, and Eyster, Rabin, and Vayanos, 2018). So far, the empirical evidence on the existence of such investors has been deduced from lab experiments (Biais, Hilton, Mazurier, and Pouget, 2005, Corgnet, DeSantis, and Porter, 2015, and Magnani and Oprea, 2017). As such, our empirical evidence may be seen as a contribution to this literature. ${ }^{1}$ Second, as shown by Birru and Wang (2016), investors seem to suffer from a "nominal price illusion" in which they believe that a stock's skewness increases when its nominal price falls. According to Barberis and Huang (2008), investors who have cumulative prospect theory preferences value positively skewed securities highly. As such, if individual investors (i) display nominal price illusion as suggested by Birru and Wang (2016) and (ii) make decisions according to cumulative prospect theory as in Barberis and Huang (2008), the simple fact that the nominal price of a stock has decreased will make individual investors willing to buy the stock.

Some empirical studies suggest that individual investors' demand may be directly influ-

[^1]enced by stocks nominal prices. For instance, Gompers and Metrick (2001), Dyl and Elliott (2006), and Kumar (2009) do document that individuals hold lower-priced stocks than institutions. However, differently from the present paper, these studies do not have the intent of providing evidence of a causal effect of nominal stock prices on individual investors' demand.

We use a unique dataset that tracks the daily trading activity of all individual investors in Brazil from 2012 to $2015 .{ }^{2}$ We first document that individuals like to buy stocks after price falls, what is consistent with existing evidence (Choe, Kho, and Stulz, 1999, Grinblatt and Keloharju, 2000, Goetzmann and Massa, 2002, Kaniel, Saar, and Titman, 2008, and Foucault, Sraer, and Thesmar, 2011). However, to conclude that a price fall in itself induces individuals to buy stocks, it is not sufficient to show that they buy after price falls. For instance, individuals may be evaluating that market prices overreacted to bad news. Naturally, it is challenging to show that individuals see a price fall and buy the stock with no further analysis. Ideally, one would need to observe the full decision process of investors. Since this is not possible, we resort to an identification strategy which uses events that we call "fictitious price falls" (FPFs). An FPF is an event defined by two characteristics: i) it may be perceived as a real price fall by investors who look only at prices and do no further analysis, and ii) it is an immaterial event that contains no information about the value of the firm. Therefore, if an investor consistently buys in response to FPFs, we can conclude that a price fall in itself induces her to buy the stock. We find that individual investors do buy consistently more when FPFs occur.

We explore two distinct FPFs. The first FPF is the stock price adjustment that occurs on ex-dividend dates. On ex-dates, the opening price of the stock mechanically falls with respect to the closing price of the previous trading day since, from the ex-date onwards, new buyers of the stock are not entitled to the dividend. Importantly, this price change does not contain

[^2]any information about the value of the firm-all dividend-related information is made public days before the ex-date, on the announcement (or declaration) date. Since home-broker screens typically display a price fall on ex-dates with no special warning about the dividend adjustment, investors may indeed be deluded that a real price fall occurs when the market opens on ex-dates. Our identification hypothesis is that an investor who performs some analysis before buying a stock following a price fall will be aware when a date is an ex-date. She will realize that the opening lower price is simply due to the dividend adjustment. As such, this investor will display no different buying behavior on ex-dates. However, an investor who performs no analysis will perceive ex-date adjustments as real price falls. Consistent with individual investors buying stocks without performing any analysis when they see price falls, we find that they do buy consistently more on ex-dates.

We implement the ex-date FPF exercise as follows. For each stock-day we compute the total number of distinct individual buyers standardized by stock (N). We then run stockday panel regressions of N on \widehat{R}, the projection of the stock overnight return, unadjusted for dividends, on an instrumental variable that equals the stock dividend yield on ex-dates and is zero on other dates. That is, \widehat{R} measures the fictitious price fall that occurs when the market opens on ex-dates. We find that when a stock price mechanically falls by 5% on ex-dates, the number of individuals buying the stock significantly increases by 0.8 to 1.7 standard deviation, depending on the specification. We also run the same regression with the net number of buyers (the total number of buyers minus the total number of sellers) and find similar results. A possible confounding effect is that some individuals-those who pay higher taxes on dividends than on capital gains-could decide to postpone buying the stock until the ex-date to avoid paying unnecessary taxes. To address this, we restrict our instrument to non-taxable dividend payouts and find similar results (in Brazil there are two types of cash dividends, taxable dividends-called "Interest on Equity"-and non-taxable dividends). Another possible confounding effect is that some individuals like to receive dividends and may decide to buy stocks after dividends are announced (Graham and Kumar, 2006, and

Hartzmark and Solomon, 2017). In this case, the observed increased buying activity on exdates could be a delayed response to the dividend announcement by individuals who ignore that ex-date buyers do not receive dividends. To address this possible confounding effect, we further restrict our instrument to non-taxable dividend payouts which were publicized at least one week before the ex-date and find similar results. Finally, we run regressions considering only professional investors and, differently from individuals, we find no evidence of changes in their buying activity on ex-dates.

Our second FPF is the fluctuation of a stock price around an integer number during a trading day, and is motivated by the so-called "left-digit effect"-the fact that individuals disproportionally focus on left digits when evaluating numbers. Convincing evidence of the left-digit effect has been found in important financial decisions by individuals. Lacetera, Pope, and Sydnor (2012) show that individuals pay much more for a used car with 9,999 miles than for a used car with 10,000 miles. Chava and Yao (2017) show that individuals believe a house at US $\$ 299,900$ to be much cheaper than a house at US\$ 300,000. If the left-digit effect is present in important buying decisions such as those involving houses and cars, it should also be present when individuals evaluate stock prices: a small price variation, for instance, from $\$ 25.02$ to $\$ 24.98$, may be perceived as a large price fall by individuals. Importantly, consistent with our definition of an FPF, such a small price variation should be in general an immaterial event that contains no information. Our identification hypothesis is that an investor who performs some analysis before buying a stock will realize that there is no significant price change from $\$ 25.02$ to $\$ 24.98$. As such, she should display a symmetric buying behavior around prices that end at 00 cents (as symmetric as around prices that end at 50 cents). Only an investor who performs no analysis will be affected by the left digit effect. Consistent with individual investors buying the stock without performing any analysis when they see a price fall, we find that they do buy consistently more at prices just below integer numbers compared to at prices just above-for instance, they buy consistently more at prices from $\$ 24.90$ to $\$ 24.99$ than at prices from $\$ 25.01$ to $\$ 25.10$; on the other hand,
their buying behavior is symmetric at prices from $\$ 24.40$ to $\$ 24.49$ and at prices from $\$ 24.51$ to $\$ 24.59$.

We implement the left-digit effect FPF exercise as follows. We study the trading activity of individuals on days when stock prices fluctuate around integer numbers (e.g., $\$ 24.00$, $\$ 25.00, \$ 26.00$). Suppose that, on a given day, the stock price fluctuates around $\$ 25.00$, i.e., many deals are closed at prices between $\$ 24.90$ and $\$ 25.10$. Investors may be deluded by the left-digit effect that the stock being offered at prices from $\$ 24.90$ to $\$ 24.99$ is significantly cheaper than the stock being offered at prices from $\$ 25.01$ to $\$ 25.10$. So, if a stock price fall in itself induces individuals to buy the stock, we should observe more individuals purchasing the stock at prices from $\$ 24.90$ to $\$ 24.99$ than at prices from $\$ 25.01$ to $\$ 25.10$. Importantly, the same asymmetric buying behavior should be absent (or much smaller) around prices that end, for instance, at 50 cents (e.g., $\$ 24.50, \$ 25.50, \$ 26.50$), where the potential leftdigit effect is turned off. To evaluate this, for each stock-day on which we observe the stock price fluctuating around an integer number, we compute the number of individuals who buy the stock at prices "just below" (at most ten cents below) and "just above" (at most ten cents above) the integer number. We find the proportion of just-below individuals to be 54%, significantly higher than the proportion of just-above individuals, 46%. Moreover, the same asymmetric buying behavior is indeed absent around prices that end at 50 cents. When we use instead the number of buyers per seller, we find that the proportion of just-below buyers per seller is 57%, also significantly higher than the proportion of just-above buyers per seller, 43%. Finally, when the same analysis is performed for professional investors, we find no asymmetric buying behavior around integer prices.

There is growing evidence that price falls tend to be followed by further price falls. According to Moskowitz, Ooi, and Pedersen (2012), an asset class' own past return (from one to 12 months) is highly positively correlated with its future return (from one to 12 months). Hurst, Ooi, and Pedersen (2017) extend this time-series momentum evidence to global market indexes since 1880. Because of that, buying stocks after price falls with no further analysis
can be one of the reasons for the well-documented underperformance of individuals in the stock market (Odean, 1999, Barber and Odean, 2000, Grinblatt and Keloharju, 2000, Barber and Odean (2002), Barberis and Thaler (2003), and Barber, Odean, and Zhu, 2009). To show that such a behavior is indeed harmful to investors, we simulate an investment strategy based on an investor who simply buys stocks after price falls. At the typical holding horizon of individuals of about six months, the strategy yields negative market-adjusted returns from -5.8% per year to -14.1% per year, depending on the specification.

The remainder of the paper is organized as follows. In Section 2 we describe our data set. In Section 3 we present our empirical findings. In Section 4 we conclude.

2 Data Set

Our unique dataset contains the daily trading activity of all individual investors in the Brazilian stock market from January 2012 to December 2015. The observations are at the investor-stock-day level and allow us to anonymously follow each investor over time. The dataset comes from the "Comissão de Valores Mobiliários" (CVM), the Brazilian equivalent to the Securities and Exchange Commission (SEC) in the US. Since our data come from the regulator of the Brazilian financial market, they are extremely reliable. At the investor-stockday level, we observe the quantity of shares the investor buys and sells, and the respective financial volumes. To focus on individuals' buy-and-hold decisions we exclude day-trades (i.e., individual-stock-day observations with both buys and sells).

Our sample contains $10,637,788$ individual-stock-day purchase observations. It is the result of the buying activity of 391,184 individual investors on 432 different stocks. In monetary terms, these purchases correspond to a total of US $\$ 99.4$ billion over the four-year period. Panel A of Table 1 shows the evolution of these numbers over the years.
[Table 1 about here]

Panel B of Table 1 presents selected percentiles of the distribution of four individual-level
variables: total number of (stock-day) purchases, average volume purchased per stock-day, total volume purchased during the four years, and number of different stocks purchased during the four years. The median individual investor made seven purchases, purchased four different stocks, and invested on average US\$ 2,199 per stock-day and a total of US\$ 17,205 during the four years.

Figure 1 presents two graphs. The first graph displays the daily value-weighted cumulative return of the stocks in our sample. As we can see, between January 2012 and December 2015 the Brazilian stock market experienced no overall trend with considerable volatility. The second graph displays the daily number of distinct individual buyers. The time-series average of this variable is 7,877 individuals per day buying some stock, the minimum value is 2,905 on July 4th 2014 (the day the Brazilian soccer team played the quarter-final against the Colombian team in the 2014 FIFA World Cup), and the maximum value is 19,318 on October 27th 2014 (the first trading day after Ms. Rousseff was reelected president, a day with a large negative market return of -2.8%).
[Figure 1 about here]

2.1 Individuals buy stocks after price falls

There is substantial international evidence showing that individual investors are contrarians, i.e., they buy after recent price falls (Choe, Kho, and Stulz, 1999, Grinblatt and Keloharju, 2000, Kaniel, Saar, and Titman, 2008, and Foucault, Sraer, and Thesmar, 2011). To show that a price fall in itself induces individuals to buy stocks, it is not sufficient to simply show that they like to buy stocks when their prices fall. For instance, individuals may buy stocks when prices fall after evaluating that market prices overreacted to bad news. To show consistence with the international evidence, however, we next document that individuals are also contrarians in our sample.

For each one of the $10,637,788$ purchases by individual investors, we compute R_{-h}, the cumulative stock return h days prior to its purchase (excluding the purchase date). We say a purchase is contrarian if $R_{-h}<-\tau_{h}$, where τ_{h} is a threshold that varies with horizon h. Panel A of Table 2 shows the proportion of contrarian purchases by individuals. The proportions are computed as the ratio between the number of contrarian purchases and the number of all purchases with either $R_{-h}<-\tau_{h}$ or $R_{-h}>\tau_{h}$. We allow for different horizons, $h=1,5$, and 20 days, and for different thresholds, $\tau_{h}=0,0.5 \times \sigma_{h}$, and $1 \times \sigma_{h}$, where σ_{h} is the standard error of the h-day cumulative returns of all stocks in our sample.
[Table 2 about here]

According to Table 2, most purchases by individuals occur following price falls. The proportion of contrarian purchases by individuals ranges from 55% to 65%. When we use past market-adjusted returns to compute R_{-h}, we obtain similar results. The proportion of contrarian purchases by individuals ranges from 56% to 71%.

3 A stock price fall in itself induces more individuals to buy the stock

We now show that individuals ignore that there may be negative news attached to stock price falls. More precisely, we show that a price fall in itself induces more individuals to buy the stock.

The identification is naturally challenging as we cannot hope to observe investors' information set nor how they use it. To circumvent this, we study the response of individuals to events that we call "fictitious price falls" (FPFs). An FPF is an event that generates an unreal price fall which may be perceived as real by investors who only look at stock prices and do no further analysis. We explore two distinct FPFs. The first FPF is the mechanical price adjustment that occurs on ex-dividend dates. The second FPF is the fluctuation of
stock prices around integer numbers and is motivated by the left-digit effect documented by Lacetera, Pope, and Sydnor (2012), Chava and Yao (2017) and others.

3.1 FPF 1: ex-dividend dates

The first FPF that we propose is the price fall that mechanically occurs on ex-dividend dates. The typical chronology of a dividend payout is as follows. On day $t_{\text {dec }}$, the "declaration date" or "announcement date," the firm announces (i) that it will pay D dollars per share as cash dividends, (ii) the "ex-dividend date," $t_{e x}$, the date on which new buyers are cut off from receiving the dividend, and (iii) the "payment date," $t_{\text {pay }}$, the date that the cash dividend will be credited into the shareholders bank account. When $t_{e x}>t_{d e c}$, there is no new information disclosed to investors on day $t_{e x}$ (the only day that brings new information to investors is $\left.t_{\text {dec }}\right)$. On day $t_{e x}$ all that happens is a mechanical adjustment of stock prices; the opening price of the stock mechanically falls with respect to the closing price of the trading day before $t_{e x}$ because, from day $t_{e x}$ onwards, new buyers of the stock are not entitled to the dividend payout anymore. Important to the effectiveness of our identification strategy, home-broker screens show a negative return when the market opens on ex-dates without indication of the mechanical nature of the price fall. Therefore, individuals may perceive the FPFs on ex-dates as real price falls.

There are 2,412 cash dividend payments during our sample period. However, for 1,405 of these, the ex-date coincides with the declaration date, i.e., $t_{e x}=t_{\text {dec. }}{ }^{3}$ Since our identification strategy requires that all information about the dividend payout is already known on the ex-date, we restrict our analysis to the remaining 1,007 dividend payments for which we have $t_{e x}>t_{\text {dec }}$. Table 3 presents some descriptive statistics of the dividend payouts. Panel A shows the number of dividend payouts, the average dividend value per stock, and the average dividend yield. The statistics are also presented conditional on $\Delta t=t_{e x}-t_{\text {dec }}$, the number of days between the declaration date and the ex-date. Additionally, Table 4 shows

[^3]the distribution over time of the ex-dates.
[Tables 3 and 4 about here]

Our main dependent variable is $N_{s, t}$, the total number of individual buyers of stock s on day t, standardized by stock. As a preliminary analysis, Figure 2 shows the average across stocks of $N_{s, t}$ from five days before to five days after the ex-dates, along with 95% confidence intervals. In this figure, we consider the 587 ex-dates which were announced more than five days in advance (the ones with $\Delta t \geq 5$). As such, on all 587 events considered to compute the cross-sectional average of $N_{s, t}$, investors were aware on days $-5,-4,-3,-2$, and -1 about the dividend payment and the ex-date. As we can see, individuals buying activity is significantly higher (0.18 standard deviation) on the "cum-dividend" date (one trading day before the ex-date). This is not surprising. Indeed, the popular strategy of "dividend stripping" precisely consists in buying the stock on the cum-dividend date and selling it on (or right after) the ex-date, exploring the well-known fact that prices often fall less than the dividend amount on ex-dates (see, for instance, Frank and Jagannathan, 1998). However, the fact that individuals' buying activity is also significantly higher (0.11 standard deviation) on the ex-date is surprising. To the best of our knowledge, there is no trading strategy that involves buying stocks on ex-dates. In what follows, we argue that individuals are actually responding to the ex-date mechanical price fall.

[Figure 2 about here]

To estimate the effect that the ex-date mechanical price fall has on individuals' buying activity, we proceed as follows. We run stock-day panel regressions of $N_{s, t}$ on $\widehat{R_{s, t}^{*}}$, where $\widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return ${ }^{4}$ of stock s on day t, on DivYield $d_{s, t}$, an instrumental variable that equals the dividend yield ${ }^{5}$ on the ex-dates and

[^4]is zero on all other dates. That is, $\widehat{R_{s, t}^{*}}$ measures the FPF that occurs when the market opens on ex-dates. Table 5 presents the estimates of the first and second steps regressions. With respect to the first step, Column (1) shows that the price fall on the ex-date is 67% of the dividend payout, which is consistent with the fact that prices often fall less than the dividend amount. With respect to the second step, Column (2) shows that when the mechanical price fall is 5%, the number of individuals buying the stock significantly increases by 0.83 standard deviation $(0.83=5 \times 0.166)$.

[Table 5 about here]

In Columns (3) and (4) of Table 5, we include lagged stock returns, R_{-h} with $h=1,5$, and 20 days, as additional control variables to account for two possible confounding effects. First, consider dividend announcements that bring negative news. If individuals usually engage in contrarian strategies (as documented by Choe, Kho, and Stulz, 1999, Grinblatt and Keloharju, 2000, Kaniel, Saar, and Titman, 2008, and Foucault, Sraer, and Thesmar, 2011), we could observe increased buying activity by individuals on the days following the negative announcement, including on the ex-date. Second, consider alternatively dividend announcements that bring positive news. The well-documented post-earning announcement drift (the so-called PEAD anomaly) suggests that investors tend to slowly react to positive earnings surprises (see, for instance, Ball and Brown, 1968, Jones and Litzenberger, 1970, and Rendleman, Jones, and Latané, 1982). This fact could also explain individuals' increased buying activity observed on ex-dates. By including lagged stock returns we control for both possible lasting effects of dividend announcement surprises. In addition, in Columns (3) and (4) we also include day-of-the-week dummies to control for a possible joint seasonality of ex-dates and individuals' trading preferences. The results remain qualitatively the same: the price fall on the ex-date is 66.5% of the dividend payout (Column 3) and, when the mechanical price fall is 5%, the number of individuals buying the stock significantly increases by 0.88 standard deviation (Column 4).

One possible concern is that some individuals could postpone the purchase of a stock to the ex-date because of tax reasons. An investor who pays higher taxes on dividend gains than on capital gains ${ }^{6}$ could decide to wait until the ex-date to buy a stock to avoid receiving the dividend. To address this concern, we explore a particular feature of the Brazilian stock market, namely, the existence of non-taxable cash dividends (see Boulton, Braga-Alves, and Shastri, 2012, for a discussion of the Brazilian tax system). Out of the 1,007 dividend payments, 338 are non-taxable. ${ }^{7}$ By restricting our analysis to non-taxable dividends, we can rule out a tax-based explanation for the increased buying activity of individuals on ex-dates. Panel B of Table 3 shows some descriptive statistics of these nontaxable dividend payouts. Table 6 presents the first and second step regressions when we restrict our instrument DivYield $_{s, t}$ to be different from zero only on non-taxable dividend ex-dates. With respect to the first step results, Column (1) shows that the price fall on the ex-date is 72.7% of the dividend payout. With respect to the second step results, Column (2) shows that when the mechanical price fall is 5%, the number of individuals buying the stock significantly increases by 0.85 standard deviation $(0.85=5 \times 0.171)$. When we include lagged returns and week-day dummies as control variables in Columns (3) and (4) the results remain qualitatively the same.
[Table 6 about here]

Another possible confounding effect relates to the fact that some individuals like to receive dividends. Graham and Kumar (2006) documents individuals increasing their buying activity after dividend announcements. Hartzmark and Solomon (2017) provide a behavioral explanation for that: some individuals may believe dividends to be an extra source of income, ignoring the fact that stock prices fall on ex-dates. In this case, the observed increased buying

[^5]activity on ex-dates could be a delayed response to the dividend announcement by individuals who (i) like to receive dividends and (ii) are not attentive to the fact that buying on exdates does not entitle them to the dividend. To address this possible confounding effect, we further restrict the instrumental variable DivYield $d_{s, t}$ to be different from zero only on ex-dates of non-taxable dividends which were publicized at least one week in advance-we have 174 non-taxable dividend payments with $\Delta t \geq 5$. With respect to the first step results, Column (1) shows that the price fall on the ex-date is 61.6% of the dividend yield. With respect to the second step results, Column (2) shows that when the mechanical price fall is 5%, the number of individuals buying the stock significantly increases by 1.02 standard deviation $(0.54=5 \times 0.204)$. When we include lagged returns and week-day dummies as control variables in Columns (3) and (4) the results remain qualitatively the same.

[Table 7 about here]

The regressions above include all trading days (both regular dates and ex-dates). Overall, the results indicate that individuals buy more on ex-dates compared to other dates. Next, we restrict the sample to ex-dates to verify whether the buying activity of individuals increases with the magnitude of the FPF. That is, considering only ex-dates, do we observe a greater buying activity when the mechanical price fall is higher? If so, we have additional evidence that the FPF should indeed be inducing individuals to buy, as opposed to some (constant) unobserved characteristic of ex-dates. Table 8 presents the first and second step regressions when we restrict our sample to ex-dates. In Columns (1) and (2) we consider all 1,007 exdates with $\Delta t \geq 1$. In Columns (3) and (4) we consider the 338 ex-dates of non-taxable dividends with $\Delta t \geq 1$. Finally, in Columns (5) and (6) we consider the 174 ex-dates of non-taxable dividends with $\Delta t \geq 5$. Columns (1), (3), and (5) indicate that the price fall on the ex-dates is $34.6 \%, 58.1 \%$, and 71.5% of the dividend yield, respectively. Columns (2), (4), and (6) indicate that when the mechanical price fall is 5%, the number of individuals buying the stock significantly increases by $1.7(1.70=5 \times 0.340), 1.18(1.18=5 \times 0.235)$,
and $0.94(0.94=5 \times 0.188)$ standard deviation, respectively. Therefore, we conclude that the buying activity of individuals also increases with the magnitude of the price fall on ex-dates.
[Table 8 about here]

To conclude this section, we present two additional results. First, we include individuals' selling activity in the analysis and show that the net buying activity of individuals is also stronger on ex-dates. Second, we show that the buying activity of "professional investors" does not respond to the ex-date mechanical price fall.

We compute the net buying activity of individuals, $\operatorname{net}\left(N_{s, t}\right)$, as the total number of individuals buying stock s on day t minus the total number of individuals selling stock s on day t, standardized by stock. As Table 9 shows, the net number of buyers also increases on ex-dates. However, the effects are smaller than the ones reported when we use only buyers. This indicates that the number of sellers also increases on ex-dates, although less than the number of buyers. The increase in the number of sellers on ex-dates may be because of dividend stripping trades, whereby investors buy before the ex-date and sell on the ex-date (as discussed in Figure 2).
[Table 9 about here]

Finally, we explore the fact that our original dataset also contains the trading activity of institutions. Our goal is to compare individuals with professional investors, who should be aware that price falls on ex-dates are immaterial. Since many institutions in the dataset have very few purchases and low trading volume (there is a total of 11,674 institutions), we consider as professional investors only institutions with a minimum of 50 stock-day purchases per year and an average volume greater than US\$ 100,000 per stock-day purchase. ${ }^{8}$ We end up with 642 professional investors, which where responsible for 1,165,714 stock-day purchases (also excluding stock-days with both purchases and sells). In monetary terms,

[^6]these purchases correspond to a total of US $\$ 304.8$ billion over the four-year period. Panel A of Table 10 shows the evolution of these numbers over the years. Panel B of Table 10 presents selected percentiles of the distribution of four individual-level variables: total number of (stock-day) purchases, average volume purchased per stock-day, total volume purchased during the four years, and number of different stocks purchased during the four years. The median professional investor made 938 stock-day purchases, purchased 70 different stocks, and invested on average US\$ 190,451 per stock-day and a total of US\$ 229,7 million during the four years. As before, we run regressions of $N_{s, t}$, now the total number of professional investors buying stock s on day t (standardized by stock), on the FPF measured by $\widehat{R_{s, t}^{*}}$. As expected, the results presented in Table 11 show that professional investors' buying activity is unchanged by $\widehat{R_{s, t}^{*}}$.
[Tables 10 and 11 about here]

Summing up, the opening price of a stock mechanically falls on ex-dates. Since homebroker screens show a negative return on ex-dates without indicating the mechanical nature of the price fall, investors may believe a real price fall occurred. After addressing some possible confounding effects, we conclude that individuals buy more on ex-dates in response to the mechanical price fall. That is, we conclude that a stock price fall in itself induces individuals to buy the stock. In the next section, we analyze the response of individuals to a different FPF.

3.2 FPF 2: left-digit effect

Suppose that, on a particular day, we observe many investors purchasing a stock at prices ranging from $\$ 24.90$ to $\$ 25.10$ (that is, the stock price fluctuated around $\$ 25$ on this day). Because individuals usually place buy limit orders at prices that end with round cents (see Linnainmaa, 2010, and Bhattacharya, Holden, and Jacobsen, 2011), we should observe on this day a greater number of individuals with purchases at $\$ 25.00$, followed by $\$ 24.90$ and
$\$ 25.10$, and then by $\$ 24.95$ and $\$ 25.05$. Crucially, however, there would be no reason a priori for us to observe a significantly different number of individuals in the $\$ 24.90-\$ 24.99$ range compared to the $\$ 25.01-\$ 25.10$ range. Surprisingly, we find that consistently more individuals buy stocks at prices that end from 90 to 99 cents than at prices that end from 01 to 10 cents. In this section we argue that this is a consequence of a price fall in itself inducing individuals to buy stocks. We rely on the assumption that individuals suffer from the so-called "left-digit effect."

Studying the used cars market in the US, Lacetera, Pope, and Sydnor (2012) find convincing evidence that individuals disproportionally focus on the left digits of numbers, a cognitive limitation often referred to as the left-digit bias or the left-digit effect. The authors base their evidence on the large discontinuous drop in the sale prices of cars that are just above the 10,000-mile odometer mark thresholds relative to cars just below these thresholds. Similarly, Chava and Yao (2017) show that properties listed with smaller left digits prices (e.g., US $\$ 299.900,00$ relative to US $\$ 300.000,00$) are 3.8% more likely to sell and stay 5% fewer days on market. A large literature on marketing and consumer behavior also documents the left-digit effect in retail buyers decisions. Holdershaw, Gendall, and Garland (1997) show that approximately 60% of prices in advertising material in their sample ended in the digit $9,30 \%$ ended in the digit $5,7 \%$ ended in the digit 0 , and the remaining seven digits combined accounted for only slightly over 3% of prices evaluated. Using evidence from field experiments, Anderson and Simester (2003) show that the practice of ending prices in the digit 9 does increase retail sales. Accordingly, Ater and Gerlitz (2017) show that firms are reluctant to make price changes that involve altering prices that end at the digit 9 . See also Thomas and Morwitz (2005), Manning and Sprott (2009), and Macé (2012). According to these papers, the influence of the left-digit effect on individuals buying decisions is widespread; it ranges from simple retail buying decisions to financially important ones such as those involving cars and houses. As such, the left-digit effect is likely to be present when individuals look at stock prices.

To test if individuals do buy more at prices just below integers, we proceed as follows. First, we identify the stock-days during which the FPF occurs. We say that a stock price fluctuates around an integer number on a particular day, for instance around $\$ 25$, if more than 50 investors (individuals or institutions) purchase the stock at a price within each one of the following four intervals: [\$24.90, \$24.94], [\$24.95, \$24.99], [\$25.01, \$25.05], and [$\$ 25.06, \$ 25.10]$. We observe 1,090 FPF events from 2012 to 2015, that is, stocks fluctuated around an integer number in 1,090 stock-day pairs. For each one of the 1,090 FPF events, we then count the number of individuals who purchased the stock at a price just below the integer price (at most 10 cents below, i.e., from $\$(x-1) .90$ to $\$(x-1) .99$ cents) and just above the integer price (at most 10 cents above, i.e., from $\$ \mathrm{x} .01$ to $\$ \mathrm{x} .10$ cents). ${ }^{9}$ We then compute the proportion of just-below and just-above individuals for each stock-day.

As a placebo exercise, we also identify the stock-days during which a placebo-FPF occurs, namely, the fluctuation of the stock price around $\$ 24.50, \$ 25.50$, and so on. Around these 50 -cent-ending prices the left-digit effect is turned off. As before, we say that a stock price fluctuated around a 50 -cent-ending price during the day, for instance $\$ 24.50$, if more than 50 investors (either individuals or institutions) purchase the stock on that day at a price within each one of the following intervals: [\$24.40, \$24.44], [\$24.45, \$24.49], [\$24.51, \$24.55], and $[\$ 24.56, \$ 24.60]$. We observe 1,002 placebo-FPF events. For each one of the 1,002 stockdays, we compute the proportion of just-below and just-above individuals.

Figure 3 shows the average proportions across all 1,090 FPFs events and across all 1,002 placebo-FPFs events, along with the corresponding 95% confidence intervals. Considering the FPFs events, the proportion of just-below individuals is significantly higher than the proportion of just-above individuals (54.20% vs. 45.80%). Considering the placebo-FPFs events, we find no statistical difference between these proportions, although the proportion of just-below individuals is slightly higher than the proportion of just-above individuals (50.78% vs. 49.21%).

[^7][Figure 3 about here]

Figure 5 presents the buying proportions at each cent around integer prices. For each FPF we count the number of individuals who purchase the stock at a price equal to $\mathrm{x} .90, \mathrm{x} .91, \ldots$, x. $99,(\mathrm{x}+1) .01,(\mathrm{x}+1) .02, \ldots,(\mathrm{x}+1) .10$ and compute the proportions within each stock-day. We then average the proportions across the 1,090 stock-days with the FPF. As expected, Figure 5 shows a concentration of purchases at the $90,95,05$, and 10 cents. Important to us, however, by pairwise comparing the symmetric proportions, we find that individuals consistently buy more just below than just above integer prices at every cent considered. The proportion of purchases at 90 cents vs at 10 cents is 62.7% higher $(0.627=0.103 / 0.063-1)$; at 91 cents vs at 09 cents is 9.5% higher $(0.095=0.039 / 0.035-1)$; at 92 cents $v s$ at 08 cents is 8.3% higher $(0.083=0.042 / 0.038-1)$; at 93 cents $v s$ at 07 cents is 14.6% higher $(0.146=0.043 / 0.037-1)$; at 94 cents vs at 06 cents is 9.9% higher $(0.099=0.042 / 0.038-1)$; at 95 cents vs at 05 cents is 29.2% higher $(0.292=0.080 / 0.062-1)$; at 96 cents vs at 04 cents is 10.3% higher $(0.103=0.047 / 0.042-1)$; at 97 cents vs at 03 cents is 15.8% higher $(0.158=0.048 / 0.041-1)$; at 98 cents vs at 02 cents is 14.7% higher $(0.147=0.054 / 0.047-1)$; finally, at 99 cents vs at 01 cents is 10.6% higher $(0.106=0.051 / 0.046-1)$.
[Figure 5 about here]

Lacetera, Pope, and Sydnor (2012) show that professionals do not suffer from the left-digit effect. Accordingly, professional investors' buying activity should not be asymmetric around integer numbers. To test this, we compute both just-below and just-above proportions considering the same 642 professional investors described in Section 3.1. As expected, Figure 4 shows no statistical difference between just-below and just-above proportions.
[Figure 4 about here]

Finally, we include in the analysis the selling activity of individuals. For each one of the 1,090 FPF events, we divide the number of individuals who purchase just below integer prices by the number of individuals who sell just below integer prices. This gives us the number of buyers per seller at prices just below integer numbers. We also compute the number of buyers per seller at prices just above integer numbers. Next, with these two ratios, we calculate the proportion of just-below and just-above buyers per seller for each stock-day. Figure 6 shows the average of these proportions across the 1,090 FPFs events, along with 95% confidence intervals. The results are qualitatively the same. The proportion of buyers per seller just below integer numbers is 57.32%, statistically greater than the proportion of buyers per sellers just above integer numbers (42.68\%). The fact that this proportion is higher than the one computed using only purchases (54.20\%), suggests that individuals may also suffer from the left-digit-effect when deciding at which price to sell their stocks.
[Figure 6 about here]

Summing up, Lacetera, Pope, and Sydnor (2012), Chava and Yao (2017) and others find strong evidence that individuals disproportionally focus on left digits when evaluating numbers. Because of that, individuals may perceive a stock being offered at a price just below an integer number to be much cheaper if compared to just above. We document that individuals' buying activity is significantly stronger at prices just below integer numbers compared to at prices just above integer numbers. In turn, the same asymmetric buying behavior is absent around prices that end at 50 cents, where the left-digit effect is turned off. Since such small variation in prices should be informationless, we conclude that individuals buy more at prices just below integer numbers just because they perceive a lower price at this region. That is, a stock price fall in itself induces individuals to buy the stock.

3.3 A closer look at individuals who respond to FPF 1 and FPF 2

We now explore the fact that we can track individuals' trading activity over time to support our identification strategy in four different ways:

- First, the two FPFs are intended to capture the same individual behavior, namely, the propensity to buy the stock simply because its price fell. In this case, we should find that individuals who buy on ex-dates also tend to buy more at prices just below integer numbers than at prices just above;
- Second, according to Carrillo and Palfrey (2011) and Eyster, Rabin, and Vayanos (2018), investors who neglect the information contained in prices should trade more. Therefore, we should observe that individuals who respond to FPFs are individuals who trade more;
- Third, if individuals who respond to FPFs do neglect the informational content of prices, they should be less sophisticated investors. To test this, we compute two measures of investor sophistication at the individual level: i) whether the investor trades derivatives and/or engages in short-selling, and ii) whether the investor presents good stock-picking performance;
- Fourth, we assess our assumption that individuals perceive FPFs as real price falls. To do so, we evaluate whether individuals who respond to FPFs display a revealed preference for buying stocks after recent real price falls.

To measure whether each individual responds to the FPF events, we compute for each individual i two dummy variables, $F P F 1_{i}$ and $F P F 2_{i} . F P F 1_{i}$ equals one if individual i made at least one purchase on an ex-date, and $F P F 2_{i}$ equals one if individual i bought more at prices ending from 90 to 99 cents than at prices ending from 01 to 09 cents. Among the 391,184 individuals in our dataset, 269,256 (68.8\%) have $F P F 1=0$ and $F P F 2=0,87,006$
(22.3\%) have $F P F 1=0$ and $F P F 2=1,18,500(4.7 \%)$ have $F P F 1=1$ and $F P F 2=0$, and $16,362(4.2 \%)$ have $F P F 1=1$ and $F P F 2=1$.

3.3.1 FPF 1 and FPF 2 are related

If FPF 1 and FPF 2 indeed identify the same behavior of individuals (the propensity to buy the stock simply because its price fell), individuals who tend to buy on ex-dates should also tend to buy more just below integer numbers. To relate $F P F 1_{i}$ and $F P F 2_{i}$ across homogeneous individuals with respect to their buying activity, we split individuals into 12 groups according to their total number of buys during the sample period: 1 to 10 buys, 11 to 20 buys, ..., 91 to 100 buys, 101 to 150 buys, and more than 150 buys. Then, within each group, we run a cross-sectional regression across individuals of $F P F 1_{i}$ on $F P F 2_{i}$ and the total number of buys of individual i. That is, we test for each group separately whether $F P F 1_{i}$ correlates with $F P F 2_{i}$ controlling for the buying activity level of each individual. Table 13 presents the results.
[Table 13 about here]

According to Table 13, an individual who buys more at prices just below integer numbers than at prices just above integer numbers is more likely to purchase a stock on an ex-date. Such a correlation is significant for 10 out of the 12 distinct groups of individuals; it is not significant only on groups of individuals with 40 to 50 and 90 to 100 purchases. The estimated coefficients on $F P F 2_{i}$ range from 0.006 (Column 1) to 0.073 (Column 11). These are economically significant values. For instance, considering individuals with 100 to 150 purchases (Column 11), an individual who buys more at prices just below integer numbers than at prices just above integer numbers is 7.3% more likely to buy a stock on an ex-date.

3.3.2 Individuals who respond to FPFs trade more

Investors who have the propensity to buy the stock simply because its price fell should trade more. We should then have that individuals with $F P F 1=1$ and/or $F P F 2=1$ should trade more than individuals with $F P F 1=0$ and $F P F 2=0$.

Clearly, there should be a positive mechanical relation between $F P F 1_{i}$ and the number of purchases by individual i; individuals with greater number of purchases are more likely to have purchased a stock on an ex-date. However, there is no mechanical relation between $F P F 2_{i}$ and the number of purchases by individual i. Table 12 presents the cross-individuals regressions of each individual's total number of stock-day purchases on the dummy variables $F P F 1_{i}$ and $F P F 2_{i}$. According to Column (3) of Table 12, individuals with FPF1=0 and $F P F 2=1$ have 16.98 stock-day purchases more than the 13.21 stock-day purchases by individuals with $F P F 1=0$ and $F P F 2=0$. That is, individuals who buy more at prices ending from 90 to 99 cents than at prices ending from 01 to 09 cents trade on average about two times more.
[Table 12 about here]

3.3.3 Individuals who respond to FPFs are less sophisticated investors

Sophisticated investors should be aware of the possible informational content of price changes. Hence, if our identification strategy is correct, investors who buy when FPF 1 and FPF 2 occur should be less sophisticated. Accordingly, in Sections 3.1 and 3.2 we document that professional investors do not buy more on ex-dates and just below integer numbers. Next, we measure investor sophistication across individuals and show that the ones who respond to FPFs are indeed less sophisticated investors.

Individual investors who either trade derivatives or sell short stocks are likely to be more sophisticated investors-it is more complex and riskier to trade derivatives and sell short stocks. For each one of the 391,184 individual investors in our sample, we observe
whether the investor traded call or put options and whether they borrowed any stock during our sample period. Based on that, we define a dummy variable $S o p h_{i}$ which equals one if individual i traded options and/or engaged in short-selling during our sample period. We then correlate $S o p h_{i}$ and $F P F 1_{i}$ and $F P F 2_{i}$ across individuals, where $F P F 1_{i}$ and $F P F 2_{i}$ are defined as before.

We relate $S o p h_{i}$ with $F P F 1_{i}$ and $F P F 2_{i}$ across individuals with similar buying activity by separating individuals into the same 12 groups according to their total number of buys during the sample period. Then, within each group, we run a cross-sectional regression across individuals of $S o p h_{i}$ on $F P F 1_{i}$ and $F P F 2_{i}$ and the total number of buys of individual i. That is, we test for each group separately whether $S o p h_{i}$ correlates with $F P F 1_{i}$ and $F P F 2_{i}$ controlling for the buying activity level of each individual. Table 14 presents the results.
[Table 14 about here]

According to Table 14, in six out of the 12 groups of investors, individuals who buy on ex-dates $\left(F P F 1_{i}=1\right)$ tend to be less sophisticated investors. In four out of the 12 groups of investors, we also find a negative sign for the coefficient of $F P F 1_{i}$. In only one out of the 12 groups of investors (the one with more than 150 stock purchases), we find that individuals who buy on ex-dates $\left(F P F 1_{i}=1\right)$ are not less sophisticated. With respect to $F P F 2_{i}$, in eight out of the 12 groups, individuals who buy more at prices just below integer numbers than at prices just above integer numbers $\left(F P F 2_{i}=1\right)$ are significantly less sophisticated investors. In three out of the 12 groups, we also find a negative sign for the coefficient of $F P F 2_{2}$ but statistically insignificant. In only one out of the 12 groups, we find that individuals who buy more at prices just below integer numbers than at prices just above integer numbers $\left(F P F 2_{i}=1\right)$ are not less sophisticated.

Overall, an investor with both $F P F 1=1$ and $F P F 2=1$ is about 10% less likely to have traded derivatives or engaged in short-selling (excluding columns 1 and 12). We conclude this by first calculating the expected values of $S o p h$ for an investor in the middle of each group and
with both $F P F 1=0$ and $F P F 2=0$. They are the following: $0.28=0.185+0.634 \times 15 / 100$ (Column 2, for investors with 10 to 20 purchases), $0.34=0.206+0.527 \times 25 / 100$ (Column 3, for investors with 20 to 30 purchases), $0.40=0.227+0.485 \times 35 / 100$ (Column 4, for investors with 30 to 40 purchases), $0.43=0.345+0.197 \times 45 / 100($ Column 5 , for investors with 40 to 50 purchases), $0.46=0.436+0.045 \times 55 / 100$ (Column 6 , for investors with 50 to 60 purchases), $0.50=0.300+0.307 \times 65 / 100$ (Column 7, for investors with 60 to 70 purchases), $0.49=0.375+$ $0.151 \times 75 / 100$ (Column 8 , for investors with 70 to 80 purchases), $0.52=0.039+0.569 \times 85 / 100$ (Column 9, for investors with 80 to 90 purchases), $0.50=-0.156+0.690 \times 95 / 100$ (Column 10 , for investors with 90 to 100 purchases), and $0.55=0.452+0.077 \times 125 / 100$ (Column 11, for investors with 100 to 150 purchases). Respectively, in the case these individuals had both $F P F 1=1$ and $F P F 2=1$, the expected values of $S o p h$ would be 0.26 (vs. 0.28 , i.e., 7% lower), 0.28 (vs. 0.34 , i.e., 18% lower), 0.37 (vs. 0.40 , i.e., 8% lower), 0.39 (vs. 0.43, i.e., 9% lower), 0.40 (vs. 0.46 , , i.e., 13% lower), 0.45 (vs. 0.50 , , i.e., 10% lower), 0.46 (vs. 0.49, i.e., 6% lower), 0.47 (vs. 0.52 , i.e., 10% lower), 0.50 (vs. 0.50), 0.49 (vs. 0.55 , i.e., 11% lower).

An alternative measure of sophistication is the investor's observed stock-picking perfor-mance-on average, less sophisticated investors should display worse stock-picking performance. Accordingly, we run purchase-by-purchase regressions of R_{+h}, the (raw and marketadjusted) return of the stock h days after the purchase, on $F P F 1_{i}$ and $F P F 2_{i}$, and the total number of purchases of each individual as a control variable. The regression also includes stock fixed-effects to account for firm specific characteristics.

Overall, the numbers in Tables 15 and 16 show that the average individual is bad at stock-picking. This is consistent with solid international evidence (Odean, 1999, Barber and Odean, 2000, Grinblatt and Keloharju, 2000, Hvidkjaer (2008), and Barber, Odean, and Zhu, 2009). Moreover, we find that individuals who respond to FPF 1 and FPF 2 do even worse. Column 6 of Table 15 shows that the average purchase by an individual with both $F P F 1=0$ and $F P F 2=0$ has a 120-day future raw return of -6.1%. In turn, the average purchase by an individual with both $F P F 1=1$ and $F P F 2=1$ has a 120-day future raw
return of -6.9%. Column 6 of Table 16 shows that these numbers are -6.4% and -7.0%, respectively, if we consider market-adjusted returns. At the shorter holding period horizon of 20 days, future performance of individuals with either $F P F 1=1$ or $F P F 2=1$ is not significantly different than average.
[Tables 15 and 16 about here]

3.3.4 Purchases by individuals who respond to FPFs are more contrarian

Our identification strategy builds on the assumption that individuals perceive both FPFs as real price falls. With respect to FPF 1, the assumption is justified by the fact that homebroker screens show a negative return when the market opens on ex-dates without indication of the mechanical nature of the price fall. With respect to FPF 2, the assumption is based on the well-documented left-digit effect.

If the FPFs are indeed perceived as price falls, individuals who buy on ex-dates and at prices just below round numbers should also display a more pronounced revealed preference for buying stocks after real price falls. To show that this is indeed the case, we run purchase-by-purchase regressions of R_{-1}, the dividend-adjusted return of the stock on the day before the purchase, on $F P F 1_{i}$ and $F P F 2_{i}$, and the total number of purchases of each individual as a control. The regressions include stock fixed-effects. We find that the average purchase made by an individual with either $F P F 1=1$ or $F P F 2=1$ is indeed more contrarian. We emphasize that there is no mechanical relation between $F P F 1_{i}$ and R_{-1} since R_{-1} is adjusted for dividends.
[Table 17 about here]

In Column 3 of Table 17, we see that the average purchase by an individual with both $F P F 1=0$ and $F P F 2=0$ occurs after a raw return on the previous day of -0.248% (considering an individual with 100 purchases, $-0.248=-1 \times 0.002-0.246$). In turn, the
average purchase by an individual with both $F P F 1=1$ and $F P F 2=1$ is statistically more contrarian, it occurs after a raw return of $-0.357 \%(-0.357=-0.083-0.026-1 \times 0.002-$ 0.246) on the previous day. In Column 6 of Table 17, considering market-adjusted returns, these numbers are -0.285% and -0.386%, respectively.

3.4 Buying after price falls with no further analysis is harmful to investors

Buying after price falls with no further analysis is harmful to investors because price falls tend to be followed by further price falls. Moskowitz, Ooi, and Pedersen (2012) show that an asset class' own past return (from 1 to 12 months) is positively correlated with its future return (from 1 to 12 months). The authors analyze a set of 58 different futures and forward contracts that include country equity indexes, currencies, commodities, and sovereign bonds over more than 25 years of data. Hurst, Ooi, and Pedersen (2017) document the presence of time-series momentum across global market indexes since 1880. Hence, buying when prices fall neglecting the informational content of prices is likely to result in a poor trading strategy.

To evaluate this, we simulate an investment strategy based on an investor who simply buys after price falls. Each day we form a portfolio with the stocks that presented price falls in the last h-day period. We consider $h=1,5,10$, and 20 days. For a stock to be included in the portfolio, its return has to be below $-3.4 \%,-7.0 \%,-9.6 \%$, and -13.3% for $h=1$, 5,10 , and 20 , respectively. These thresholds correspond to the 25 th percentile of negative returns for each horizon considered. We then hold stocks in the portfolio for both 20 and 120 days. The portfolios are value-weighted. For the simulation we consider Brazilian stocks from January of 2000 to December 2015.

Figure 7 shows the cumulative performance, relative to the market, of one dollar invested according to the described strategies. At the typical holding horizon of individuals of about six months, the strategy yields only $38.3 \%, 28.8 \%, 14.6 \%$, and 8.8% of the market return over the 16 years period for, respectively, $h=1,5,10$, and 20 days. These numbers correspond
to annual market-adjusted returns of $-5.8 \%,-7.5 \%,-11.3 \%$, and -14.1%, respectively. At the shorter holding horizon of 20 days, the returns are less negative but are still poor; the strategies yield $64.4 \%, 56.0 \%, 39.8 \%$, and 35.1% of the market for $h=1,5,10$, and 20 days, respectively $(-2.7 \%,-3.6 \%,-5.6 \%$, and -6.3% per year $)$.
[Figures 7 about here]

4 Conclusion

There is consistent empirical evidence that individuals like to buy stocks after price falls (Choe, Kho, and Stulz, 1999, Grinblatt and Keloharju, 2000, Goetzmann and Massa (2002), Kaniel, Saar, and Titman, 2008, and Foucault, Sraer, and Thesmar, 2011). The main contribution of this paper is to provide evidence that they may be doing so not because they evaluate that the price fall was exaggerated. Instead, the price fall in itself induces individuals to buy the stock; they see the price fall and buy the stock with no further analysis.

This can occur in two distinct theoretical frameworks. First, if individuals ignore that a price fall may contain negative information, they will be willing to buy the stock once its price falls. Recent behavioral models indeed assume the existence of investors who neglect the information contained in prices to explain the observed high levels of trading activity (Carrillo and Palfrey, 2011, and Eyster, Rabin, and Vayanos, 2018). So far, the empirical evidence on the existence of such investors has been deduced from lab experiments (Biais, Hilton, Mazurier, and Pouget, 2005, Corgnet, DeSantis, and Porter, 2015, and Magnani and Oprea, 2017). As such, our empirical evidence may be seen as a contribution to this literature - indeed, Eyster, Rabin, and Vayanos (2018), in their section "Evidence on Cursedness," cite the present paper as a market-based evidence that investors do not sufficiently heed the information content of asset prices. ${ }^{10}$ Second, as shown by Birru and Wang (2016), investors

[^8]seem to suffer from a "nominal price illusion" in which they believe that a stock's skewness increase when its nominal price falls. According to Barberis and Huang (2008), investors who have cumulative prospect theory preferences value positively skewed securities highly. As such, if individual investors (i) display nominal price illusion as suggested by Birru and Wang (2016) and (ii) make decisions according to cumulative prospect theory as in Barberis and Huang (2008), the simple fact that the nominal price of a stock has decreased will make individual investors willing to buy the stock.

Our identification strategy exploits what we call "fictitious price falls" (FPF) events: events that are perceived as price falls by individuals who only look at stock prices and do no further analysis. We propose two distinct and independent FPFs. The first FPF is the mechanical fall of stock prices during ex-dividend dates. The second FPF is the fluctuation of stock prices around integer numbers and is motivated by the left-digit effect. Consistent with individuals looking only at stock price falls to decide when to buy, we find that they do buy significantly more when both FPFs occur.

A natural extension of this paper is to perform our identification exercises in other markets and countries. Do individuals also significantly buy more on ex-dates and just below integer numbers in other datasets? One should note, however, that both analyses build on the idea that individuals are able to follow market prices in real time. Although this can be taken for granted when we use recent stock-market datasets, the same is not true for datasets that cover periods before the popularization of on-line home-broker platforms.

Another extension is to study the buy limit orders placed by individuals. The fact that many individuals ignore that there may be negative information attached to stock prices falls may also explain why individuals place more buy limit orders than buy market orders (using trading records from individual investors in Finland, Linnainmaa, 2010, finds that 76% of all orders by individuals are limit orders). An investor who chooses to place a buy limit order, instead of a buy market order, is avoiding to pay the current price and bidding a lower price. However, if the stock price drops from its current price and the investor's buy
limit order is triggered, she is effectively ignoring that there may be negative information attached to the stock price fall. Further studying the reasons why individuals like to place buy limit orders is also an interesting topic for future research.

References

Anderson, Eric T., and Duncan I. Simester, 2003, Effects of $\$ 9$ Price Endings on Retail Sales: Evidence from Field Experiments, Quantitative Marketing and Economics 1, 93-110.

Ater, Itai, and Omri Gerlitz, 2017, Round prices and price rigidity: Evidence from outlawing odd prices, Journal of Economic Behavior \& Organization 107, 487-511.

Ball, Ray, and Philip Brown, 1968, An Empirical Evaluation of Accounting Income Numbers, Journal of Accounting Research 6, 159-178.

Barber, Brad M., and Terrance Odean, 2000, Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors, The Journal of Finance 55, 773-806.

Barber, Brad M., and Terrance Odean, 2002, Online Investors: Do the Slow Die First?, Review of Financial Studies 15, 455-488.

Barber, Brad M., Terrance Odean, and Ning Zhu, 2009, Do Retail Trades Move Markets?, Review of Financial Studies 22, 151-186.

Barberis, Nicholas, and Ming Huang, 2008, Stocks as lotteries: The implications of probability weighting for security prices, The American Economic Review 98, 2066-2100.

Barberis, Nicholas, and Richard Thaler, 2003, Chapter 18 A survey of behavioral finance, in Handbook of the Economics of Finance, volume 1 of Financial Markets and Asset Pricing, 1053-1128 (Elsevier), DOI: 10.1016/S1574-0102(03)01027-6.

Bhattacharya, Utpal, Craig W. Holden, and Stacey Jacobsen, 2011, Penny Wise, Dollar Foolish: Buy-Sell Imbalances On and Around Round Numbers, Management Science 58, 413-431.

Biais, Bruno, Denis Hilton, Karine Mazurier, and Sébastien Pouget, 2005, Judgemental Overconfidence, Self-Monitoring, and Trading Performance in an Experimental Financial Market, The Review of Economic Studies 72, 287-312.

Birru, Justin, and Baolian Wang, 2016, Nominal price illusion, Journal of Financial Economics 119, 578-598.

Boulton, Thomas J., Marcus V. Braga-Alves, and Kuldeep Shastri, 2012, Payout policy in Brazil: Dividends versus interest on equity, Journal of Corporate Finance 18, 968-979.

Carrillo, Juan D., and Thomas R. Palfrey, 2011, No trade, Games and Economic Behavior 71, 66-87.

Chava, Sudheer, and Vincent Yao, 2017, Cognitive Reference Points, the Left-Digit Effect, and Clustering in Housing Markets, SSRN Scholarly Paper ID 2964644, Social Science Research Network, Rochester, NY.

Choe, Hyuk, Bong-Chan Kho, and René M Stulz, 1999, Do foreign investors destabilize stock markets? The Korean experience in 1997, Journal of Financial Economics 54, 227-264.

Corgnet, Brice, Mark DeSantis, and David Porter, 2015, Revisiting Information Aggregation in Asset Markets: Reflective Learning \& Market Efficiency, Working paper, Chapman University.

Dyl, Edward A, and William B Elliott, 2006, The share price puzzle, The journal of business 79, 2045-2066.

Eyster, Erik, Matthew Rabin, and Dimitri Vayanos, 2018, Financial Markets where Traders Neglect the Informational Content of Prices, Journal of Finance forthcoming.

Foucault, Thierry, David Sraer, and David J Thesmar, 2011, Individual investors and volatility, The Journal of Finance 66, 1369-1406.

Frank, Murray, and Ravi Jagannathan, 1998, Why do stock prices drop by less than the value of the dividend? Evidence from a country without taxes, Journal of Financial Economics 47, 161-188.

Goetzmann, William N., and Massimo Massa, 2002, Daily Momentum and Contrarian Behavior of Index Fund Investors, Journal of Financial and Quantitative Analysis 37, 375389.

Gompers, Paul A, and Andrew Metrick, 2001, Institutional investors and equity prices, The quarterly journal of Economics 116, 229-259.

Graham, John R., and Alok Kumar, 2006, Do Dividend Clienteles Exist? Evidence on Dividend Preferences of Retail Investors, The Journal of Finance 61, 1305-1336.

Grinblatt, Mark, and Matti Keloharju, 2000, The investment behavior and performance of various investor types: a study of Finland's unique data set, Journal of Financial Economics 55, 43-67.

Hartzmark, Samuel, and David Solomon, 2017, The Dividend Disconnect, SSRN Scholarly Paper ID 2876373, Social Science Research Network, Rochester, NY.

Holdershaw, Judith, Philip Gendall, and Ron Garland, 1997, The Widespread Use of Odd Pricing in the Retail Sector, Marketing Bulletin 8, 53-58.

Hurst, Brian, Yao Hua Ooi, and Lasse Heje Pedersen, 2017, A Century of Evidence on TrendFollowing Investing, SSRN Scholarly Paper ID 2993026, Social Science Research Network, Rochester, NY.

Hvidkjaer, Soeren, 2008, Small Trades and the Cross-Section of Stock Returns, The Review of Financial Studies 21, 1123-1151.

Jones, Charles P., and Robert H. Litzenberger, 1970, Quarterly Earnings Reports and Intermediate Stock Price Trends, The Journal of Finance 25, 143-148.

Kaniel, Ron, Gideon Saar, and Sheridan Titman, 2008, Individual Investor Trading and Stock Returns, The Journal of Finance 63, 273-310.

Kumar, Alok, 2009, Who Gambles in the Stock Market?, The Journal of Finance 64, 18891933.

Lacetera, Nicola, Devin G. Pope, and Justin R. Sydnor, 2012, Heuristic Thinking and Limited Attention in the Car Market, The American Economic Review 102, 2206-2236.

Lakonishok, Josef, and Theo Vermaelen, 1986, Tax-induced trading around ex-dividend days, Journal of Financial Economics 16, 287-319.

Linnainmaa, Juhani T., 2010, Do Limit Orders Alter Inferences about Investor Performance and Behavior?, The Journal of Finance 65, 1473-1506.

Macé, Sandrine, 2012, The Impact and Determinants of Nine-Ending Pricing in Grocery Retailing, Journal of Retailing 88, 115-130.

Magnani, Jacopo, and Ryan Oprea, 2017, Why Do People Violate No-Trade Theorems? A Diagnostic Test, Working paper.

Manning, Kenneth C., and David E. Sprott, 2009, Price Endings, Left-Digit Effects, and Choice, Journal of Consumer Research 36, 328-335.

Michaely, Roni, and Jean-Luc Vila, 1995, Investors' Heterogeneity, Prices, and Volume around the Ex-Dividend Day, Journal of Financial and Quantitative Analysis 30, 171198.

Moskowitz, Tobias J., Yao Hua Ooi, and Lasse Heje Pedersen, 2012, Time series momentum, Journal of Financial Economics 104, 228-250.

Odean, Terrance, 1999, Do Investors Trade Too Much?, American Economic Review 89, 1279-1298.

Rendleman, Richard J., Charles P. Jones, and Henry A. Latané, 1982, Empirical anomalies based on unexpected earnings and the importance of risk adjustments, Journal of Financial Economics 10, 269-287.

Thomas, Manoj, and Vicki Morwitz, 2005, Penny Wise and Pound Foolish: The Left-Digit Effect in Price Cognition, Journal of Consumer Research 32, 54-64.

A Tables and Graphs

Figure 1: The stock market and individuals' buying activity
The top graph shows the daily time-series of the cumulative value-weighted return of the portfolio using all 432 stocks in our sample, from January 2012 to December 2015. The bottom graph shows the total number of individuals (in thousands) who purchased at least one stock on each day (we do not consider day trades).

Figure 2: Individuals' buying activity around the ex-date
This figure reports the buying activity of individual investors around ex-dates. For each stock-day we compute $N_{s, t}$, the total number of individual buyers of stock s on day t (standardized by stock). We then compute the averages of $N_{s, t}$ across all stocks for each day around the ex-date from five days before to five days after the ex-date, along with 95% confidence interval. We consider the 587 ex-dates which were announced more than five days in advance (the ones with $\Delta t \geq 5$). As such, on all 587 events considered to compute the cross-sectional average of $N_{s, t}$, investors were aware on days $-5,-4,-3,-2$, and -1 about the dividend payment and the ex-date.

Figure 3: Proportion of purchases just below and just above 00 cents and 50 cents
The figure on the left compares the proportion of purchases by individuals at prices "just below" and "just above" integer prices. First, we identify the stock-days during which the stock price fluctuated around integer numbers, i.e., when a FPF occurs. We say that a stock price fluctuates around an integer number on a particular day, for instance around $\$ 30$, if more than 50 investors (either individuals or institutions) purchase the stock at a price within each one of the following four intervals: [\$29.90, \$29.94], [\$29.95, \$29.99], [$\$ 30.01, \$ 30.05]$, and $[\$ 30.06, \$ 30.10]$. We observe 1,090 FPF events from 2012 to 2015. Next, for each one of the 1,090 FPF events, we count the number of individuals who purchased the stock at a price just below the integer price (at most 10 cents below, i.e., from $\$(\mathrm{x}-1) .90$ to $\$(\mathrm{x}-1) .99$ cents) and just above the integer price (at most 10 cents above, i.e., from $\$ x .01$ to $\$ x .10$ cents). To ensure that the 10 -cent interval is small in relative terms, we consider only stock prices above $\$ 10$. We then compute the proportion of just-below and just-above individuals for each stock-day. The left-graph presents the averages of these proportions across all stock-days and their 95%-confidence bands. The right graph presents the placebo exercise: the same average proportions computed using the 1,002 stock-days during which stock prices fluctuated around prices ending at 50 cents.

Figure 4: Proportion of purchases just below and just above integer prices: professional investors
This figure compares the proportion of purchases by professional investors at prices "just below" and "just above" integer prices. We define "professional investors" as institutions that closed more than 50 stock-day purchases in each year of our sample with an average volume greater than US $\$ 100,000$ per stock-day. First, we identify the stock-days during which the stock price fluctuated around integer numbers, i.e., when a FPF occurs. We say that a stock price fluctuates around an integer number on a particular day, for instance around $\$ 30$, if more than 50 investors (either individuals or institutions) purchase the stock at a price within each one of the following four intervals: [\$29.90, \$29.94], [\$29.95, \$29.99], [\$30.01, \$30.05], and [\$30.06, \$30.10]. We observe 1,090 FPF events from 2012 to 2015 . Next, for each one of the 1,090 FPF events, we count the number of professional investors who purchased the stock at a price just below the integer price (at most 10 cents below, i.e., from $\$(\mathrm{x}-1) .90$ to $\$(\mathrm{x}-1) .99$ cents) and just above the integer price (at most 10 cents above, i.e., from $\$ x .01$ to $\$ x .10$ cents). To ensure that the 10 -cent interval is small in relative terms, we consider only stock prices above $\$ 10$. We then compute the proportion of just-below and just-above professional investors for each stock-day. The graph presents the averages of these proportions across all stock-days and their 95%-confidence bands.

Figure 5: Proportion of purchases at each cent around integer numbers
This figure shows the proportion of purchases by individuals at prices "just below" and "just above" integer prices. First, we identify the stock-days during which the stock price fluctuated around integer numbers, i.e., when a FPF occurs. We say that a stock price fluctuates around an integer number on a particular day, for instance around $\$ 30$, if more than 50 investors (either individuals or institutions) purchase the stock at a price within each one of the following four intervals: [\$29.90, \$29.94], [\$29.95, \$29.99], [\$30.01, \$30.05], and $[\$ 30.06, \$ 30.10]$. We observe 1,090 FPF events from 2012 to 2015 . Next, for each one of the 1,090 FPF events, we count the number of individuals who purchase the stock at a price equal to x .90 , x.91, ..., x.99, $(\mathrm{x}+1) .01,(\mathrm{x}+1) .02, \ldots,(\mathrm{x}+1) .10$. To ensure that the 10 -cent interval is small in relative terms, we consider only stock prices above $\$ 10$. We then compute the proportion of just-below and just-above individuals for each stock-day at each cent. The graph presents the averages of these proportions across all 1,090 stock-days and their 95%-confidence bands.

Figure 6: Proportion of purchases per sell just below and just above integer prices This figure shows the proportion of "just-below" and "just-above" buyers per seller for each stock-day. First, we identify the stock-days during which the stock price fluctuated around integer numbers, i.e., when a FPF occurs. We say that a stock price fluctuates around an integer number on a particular day, for instance around $\$ 30$, if more than 50 investors (either individuals or institutions) purchase the stock at a price within each one of the following four intervals: [\$29.90, \$29.94], [\$29.95, \$29.99], [$\$ 30.01, \$ 30.05]$, and [$\$ 30.06, \$ 30.10]$. We observe 1,090 FPF events from 2012 to 2015. Next, for each one of the 1,090 FPF events, we count how many individuals purchased and how many individuals sold the stock at a price just below the integer price (at most 10 cents below, i.e., from $\$(\mathrm{x}-1) .90$ to $\$(\mathrm{x}-1) .99$ cents) and just above the integer price (at most 10 cents above, i.e., from $\$ x .01$ to $\$ x .10$ cents). To ensure that the 10 -cent interval is small in relative terms, we consider only stock prices above $\$ 10$. We then divide the number of individuals who purchase just below integer prices by the number of individuals who sell just below integer prices. Next, with these two ratios, we calculate the proportion of just-below and just-above buyers per seller for each stock-day. The graph presents the averages of these proportions across all 1,090 stock-days and their 95%-confidence bands.

Figure 7: Neglecting the informational content of stock prices is harmful to investors This figure shows the cumulative performance, relative to the market, of one dollar invested according to the following strategy. Everyday, we form a portfolio with the stocks that presented negative returns in the last h-day period, for $h=1,5,10$, and 20 . The stock return has to be below $-3.4 \%,-7.0 \%,-9.6 \%$, and -13.3% for $h=1,5,10$, and 20 , respectively, to be included in the portfolio. We then hold the stocks in the portfolio for either 20 days (the graphs in the left column) or 120 days (the graphs in the right column). The portfolio returns are value-weighted.
Table 1：Individual investors＇trading activity
This table shows descriptive statistics of the trading activity by individual investors．Panel A reports the number of individual investors，the number of stock－day purchases，and the total financial volume of all purchases per year．Panel B reports selected percentiles of the empirical distribution of the following variables at the individual level：total number of purchases，average purchase volume per stock－day（in US\＄），total volume of purchases （in US\＄），and number of different stocks purchased．

Panel A：Individuals＇					
Number of					aggregate buying activity
:---:	:---:	:---:			
Number		Volume			
---	---	---	---	---	---
Year		Individuals	of purchases	（in US\＄billion）	
:---:	:---:	:---:	:---:		
2012	203,476	$2,961,225$	30.1		
2013	201,090	$2,834,936$	25.9		
2014	187,247	$2,368,282$	22.6		
2015	194,754	$2,473,345$	20.8		
$2012-2015$	391,184	$10,637,788$	99.4		

¢9	\％¢	L\％	0I．	\dagger	I	I	I	
	29「｀¢78	709 ¢998	809＇98	907＇2I	787 ${ }^{\circ} \mathrm{E}$	¢68	788	
698×82	$0 ¢ 7^{〔} 9 \%$	¢08＇tI	162＇c	66 「＇6	788	IGE	g¢	
$\angle 66$	901	09	\＆\％	\angle	\checkmark	I	L	
66 70d	9670 d	06 ¥วd	$\begin{aligned} & \text { GL } \ddagger \text { Od } \\ & \text { suoụnn } \end{aligned}$		Clod	$\begin{gathered} {[700} \\ -[e n \end{gathered}$	FOd	әu® $_{\mathrm{d}}$

Table 2: Individuals are contrarian investors

This table shows the proportions of contrarian purchases by individual investors. For each purchase in our sample, we compute R_{-h}, the stock return (or the market-adjusted stock return) h days prior to the purchase date. We say a purchase is contrarian if $R_{-h}<-\tau_{h}$, where τ_{h} is a threshold that varies with horizon h. The proportions are computed as the ratio between contrarian purchases and all purchases with either $R_{-h}<-\tau_{h}$ or $R_{-h}>\tau_{h}$. We allow for different horizons, $h=1,5$, and 20 days, and for different thresholds, $\tau_{h}=0,0.5 \times \sigma_{h}$, and $1 \times \sigma_{h}$, where σ_{h} is the standard error of the h-day cumulative returns of all stocks in our sample.

Proportion of contrarian purchases by individuals						
	$h=1$	$h=5$	$h=20$	$h=1$	$h=5$	$h=20$
$\tau_{h}=0$	55%	57%	58%	56%	60%	62%
$\tau_{h}=0.5 \sigma_{h}$	58%	61%	61%	60%	65%	68%
$\tau_{h}=\sigma_{h}$	58%	62%	65%	60%	66%	71%

Table 3: Cash dividends statistics
This table presents some descriptive statistics of the dividend payouts of all firms in our sample. Panel A shows the number of dividend payouts, the average dividend value per stock (in US\$), and the average dividend yield (in \%). The same numbers are also presented conditional on $\Delta t=t_{e x}-t_{d e c}$, the number of days between the declaration date, $t_{\text {dec }}$, and the ex-date, $t_{e x}$. In Brazil, there are non-taxable dividends (called simply "Dividends") and taxable dividends (called "Interest on Equity"), which have a flat income tax rate of 15%. Panel B of Table presents the same statistics but considering only non-taxable dividend payouts.

			Δt (\# of days between declaration and ex-date)									
Panel A: both types of dividends	$\Delta t=0$	$\Delta t \geq 1$	1	2	3	4	5	6	7	8	9	$10+$
\# of dividend events	1,405	1,007	220	93	61	46	79	46	85	94	49	234
dividend average value	0.35	0.32	0.38	0.44	0.39	0.34	0.36	0.31	0.30	0.20	0.35	0.21
average dividend yield	2.0	1.7	2.3	2.2	2.0	2.0	1.6	1.6	1.1	0.9	1.3	1.2
			Δt (\# of days between declaration and ex-date)									
Panel B: only tax-free dividends	$\Delta t=0$	$\Delta t \geq 1$	1	2	3	4	5	6	7	8	9	$10+$
\# of dividend events	838	338	90	32	15	12	30	14	35	51	11	48
dividend average value (\$)	0.40	0.43	0.53	0.79	0.38	0.34	0.54	0.25	0.36	0.10	0.31	0.47
average dividend yield (\%)	2.0	2.2	3.3	3.6	2.1	1.1	2.1	1.3	1.5	0.7	1.5	2.4

Table 4: Distribution over time of ex-dates

This table presents the distribution over time of the ex-dates of the 1,007 dividend payments with $\Delta t \geq 1$ in our sample, where $\Delta t=t_{e x}-t_{d e c}$ is the number of days between the declaration date, $t_{d e c}$, and the ex-date, $t_{e x}$.

Year	Frequency	Percent	Cumulative
2012	252	25.02	25.02
2013	264	26.22	51.24
2014	251	24.93	76.17
2015	240	23.83	100.00
Month	Frequency	Percent	Cumulative
January	56	5.56	5.56
February	79	7.85	13.41
March	116	11.52	24.93
April	69	6.85	31.78
May	93	9.24	41.01
June	52	5.16	46.18
July	56	5.56	51.74
August	149	14.80	66.53
September	58	5.76	72.29
October	42	4.17	76.46
November	106	10.53	86.99
December	131	13.01	100.00
Day of week	Frequency	Percent	Cumulative
Monday	255	25.32	25.32
Tuesday	239	23.73	49.06
Wednesday	166	16.48	65.54
Thursday	199	19.76	85.30
Friday	148	14.70	100.00

Table 5: Ex-dates fictitious price falls

This table shows the estimates of stock-day panel regressions of $N_{s, t}$, the total number of individual buyers of stock s on day t (standardized by stock), on $\widehat{R_{s, t}^{*}} . \widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return (not adjusted for dividends) of stock s on day t, on DivYield $_{s, t}$, a variable that equals the dividend yield on the ex-dividend dates and is zero on all other dates. Day-of-the-week dummies and stock lagged returns, $R_{-h}, h=1,5$, and 20, are included as control variables in Columns (3) and (4). Standard errors are shown in parentheses and are clustered by stock.

	All dividends			
	1st stage	2 nd stage	1st stage	2nd stage
Dep. variable:	$R_{s, t}^{*}$	$N_{s, t}$	$R_{s, t}^{*}$	$N_{s, t}$
	(1)	(2)	(3)	(4)
DivYield $_{s, t}$	-0.670		-0.655	
$\widehat{R_{s, t}^{*}}$	(0.098)		(0.097)	
		-0.166		-0.175
R_{-1}		(0.026)		(0.031)
			-0.099	-0.019
R_{-5}			(0.010)	(0.003)
			-0.016	-0.006
R_{-20}			(0.002)	(0.001)
			0.008	-0.002
Monday			$-0.003)$	(0.001)
			$-0.019)$	-0.004
Tuesday			-0.025	0.018
			(0.019)	(0.005)
Wednesday			-0.009	0.020
			(0.020)	(0.005)
Thursday			0.004	
			$0.004)$	
Constant	2.772	0.459	2.794	0.470
	(0.184)	(0.078)	(0.186)	(0.091)
N	382,450	382,450	382,450	382,450

Table 6: Ex-dates FPF: Non-taxable dividends

This table shows the estimates of stock-day panel regressions of $N_{s, t}$, the total number of individual buyers of stock s on day t (standardized by stock), on $\widehat{R_{s, t}^{*}} . \widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return (not adjusted for dividends) of stock s on day t, on DivYield $_{s, t}$, a variable that equals the dividend yield on the ex-dividend dates and is zero on all other dates. Day-of-the-week dummies and stock lagged returns, $R_{-h}, h=1,5$, and 20, are included as control variables in columns (3) and (4). Differently from Table $\mathbf{5}$, DivYield ${ }_{s, t}$ is non-zero only on non-taxable dividend ex-dates. Standard errors are shown in parentheses and are clustered by stock.

	Non-taxable dividends			
	1st stage	2 nd stage	1st stage	2nd stage
Dep. variable:	$R_{s, t}^{*}$	$N_{s, t}$	$R_{s, t}^{*}$	$N_{s, t}$
	(1)	(2)	(3)	(4)
DivYield $_{s, t}$	-0.727		-0.709	
$\widehat{R_{s, t}^{*}}$	(0.076)		(0.076)	
		-0.171		-0.179
R_{-1}		(0.029)		(0.031)
			-0.099	-0.019
R_{-5}			(0.010)	(0.003)
			-0.016	-0.006
R_{-20}			(0.002)	(0.001)
			0.008	-0.002
Monday			$-0.003)$	(0.001)
			$-0.019)$	-0.004
Tuesday			-0.025	$0.005)$
			$-0.019)$	(0.005)
Wednesday			(0.021)	(0.005)
			-0.012	0.004
Thursday				$0.020)$
			(0.004)	
Constant	2.771	0.472	2.792	0.482
	(0.184)	(0.086)	(0.186)	(0.091)
N	382,450	382,450	382,450	382,450

Table 7: Ex-dates FPF: Only non-taxable dividends with $\Delta t \geq 5$

This table shows the estimates of stock-day panel regressions of $N_{s, t}$, the total number of individual buyers of stock s on day t (standardized by stock), on $\widehat{R_{s, t}^{*}} . \widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return (not adjusted for dividends) of stock s on day t, on DivYield $_{s, t}$, a variable that equals the dividend yield on the ex-dates related to non-taxable dividends and is zero on all other dates (exdates related to taxable dividends are not included in the regression). Day-of-the-week dummies and stock lagged returns, $R_{-h}, h=1,5$, and 20, are included as control variables in columns (3) and (4). Differently from Table 6, DivYield $d_{s, t}$ is non-zero only on non-taxable dividend ex-dates which have $\Delta t \geq 5$, where $\Delta t=t_{e x}-t_{d e c}$, the number of days between the declaration, $t_{\text {dec }}$, date and the ex-date, $t_{e x}$. Standard errors are shown in parentheses and are clustered by stock.

	Non-taxable dividends with $\Delta t \geq 5$			
	1 st stage	2 nd stage	1st stage	2nd stage
Dep. variable:	$R_{s, t}^{*}$	$N_{s, t}$	$R_{s, t}^{*}$	$N_{s, t}$
	(1)	(2)	(3)	(4)
DivYield $_{s, t}$	-0.616		-0.592	
$\widehat{R_{s, t}^{*}}$	(0.086)		(0.221)	
		-0.204		-0.217
R_{-1}		(0.045)		(0.050)
			-0.099	-0.012
R_{-5}			(0.010)	(0.004)
			-0.016	-0.005
R_{-20}			(0.002)	(0.001)
			0.008	-0.002
Monday			$-0.003)$	(0.001)
			-0.055	-0.004
Tuesday			-0.025	(0.005)
			0.019	
Wednesday			$(0.00919$	(0.020)
			-0.012	(0.020)
Thursday			0.0020	
			$0.005)$	
Constant	2.771	0.565	2.792	0.589
	(0.184)	(0.132)	(0.186)	(0.144)
N	382,450	382,450	382,450	382,450

Table 8: Ex-dates FPF: Regressions with only ex-dates

This table shows the estimates of regressions across ex-dates. We regress $N_{s, t}$, the total number of individual buyers of stock s on ex-date t (standardized by stock, using the full sample), on $\widehat{R_{s, t}^{*}}$. $\widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return (not adjusted for dividends) of stock s on ex-date t, on DivYield $_{s, t}$, a variable that equals the dividend yield on ex-date t. Day-of-the-week dummies and stock lagged returns, $R_{-h}, h=1,5$, and 20, are included as control variables. In columns (1) and (2) we use all 1,007 ex-dates. In columns (3) and (4) we use only the 338 ex-dates related to non-taxable dividends. In columns (5) and (6) we use only the 174 ex-dates related to non-taxable dividends which have $\Delta t \geq 5$, where $\Delta t=t_{e x}-t_{d e c}$, the number of days between the declaration, $t_{d e c}$, date and the ex-date, $t_{e x}$. Standard errors are shown in parentheses and are clustered by stock.

	All dividends		Non-taxable dividends		Non-taxable dividends with $\Delta t \geq 5$	
Dep. variable:	1st stage $R_{s, t}^{*}$ (1)	2nd stage $N_{s, t}$ (2)	1st stage $R_{s, t}^{*}$ (3)	2nd stage $N_{s, t}$ (4)	1st stage $R_{s, t}^{*}$ (5)	2nd stage $N_{s, t}$ (6)
DivYield $_{s, t}$	$\begin{gathered} -0.346 \\ (0.117) \end{gathered}$		$\begin{gathered} -0.581 \\ (0.078) \end{gathered}$		$\begin{gathered} -0.715 \\ (0.111) \end{gathered}$	
$\widehat{R_{s, t}^{*}}$		$\begin{aligned} & -0.340 \\ & (0.104) \end{aligned}$		$\begin{aligned} & -0.235 \\ & (0.048) \end{aligned}$		$\begin{aligned} & -0.188 \\ & (0.057) \end{aligned}$
R_{-1}	$\begin{aligned} & -0.169 \\ & (0.092) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.041) \end{aligned}$	$\begin{gathered} 0.028 \\ (0.150) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.158) \end{gathered}$	$\begin{aligned} & -0.017 \\ & (0.066) \end{aligned}$
R_{-5}	$\begin{gathered} 0.002 \\ (0.046) \end{gathered}$	$\begin{aligned} & -0.043 \\ & (0.019) \end{aligned}$	$\begin{gathered} 0.013 \\ (0.074) \end{gathered}$	$\begin{aligned} & -0.040 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.068 \\ & (0.099) \end{aligned}$	$\begin{aligned} & -0.075 \\ & (0.041) \end{aligned}$
R_{-20}	$\begin{aligned} & -0.018 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.025) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.010) \end{aligned}$
Monday	$\begin{aligned} & -0.094 \\ & (0.479) \end{aligned}$	$\begin{aligned} & -0.025 \\ & (0.185) \end{aligned}$	$\begin{aligned} & -1.505 \\ & (1.132) \end{aligned}$	$\begin{aligned} & -0.869 \\ & (0.260) \end{aligned}$	$\begin{aligned} & -1.753 \\ & (1.557) \end{aligned}$	$\begin{aligned} & -0.793 \\ & (0.331) \end{aligned}$
Tuesday	$\begin{gathered} 0.009 \\ (0.556) \end{gathered}$	$\begin{aligned} & -0.025 \\ & (0.184) \end{aligned}$	$\begin{aligned} & -0.655 \\ & (1.132) \end{aligned}$	$\begin{aligned} & -0.257 \\ & (0.248) \end{aligned}$	$\begin{aligned} & -1.096 \\ & (1.142) \end{aligned}$	$\begin{aligned} & -0.284 \\ & (0.282) \end{aligned}$
Wednesday	$\begin{gathered} 0.251 \\ (0.498) \end{gathered}$	$\begin{gathered} 0.266 \\ (0.240) \end{gathered}$	$\begin{gathered} 0.342 \\ (1.061) \end{gathered}$	$\begin{aligned} & -0.082 \\ & (0.278) \end{aligned}$	$\begin{aligned} & -1.611 \\ & (1.277) \end{aligned}$	$\begin{aligned} & -0.323 \\ & (0.441) \end{aligned}$
Thursday	$\begin{gathered} 0.190 \\ (0.549) \end{gathered}$	$\begin{aligned} & -0.060 \\ & (0.186) \end{aligned}$	$\begin{gathered} -0.906 \\ (1.085) \end{gathered}$	$\begin{gathered} -0.417 \\ (0.258) \end{gathered}$	$\begin{aligned} & -1.467 \\ & (1.196) \end{aligned}$	$\begin{aligned} & -0.186 \\ & (0.321) \end{aligned}$
Constant	$\begin{gathered} 1.182 \\ (0.537) \end{gathered}$	$\begin{gathered} 0.398 \\ (0.182) \end{gathered}$	$\begin{gathered} 2.182 \\ (0.963) \end{gathered}$	$\begin{gathered} 0.651 \\ (0.186) \end{gathered}$	$\begin{gathered} 2.111 \\ (1.208) \end{gathered}$	$\begin{gathered} 0.422 \\ (0.242) \end{gathered}$
N	1,007	1,007	338	338	174	174

Table 9: Ex-dates FPF: Net purchases regressions

This table shows the estimates of stock-day panel regressions of $\operatorname{net}\left(N_{s, t}\right)$, the total number of individuals buying stock s on day t minus the total number of individuals selling stock s on day t (standardized by stock), on $\widehat{R_{s, t}^{*}}$. $\widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return (not adjusted for dividends) of stock s on day t, on DivYield $_{s, t}$, a variable that equals the dividend yield on the ex-dividend dates and is zero on all other dates. In Column (2), DivY ield $_{s, t}$ is non-zero only on non-taxable dividend ex-dates (taxable dividend ex-dates observations are excluded). In Column (3), DivYield ${ }_{s, t}$ is non-zero only on non-taxable dividend ex-dates which have $\Delta t \geq 5$, where $\Delta t=t_{e x}-t_{d e c}$, the number of days between the declaration, $t_{d e c}$, date and the ex-date, $t_{e x}$. Day-of-the-week dummies and stock lagged returns, $R_{-h}, h=1$, 5 , and 20, are included as control variables. Standard errors are shown in parentheses and are clustered by stock.

	All dividends	Non-taxable dividends	
	$\Delta t \geq 1$	$\Delta t \geq 1$	$\Delta t \geq 5$
Dep. variable:	$n e t\left(N_{s, t}\right)$	$n e t\left(N_{s, t}\right)$	net $\left(N_{s, t}\right)$
	(1)	(2)	(3)
$R_{s, t}^{*}$	-0.107	-0.097	-0.129
	(0.026)	(0.029)	(0.049)
R_{-1}	-0.020	-0.019	-0.022
	(0.003)	(0.003)	(0.005)
R_{-5}	-0.011	-0.011	-0.011
	(0.001)	(0.001)	(0.001)
R_{-20}	-0.004	-0.005	-0.004
	(0.001)	(0.001)	(0.001)
Monday	-0.002	-0.001	0.002
	(0.005)	(0.005)	(0.005)
Tuesday	0.005	0.005	0.004
	(0.005)	(0.005)	(0.005)
Wednesday	0.004	0.004	0.003
	(0.005)	(0.005)	(0.005)
Thursday	0.000	0.000	0.000
	(0.005)	(0.005)	(0.005)
Constant	0.285	0.259	0.346
	(0.076)	(0.084)	(0.138)
N	381,990	381,990	381,582

Table 10: Professional investors' trading activity
This table shows descriptive statistics of the trading activity by professional investors. A professional investor is an institution which made more than 50 stock-day purchases in each year of our sample and with an average volume greater than US $\$ 100,000$ per stock-day. Panel A reports the number of professional investors, the number of stock-day purchases, and the total financial volume of all purchases per year. Panel B reports selected percentiles of the empirical distribution of the following variables at the investor level: total number of purchases, average purchase volume per stock-day (in US\$), total volume of purchases (in US\$), and number of different stocks purchased.

Table 11: Ex-dates FPF: Professional investors regressions

This table shows the estimates of stock-day panel regressions of $N_{s, t}$, the total number of professional investors buyers of stock s on day t (standardized by stock), on $\widehat{R_{s, t}^{*}}$. A professional investor is an institution which made more than 50 stock-day purchases in each year of our sample and with an average volume greater than US $\$ 100,000$ per stock-day. $\widehat{R_{s, t}^{*}}$ is the projection from a first-step regression of $R_{s, t}^{*}$, the overnight return (not adjusted for dividends) of stock s on day t, on DivYield $d_{s, t}$, a variable that equals the dividend yield on the ex-dividend dates and is zero on all other dates. Day-of-the-week dummies and stock lagged returns, $R_{-h}, h=1,5$, and 20, are included as control variables in columns (3) and (4). Standard errors are shown in parentheses and are clustered by stock.

	All dividends	Non-taxable dividends	
	$\Delta t \geq 1$	$\Delta t \geq 1$	$\Delta t \geq 5$
Dep. variable:	$N_{s, t}$	$N_{s, t}$	$N_{s, t}$
	(1)	(2)	(3)
$R_{s, t}^{*}$	-0.059	-0.053	-0.006
	(0.043)	(0.058)	(0.021)
R_{-1}	-0.004	-0.003	0.002
	(0.005)	(0.006)	(0.002)
R_{-5}	-0.001	-0.001	0.000
	(0.001)	(0.001)	(0.001)
R_{-20}	0.001	0.001	0.001
	(0.001)	(0.001)	(0.001)
Monday	-0.014	-0.014	-0.014
	(0.005)	(0.006)	(0.006)
Tuesday	0.016	0.016	0.016
	(0.005)	(0.005)	(0.005)
Wednesday	0.053	0.053	0.053
	(0.005)	(0.005)	(0.005)
Thursday	0.007	0.007	0.007
	(0.005)	(0.005)	(0.005)
Constant	0.108	0.095	-0.002
	(0.090)	(0.025)	(0.043)
N	338,509	338,509	338,137

Table 12: FPFs and investors total number of purchases

This table shows the estimates of cross-individuals regressions of investor i total number of stock-day purchases on $F P F 1_{i}$ and $F P F 2_{i}$, two dummy variables that determine whether individual i responds to the FPF events. $F P F 1_{i}$ equals one if individual i made at least one purchase on an ex-date. $F P F 2_{i}$ equals one if individual i bought more at prices ending from 90 to 99 cents than at prices ending from 01 to 09 cents. Robust standard errors are shown in parentheses. ${ }^{* * *},{ }^{* *}$, and ${ }^{*}$ indicate significance at the $1 \%, 5 \%$, and 10% levels, respectively.

Dep. variable:	Investor number of buys		
	(1)	(2)	(3)
FPF 1	110.39		106.57
	(1.578)		(1.558)
FPF 2		26.99	16.98
		(0.471)	(0.400)
Constant	17.36	20.06	13.21
	(0.059)	(0.140)	(0.108)
N	391,184	391,184	391,184

Table 13: Correlation of FPF 1 and FPF 2 across individuals

This table shows the estimates of cross-individuals regressions. For each individual investor i we define two dummy variables, $F P F 1_{i}$ and $F P F 2_{i}$, that determine whether individual i responds to the FPF events. $F P F 1_{i}$ equals one if individual i made at least one purchase on an ex-date. $F P F 2_{i}$ equals one if individual i bought more at prices ending from 90 to 99 cents than at prices ending from 01 to 09 cents. We split individuals into 12 groups according to their total number of buys during the sample period: 1 to 10 buys, 11 to 20 buys, ..., 91 to 100 buys, 101 to 150 buys, and more than 150 buys. Within each group, we run a cross-sectional regression across individuals of $F P F 1_{i}$ on $F P F 2_{i}$ and the total number of buys of individual i. Robust standard errors are shown in parentheses.

FPF1

\# of buys:	$[0 ; 10]$	$(10 ; 20]$	$(20 ; 30]$	$(30 ; 40]$	$(40 ; 50]$	$[50 ; 60]$
	(1)	(2)	(3)	(4)	(5)	(6)
FPF2	0.006	0.013	0.008	0.018	0.006	0.024
	(0.001)	(0.002)	(0.004)	(0.005)	(0.007)	(0.009)
\# of buys (in 100's)	0.430	0.492	0.272	0.442	0.636	0.376
	(0.012)	(0.037)	(0.064)	(0.094)	(0.122)	(0.159)
Constant	-0.001	-0.014	0.044	-0.012	-0.095	-0.007
	(0.0003)	(0.005)	(0.016)	(0.033)	(0.055)	(0.008)
N	226,526	56,504	30,435	17,886	12,561	8,470
\# of buys:	$(60 ; 70]$	$(70 ; 80]$	$(80 ; 90]$	$(90 ; 100]$	$(100 ; 150]$	>150
	(7)	(8)	(9)	(10)	(11)	(12)
FPF2	0.041	0.039	0.021	0.054	0.073	0.043
	(0.011)	(0.013)	(0.015)	(0.017)	(0.010)	(0.009)
\# of buys (in 100's)	0.177	0.031	0.227	0.504	0.240	0.017
	(0.191)	(0.233)	(0.261)	(0.297)	(0.036)	(0.002)
Constant	0.131	0.257	0.116	-0.154	0.111	0.577
	(0.125)	(0.176)	(0.223)	(0.283)	(0.045)	(0.009)
N	6,391	4,772	3,816	3,120	9,061	11,642

Table 14: FPF 1, FPF 2, and sophistication: derivatives and short-selling

This table shows the estimates of cross-individuals regressions. For each individual investor i we define two dummy variables, $F P F 1_{i}$ and $F P F 2_{i}$, that determine whether individual i responds to the FPF events. $F P F 1_{i}$ equals one if individual i made at least one purchase on an ex-date. $F P F 2_{i}$ equals one if individual i bought more at prices ending from 90 to 99 cents than at prices ending from 01 to 09 cents. We split individuals into 12 groups according to their total number of buys during the sample period: 1 to 10 buys, 11 to 20 buys, ..., 91 to 100 buys, 101 to 150 buys, and more than 150 buys. Within each group, we run a cross-sectional regression across individuals of a dummy variable that equals one if the individual traded a stock option and/or sold short at least once in the full sample on the variables $F P F 1_{i}$ on $F P F 2_{i}$ and the total number of buys of individual i. Robust standard errors are shown in parentheses.

Investor trades stock options or sells short

\# of buys:	$[0 ; 10]$	$(10 ; 20]$	$(20 ; 30]$	$(30 ; 40]$	$(40 ; 50]$	$[50 ; 60]$
	(1)	(2)	(3)	(4)	(5)	(6)
FPF1	-0.016	-0.015	-0.042	-0.019	-0.025	-0.033
	(0.006)	(0.007)	(0.008)	(0.010)	(0.011)	(0.013)
FPF2	0.007	-0.001	-0.016	-0.015	-0.017	-0.022
	(0.002)	(0.004)	(0.005)	(0.007)	(0.009)	(0.011)
\# of buys (in 100's)	1.677	0.634	0.527	0.485	0.197	0.045
	(0.031)	(0.067)	(0.095)	(0.127)	(0.154)	(0.189)
Constant	0.091	0.185	0.206	0.227	0.345	0.436
	(0.001)	(0.010)	(0.024)	(0.045)	(0.069)	(0.105)
N	226,526	56,504	30,435	17,886	12,561	8,470
\# of buys:	$(60 ; 70]$	$(70 ; 80]$	$(80 ; 90]$	$(90 ; 100]$	$(100 ; 150]$	>150
	(7)	(8)	(9)	(10)	(11)	(12)
FPF1	-0.012	-0.011	-0.009	0.009	-0.011	0.047
	(0.014)	(0.016)	(0.017)	(0.019)	(0.010)	(0.010)
FPF2	-0.039	-0.018	-0.038	-0.007	-0.045	-0.029
	(0.013)	(0.014)	(0.016)	(0.018)	(0.011)	(0.009)
\# of buys (in 100's)	0.307	0.151	0.569	0.690	0.077	0.006
	(0.216)	(0.251)	(0.279)	(0.313)	(0.036)	(0.001)
Constant	0.300	0.375	0.039	-0.156	0.452	0.560
	(0.141)	(0.189)	(0.239)	(0.299)	(0.046)	(0.009)
N	6,391	4,772	3,816	3,120	9,061	11,642

This table shows the estimates of purchase-by-purchase regressions of R_{+h} on two dummy variables, $F P F 1_{i}$ and $F P F 2_{i}$. R_{+h} is the cumulative stock inat least individual i buys more at just below integer prices than at just above integer prices: the number of purchases at prices ending in 90 to 99 cents is higher than the number of purchases at prices ending in 01 to 09 cents. Regressions are controlled for the total number of purchases by each investor and stock-fixed effects. Standard errors clustered by stock are shown in parentheses.

Dep. variable:	Raw returns								
	R_{+20}			(4)	R_{+120}	(6)	R_{+250}		
FPF1	0.043		0.044	-0.433		-0.401	-1.638		-1.548
	(0.057)		(0.055)	(0.180)		(0.173)	(0.245)		(0.238)
FPF2		-0.005	-0.008		-0.417	-0.387		-1.176	-1.061
		(0.037)	(0.034)		(0.115)	(0.104)		(0.212)	(0.204)
\# of buys (in 100's)	0.002	0.002	0.002	0.004	-0.000	0.005	-0.004	-0.021	-0.002
	(0.001)	(0.001)	(0.001)	(0.004)	(0.004)	(0.004)	(0.008)	(0.010)	(0.008)
Constant	-1.82	-1.80	-1.81	-6.26	-6.23	-6.09	-7.32	-7.40	-6.88
	(0.025)	(0.020)	(0.037)	(0.078)	(0.059)	(0.113)	(0.120)	(0.106)	(0.167)
Stock fixed-effects	Yes								
N		10,333,806			10,281,218			10,208,835	

Table 16: FPF 1, FPF 2, and sophistication: stock-picking (market-adjusted returns) This table shows the estimates of purchase-by-purchase regressions of $R_{+h}^{a d j}$ on two dummy variables, $F P F 1_{i}$ and $F P F 2_{i} . R_{-h}^{a d j}$ is the cumulative stock market-adjusted return h days following its purchase. $F P F 1_{i}$ equals one if individual i made at least one purchase on an ex-dividend date. $F P F 2_{i}$ equals one if individual i buys more at just below integer prices than at just above integer prices: the number of purchases at prices ending in 90 to 99 cents is higher than the number of purchases at prices ending in 01 to 09 cents. Regressions are controlled for the total number of purchases by each investor and stock-fixed effects. Standard errors clustered by stock are shown in parentheses.

en	
\nsubseteq	
$\mathfrak{\infty}$	

Table 17: FPF 1, FPF 2, and contrarian behavior
This table shows the estimates of purchase-by-purchase regressions of R_{-1} and $R_{-1}^{a d j}$ on two dummy variables, $F P F 1_{i}$ and $F P F 2_{i} . R_{-1}\left(R_{-1}^{a d j}\right)$ is the cumulative stock (excess) return 1 day prior to its purchase. $F P F 1_{i}$ equals one if individual i made at least one purchase on an ex-dividend date. $F P F 2_{i}$ equals one if individual i buys more at just below integer prices than at just above integer prices (the number of purchases at prices ending in 90 to 99 cents is higher than the number of purchases at prices ending in 01 to 09 cents). Regressions are controlled for the total number of purchases by each investor and stock-fixed effects. Standard errors clustered by stock are shown in parentheses.

©	
发	
\nsubseteq	
\bigcirc	
\cdots	
E	
$\begin{aligned} & \ddot{\ddot{0}} \\ & \stackrel{0}{0} \\ & \ddot{\tilde{\pi}} \\ & \dot{\ddot{0}} \\ & \dot{0} \end{aligned}$	

[^0]: *This paper was previously circulated under the title "Individuals Neglect the Informational Role of Prices: Evidence from the Stock Market." We thank Sérgio Almeida, Justin Birru, Marco Bonomo, Ricardo Brito, Antonio Gledson de Carvalho, Raphael Corbi, José Heleno Faro, Bruno Ferman, Marcelo Fernandes, Thomas Fujiwara, Bernardo Guimarães, Victor Filipe Martins-da-Rocha, Marcos Nakaguma, Terrance Odean, Emanuel Ornelas, Vladimir Ponczek, André Portela, Ruy Ribeiro, Rodrigo Soares, Eduardo Zilberman, and participants in seminars at Insper, PUC-Rio, Sao Paulo School of Economics-FGV, University of Sao Paulo, in the 3rd International REAP-SBE Meeting, and in the 2017 SBE Meeting for their valuable comments. We also thank Eduardo Astorino for excellent research assistance.
 ${ }^{\dagger}$ Sao Paulo School of Economics - FGV, Brazil. E-mail: fernando.chague@fgv.br.
 ${ }^{\ddagger}$ Department of Economics, University of Sao Paulo, Brazil. E-mail: delosso@usp.br.
 ${ }^{\text {§ Sao Paulo School of Economics - FGV, Brazil. Corresponding author at: Rua Itapeva, 474, Sao Paulo - }}$ SP, Brazil. E-mail: bruno.giovannetti@fgv.br.

[^1]: ${ }^{1}$ Indeed, Eyster, Rabin, and Vayanos (2018), in their section "Evidence on Cursedness," cite the present paper (which was previously circulated under the title "Individuals Neglect the Informational Role of Prices: Evidence from the Stock Market") as a market-based evidence that investors do not sufficiently heed the information content of asset prices.

[^2]: ${ }^{2}$ Our dataset comes from the "Comissão de Valores Mobiliários" (CVM), the Brazilian equivalent to the Securities and Exchange Commission (SEC) in the US, and is therefore of extremely high quality. It contains the daily trading activity of all individuals in Brazil from January 2012 to December 2015 (391,184 individuals). The observations ($10,637,788$, considering only purchases) are at the investor-stock-day level and allow us to anonymously follow each investor over time. Individuals purchased a total of US $\$ 99.4$ billion over the period.

[^3]: ${ }^{3}$ In such cases, the firm announces that it will pay dividends on trading day t after markets close and sets the ex-date to be trading day $t+1$.

[^4]: ${ }^{4}$ Computed using the previous day closing price and the opening price unadjusted for dividend.
 ${ }^{5}$ The dividend yield is $D_{s, t} / P_{s, t-1}$, where $D_{s, t}$ is the amount of dollars per share paid as cash dividends and $P_{s, t-1}$ is the closing price of stock s on day $t-1$.

[^5]: ${ }^{6}$ For example, this can happen when individuals are exempt from income tax over capital gains. In Brazil this occurs when the individual sells less than $\mathrm{R} \$ 20,000.00$ in the month or when she accumulates capital losses from previous months. See, for instance, Lakonishok and Vermaelen (1986) and Michaely and Vila (1995) for tax-induced trading around ex-dates in the US.
 ${ }^{7}$ In Brasil, taxable cash dividends are called "Interests over equity" and non-taxable cash dividends are called simply "Dividends."

[^6]: ${ }^{8}$ These are arbitrary choices but results are robust to other cutoffs.

[^7]: ${ }^{9}$ To ensure that the 10 cents price interval is small in relative terms, the 1,090 FPF events contain only fluctuations of stock prices around integer prices above $\$ 10$.

[^8]: ${ }^{10}$ This paper was previously circulated under the title "Individuals Neglect the Informational Role of Prices: Evidence from the Stock Market."

