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1 Introduction

In several areas of knowledge the main research question is to estimate the causal ef-

fect of a treatment variable (D) on an outcome variable (Y ). Using the potential out-

come model (Rubin 1974), de�ne the potential outcome for the individual i to be treated

or untreated (control) respectively as Yi(1) and Yi(0). The individual impact and the

Average Treatment E�ects (ATE) can be denoted respectively as Yi(1) − Yi(0) and

ATE = E[Yi(1)− Yi(0)]. Unfortunately it is impossible to observe the same individual in

both situations (treated and control), that is, we have only Y = DiYi(1) + (1−Di)Yi(0)

where Di ∈ {0, 1}. Thus, under the following assumption (Yi(1), Yi(0)) ⊥ Di, we can

use the sample analogues to estimate the average causal impact: ATE = E[Y |T =

1]− E[Y |T = 0].

For the identi�cation of the object ATE the assumption (Yi(1), Yi(0)) ⊥ Di has been

used. In general this assumption will be satis�ed when individuals are randomized to

receive the treatment. When we performing a Randomized Control Trial (RCT) we

can obtain a counterfactual that representing the treatment group: the randomization

mechanism provides the balancing of the characteristics of the individuals excluding the

possibility of selection in observable or not observable in both groups.

The causal e�ect of the treatment can be heterogeneous over the distribution of the

outcome variable and distributive measures may become interesting to the researcher or

policy maker. In this case, the Quantile Treatment E�ect (QTE) estimators can capture

di�erent e�ects on the tails or in the middle of the distribution of Y . When we have

an RCT we can directly use the measures proposed by Doksum (1974) and Lehmann

(1975) de�ned as, for a given percentile τ ∈ (0, 1), the horizontal distance between the

cumulative distribution functions of treatment (F1) and control (F0) groups: QTE(τ) =

F−11 (τ) − F−10 (τ). Thus we have a complete description of the treatment e�ect for the

entire distribution of the outcome variable.

The identi�cation assumptions of ATE and QTE assume that the potential outcome

of the individual i is not a�ected by the treatment selection mechanism and that the

treatment received by an individual does not change the potential outcome of another

individual excluding interaction between units and possible e�ects of spillover (Cox 1958,

Imbens & Wooldridge 2009, Rubin 1980). This assumption, known as Stable Unit Treat-

ment Value Assumption (SUTVA), may not be satis�ed when, for example, treatment

selection occurs at an individual level but an RCT occurs at an aggregate level (with in-

tersection among groups) allowing the transmission of information or contagion between

the units of the treatment or control groups 1. In this case, when the the SUTVA is not

1One possible example is the Mexican income transfer program: Progresa. The RCT was carried
out at the aggregate level of villages in poor rural areas of Mexico. As the villages are not isolated the
intersection between the groups, in this case areas, allowed interaction between the individuals generating
program spillover for several control groups.
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valid, the estimators of interest will be biased(Sobel 2006).

Thus it is necessary to rewrite the SUTVA assumption to allow interaction among

individuals at some level, such as interference within groups (households, schools, �rms,

etc.), and excluding contacts among them. In this case it is possible to recover the

desirable properties of the objects of interest and also estimate other e�ects.

The seminal work of Halloran & Struchiner (1991) de�nes the concepts currently

used to estimate spillover: direct, indirect, total and overall e�ects. The authors argue

that depending on how the treatment and control groups are formed and, due to the

interactions between individuals, the direct e�ects can be calculated incorrectly. In this

case it is important to measure the indirect e�ects to account for how much public policy

has spillover.

Using the random voucher experiment of the Move to Oportunity (MTO) program,

Sobel (2006), it is shown that it is not possible to estimate the measures de�ned in

Halloran & Struchiner (1991) without using additional assumptions, otherwise the results

will be biased due to spillovers and intersections between the groups. In this case it is

necessary to partition the clusters and allow an individual to a�ect the outcome variable

of another individual only if they are within the same group naming this assumption

as �partial interference�. Given this assumption, and assuming that there is a two level

random experiment, the author demonstrates the non bias of several spillover estimators.

From the works of Halloran & Struchiner (1991) and Sobel (2006) the literature was

divided into works that contributed to demonstrate the properties of small and large

samples. In the case of properties of small samples, the authors assume that there is a

randomization design in two levels: at �rst stage the proportion or quantity of treated

individuals is randomized into several groups, then in the second stage, the subjects are

randomly selected within the group.

In this context, Hudgens & Halloran (2008) assume some assumptions, among them

partial interference, and formalize from the potential outcomes, the direct, indirect, total

and overall e�ects proving the absence of bias for all estimators. Tchetgen Tchetgen &

VanderWeele (2010) use the same previous assumptions and extend the work of Hudgens

& Halloran (2008) by calculating con�dence intervals and de�ning the inverse probability

weighting estimator, �nally, Basse & Feller (2017) does no use the assumption of groups

with homogeneous sizes and propose unbiased estimators for average e�ects and variance.

Recently other authors have proved the asymptotic properties for the spillover ef-

fects. Unlike previous authors Vazquez-Bare (2017) does not assume the existence of two

stage randomization to identify the parameters of interest. He estimates the objects non-

parametrically, performs inference, and demonstrates the asymptotic properties. Lastly,

Leung (2017) does not assume SUTVA assumption treating the problem as a single net-

work allowing interference between groups (cross-cluster links). The author establishes

the conditions for the estimators to be consistent and asymptotically normal.
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The above works has concentrated e�orts to correctly measure spillover e�ects from

the de�nitions of Halloran & Struchiner (1991). Philipson (2000) de�nes the seminal

concepts of the external and private average e�ects of treatment due to variations in

the proportion of treated. To identify the populational parameters, the author states

that it is necessary to conduct a randomized two level experiment to generate random

variation between groups and between individuals. According to the author the main

di�erence with respect to Halloran & Struchiner (1991) is the incorporation of the change

in distribution, for the average, due to variation of the proportion of treated.

Despite the advances made, there are still no papers formalizing the distributive e�ects

of treatment spillover in two stage randomized experiments. Thus, in this context, the

following general questions arise: i) how does to correctly de�ne and identify the direct

and indirect e�ects of treatment for quantiles? ii) what is the e�ect of the proportion of

treated over the distribution of the outcome variable?

This work is interested in the saturation of the treatment by groups (proportion of

treated) and uses the assumptions related to multilevel experiments to identify the e�ects

of spillover (the details of the saturation randomization design will be discussed in the next

chapter). The �rst central idea is to de�ne, identify and estimate the direct and indirect

e�ects, similiar to the average e�ects of the Halloran & Struchiner (1991), of treatment

on the percentiles of the outcome variable. The e�ects of the interaction between the

individuals may be di�erent along the distribution, because depending on the type of

program, the left tail, center or right tail may be a�ected in an unequal way. Thus,

it becomes essential to have quantile estimators that allow to correctly identify these

distributive e�ects.

In addition to identifying these objects, the private and spillover e�ects for quantiles,

similar to the average e�ects of the Philipson (2000), are also de�ne and identi�ed from

the proportion of treated. In general, the budget constraint of the policy maker does not

allow the treatment of 100% of the target public. Thus, works related to the e�ects of

the proportion on quantiles can help in the elaboration of public policies. It may not be

necessary to treat the entire target public, since the interaction between individuals may

over�ow the results for the other members and this e�ect may be di�erent throughout

the distribution.

The main contributions of this work are: i) de�ne and identify the direct and indirect

e�ects of the proportion of treated individuals for quantiles; ii) separate the variation in

the quantiles, due to the proportion of treated, into two parts called external and private

e�ects, identifying this objects.

In addition to this introduction, this paper presents the potential outcomes and their

assumptions in section 2, the objects of interest and their identi�cations are presented in

section 3, and section 4 addresses the �nal considerations.
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2 Potential outcomes and assumptions

The aim of this chapter is to de�ne the potential outcomes and the assumptions in the

context of Random Saturation Design (RSD).

RSD allocate the individuals in treated and control groups when there are two or more

level of allocation, the so-called saturation level (Baird, Bohren, Mcintosh & Ozler 2015,

Hahn, Hirano & Karlan 2011, Hirano & Hahn 2009, Hudgens & Halloran 2008, Sinclair

2012, Sinclair, McConnell & Green 2012). Let i, g and n represent respectively the in-

dividuals, i = 1, 2, ..., ng, groups of allocation, g = 1, 2, ..., G, and the total number of

individuals n = n1 + n2 + ... + nG. Denote π ∈ Π ⊂ [0, 1] the proportion of treated indi-

viduals, saturation level (S), where Π represent the support of saturation. The saturation

level can be measured in the whole experiment, S = πo, or inside each group g, S = πg.

In the �rst stage of RSD the proportion of treated individuals, πg, are allocated ran-

domly across several di�erent groups. Because in most setup, G is relatively small, one

typically chooses few di�erent values of πg. It is important to notice that those G groups

are not randomly formed and existed before the intervention.

In the second stage, for each group g, one selects randomly πgng subjects to form the

�treatment group� of g. The remainder (1− πg)ng are not treated, and form the �control

group� of g.

De�ne the variable Cig as the one that assigns the value of the group (cluster) the

individual belongs to. In other words, Cig = g for all individuals in cluster g. The

treatment assignment will be denoted as Dig and may assume values d ∈ {0, 1}. The

probability of being treated among all groups is πo = P(Dig = 1). The probability of

being treated given that Cig = g is πg = P(Dig = 1|Cig = g).

Following the notation similar to Vazquez-Bare (2017) denote asDg = [D1g, D2g, ..., Dngg]
′

the vector of length ng of treatment assignments. The vector of size ng− 1 containing the

treatment status of the neighbors of i is given byD(i)g = [D1g, D2g, ..., Di−1g, Di+1g, ..., Dng−1g]
′,

so Dg = [Dig,D(i)g]
′. The realization of vector D(i)g is denoted as

d(i)g = [d1g, d2g, ..., di−1g, di+1g, ..., dng−1g]′ ∈ Dg ⊆ {0, 1}ng−1 and we have therefore

dg = [d,d(i)g] = [d, d1g, d2g, d3g, ..., di−1g, di+1g, ..., dng−1g]
′. The vector of all treatment

assignments in all groups is D = [D1,D2, ...,DG]′.

Let Yig be the outcome variable for individual i at group g. It can be written as:

Yig = Yig(D) = Yig(D1,D2, ...,Dg−1,Dg,Dg+1, ...,DG−1,DG) (1)

Equation (1) depends on the entire vector of treatment assignments. We then impose

some assumptions in order to precisely write Yig as a function of potential outcomes.

Then the �rst restriction in equation (1) is given by:
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Assumption 1 (A1: SUTVA at group level). There is interference only within the group

Yig(D1,D2, ...,DG) = Y ∗ig(Dg)

This assumption is the SUTVA extension that excludes spillover between groups,

but allows spillover within the group. In this case, the outcome variable remains un-

changed for all possible values of treatment outside the group the individual belongs

to. Whether these groups have some contact, such as in neighborhoods or households,

this assumption may not be valid, but if the groups are disjoint, such as schools, then

there is probably no spillover between this units. Several authors have also used this

approach, and each one adapt the SUTVA assumption conform their question (Baird,

Bohren, Mcintosh & Ozler 2015, Graham, Imbens & Ridder 2010, Hudgens & Hallo-

ran 2008, Liu & Hudgens 2014, Manski 2013, Sobel 2006). For example, Manski (2013,

p.4-5) and Sobel (2006, p.1405), call this assumptions respectively as �constant treat-

ment response� and �partial interference assumption�. For a realization Dg = [d,d(i)g] =

[d, d1g, d2g, d3g, ..., di−1g, di+1g, ..., dng−1g]
′ and under the assumption A1 the equation (1)

can be rewritten as:

Yig(Dg) = Y ∗ig(d,d(i)g) (2)

This equation depend on the vector d(i)g that contains information about the treatment

assignment for all individuals within the same group. Individual i is connected to all other

ng−1 individuals in that group by a given network structure. Thus, the fact that a given

individual j and not individual k is treated a�ects i di�erently than another con�guration

in which individual k and not individual j is treated, where both j and k belong to the

same group g as i. In other words the identity of the individual, who is being treated,

matters.

In this context, if one does not have any information on the network structure, it is

necessary to discuss what kind of assumptions about the potential outcomes are necessary

to avoid using that information.

We can rewriting this structure for include the treatment saturation and reduce the

dimensionality of equation (2). Thus de�ne the potential outcomes for individual i at the

saturation level S = πg for treated and control status respectively as:

Y ∗∗ig (1, S = πg)

Y ∗∗ig (0, S = πg)
(3)

then consider the following assumption:

Assumption 2 (A2: interference between individuals inside the group). For a realization
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Dg = [d,d(i)g] there is a function Yig : {0, 1} × {0, 1}ng−1 → R such that

E[Y ∗ig(d,d(i)g)|S = πg] = E[Y ∗∗ig (d, πg)|S = πg]

The A2 hypothesis says that, conditional in saturation level, the mean potential out-

come for individual i at group with treatment vector d(i)g will be equal to the mean

potential outcome with saturation level at S = πg.

Note that perhaps a previous network may exist, but the randomly experiment be-

come information coming from the contacts irrelevant to explain the observed outcome,

additionally, it is also implicit that the treatment does not induce the formation of new

networks. Thus, the two level experiment and the above assumption allows to ignore

the lack of information about network structure and, in this case, only the proportion of

treated units (saturation) become relevant for determine the potential outcomes.

Consider the following example related to A2 assumption: suppose there is a group

with three individuals, with saturation level at S = 2/3 and that individual i has been

treated. Then, the potential outcome can be write as Y ∗ig(d, d1, d2). Thus, assume

A2 is equivalent to stating that E[Y ∗ig(1, 1, 0)|πg = 2/3] = E[Y ∗ig(1, 0, 1)|πg = 2/3] =

E[Y ∗∗ig (1, πg)|πg = 2/3]. Whether, for example, we reduce the saturation level for the level

S = 1/3 and suppose that individual i was not treated, then E[Y ∗ig(0, 1, 0)|πg = 1/3] =

E[Y ∗ig(0, 0, 1)|πg = 1/3] = E[Y ∗∗ig (0, πg)|πg = 1/3]

The A2 assumption reduces the dimensionality of the potential outcome and the

codomain of Y ∗i,g become Y ∗∗ig : [0, 1]×{0, 1} → R. Thus, assuming A2 we can rewrite the

equation (2) as:

Yig = Y ∗∗ig (d, πg) (4)

the equation (4) shows that individual's potential outcome will depend on his own treat-

ment status, but will also be a function of the a proportion individuals treated within

his your group. Using this structure we would like to compare, for example, the poten-

tial outcome of individual i when he participates in the treatment with his respective

counterfactual: Y ∗∗ig (1, S = πg)− Y ∗∗ig (0, S = πg).

Under A1 and A2 assumption the observed outcome of the individual i within group

g if S = πg can be written as:

Yig = Y ∗∗ig (1, S = πg)Dig + Y ∗∗ig (0, S = πg)(1−Dig) (5)

additionally we can rewrite equation (5) for the individual i as:

Yi =
G∑
g=1

[Y ∗∗ig (1, S = πg)Dig + Y ∗∗ig (0, S = πg)(1−Dig)]I{Cig = g} (6)
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where I{} is the indicator function which assumes the value 1 if the individual i is observed

in the group g.

Hence, if Y ∗∗ig (d, S = πg) is independent of Dig given S = πg, and d = 0, 1, then

E[Y ∗∗ig (d, S = πg)|Dig = d, S = πg] = E[Y ∗∗ig (d, S = πg)|S = πg]

This is ensured if there is randomization of who will receive the treatment, since the

proportion is �xed as S = πg. Finally, because of the randomization of the proportion πg

among the groups

E[Y ∗∗ig (d, S = πg)|S = πg] = E[Y ∗∗ig (d, S = πg)]

The following section address the measures that relate the saturation of treatment

with the e�ects along the distribution of Y .

3 Spillover and saturation: a distributive analysis

The aim of this chapter is de�ne and identify the direct and indirect e�ects for quantile.

In addition to identifying these objects, the private and spillover e�ects for quantiles,

similar to the average e�ects of the Philipson (2000), are also de�ne from the proportion

of treated.

The seminal paper on the direct and indirect treatment e�ects de�ned several con-

cepts for the mean (Halloran & Struchiner 1991). Recently others authors analyzed some

questions about average e�ects such as, for example, inference and properties of the es-

timators in large sample (Basse & Feller 2017, Hudgens & Halloran 2008, Vazquez-Bare

2017). However, despite the advances, e�ects along the distribution have not yet been

analyzed.

The principal contribution of this work to the literature is the formalization of direct

and indirect e�ects for quantile and also to present an estimator that allows to capture

the e�ects of saturation over the Y distribution separating them into private and spillover

e�ects similar to Philipson (2000).

In general, let FY = P(Y ≤ y) and FY |X = P(Y ≤ y|X) be the cumulative, uncon-

ditional and conditional respectively, distributions of Y ∈ R, where X is any random

variable. Let τ a real number where τ ∈ (0, 1), then the τ th quantile and the condi-

tional quantile of Y is de�ned respectively as qτ = F−1Y (τ) = infq{P[Y ≤ q]} ≥ τ and

qτ |X = F−1Y |X(τ) = infq{P[Y ≤ q |X]} ≥ τ .

Thus, we can write the quantile, unconditional and conditional, at saturation level

S = πg for treated and controls as:

qd,πg ,τ = inf
q

{
P[Y ∗∗ig (d, S = πg) ≤ q]

}
≥ τ (7)

8



qd,πg ,τ |S=πg = inf
q

{
P[Y ∗∗ig (d, S = πg) ≤ q|S = πg]

}
≥ τ (8)

From the equation (8) some objects of interest can be written. For S = πg > 0 and

S = π′g ≥ 0 we de�ned the Quantile Direct E�ect (QDE), Quantile Indirect E�ect

(QIE) and Quantile Saturation E�ects (QSE) as follows:

ϕDπg ,τ = q1,πg ,τ |S=πg − q0,πg ,τ |S=πg (9)

ϕIπg ,τ = q0,πg ,τ |S=πg − q0,0,τ |S=0 (10)

ϕSd,πg ,π′g ,τ = qd,πg ,τ |S=πg − qd,π′g ,τ |S=π′g (11)

Note that the ϕ e�ects compares the quantile of the cumulative distribution between the

groups for a given �xed percentile. We can calculate this objects for each τ ∈ (0, 1) by

obtaining a curve describing the e�ects for the entire distribution.

Comparisons can be made using several levels of saturation providing a better un-

derstanding of spillover e�ects throughout the distribution. Figure 1 is illustrative and

aims to exemplify the types of analysis that can be made from these de�nitions. Sup-

pose there is a RSD experiment with three saturated groups at the following levels:

(π1, π2, π3) = (0, > 0, > 0). Before treatment the individuals are identical in observable

and unobservable characteristics and after the treatment we observe the distributions in

the �gure 1. The graphs show the cumulative distribution for the control group resulting

from null saturation (π1 = 0), the control and treatment group without spillover and

positive saturation (π2 > 0), and the group with the same e�ects in π2, but with spillover

in the left tail (π3 > 0). Note that the parts of the distributions may be di�erent and

the quantile direct, indirect and spillover e�ects will be distinct depending on the control

group analyzed.

Figure 1: Cumulative distribution to three levels of saturation

Suppose that a researcher is interested in the e�ect of saturation on the individuals
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located in the percentile τ = 0.5. In estimating the previously de�ned objects, it makes

no di�erence to use the control group from the �rst distribution, π1 = 0, or the second

distribution, π2 > 0, since they were not a�ected by treatment group. Thus, the indirect

e�ect will be null when the control groups are from the saturation distributions in the

levels (π1, π2).

The interesting case arises when comparing the distributions without and with spillover

(π2, π3). Note that it is not possible to identify, a priori, how spillover a�ects the treatment

and control groups in the last distribution, since an interaction may occur that bene�ts

(or not) individuals in both groups. Thus, one can measure the e�ect of the treatment

within the last distribution and also compare the quantiles among the distributions. To

verify the e�ect on qd,πg ,τ=0,5, we can conditioning equations (9), (10) and (11) in the

several saturation levels.

The last step to obtain the objects QDE, QIE and QSE is to show how we can write

the quantiles as a function of the observed data coming from the random experiment. To

identify these e�ects it will be necessary to assume an additional assumption:

Assumption 3 (A3: independence of potential outcomes). The potential outcomes are

independent of treatment allocation and saturation level

Y ∗∗ig (1, S = πg), Y
∗∗
ig (0, S = πg) ⊥ (Dig, πg)

The assumption A3 will be satis�ed if the random experiment is conducted on two level

as described in the previous section. Finally, the assumption A1-A3 allows to rewrite

the above de�nitions in function of the observed variables and of the sample analogues,

which can be seen in lemma 1.

Lemma 1 (Identi�cation of quantiles). Under assumptions A1-A3 the quantiles can be

written as:

τ = E

[
Dig

πg

I{S = πg}
P(S = πg)

I{Yig ≤ q1,πg ,τ |S=πg}

]

τ = E

[
(1−Dig)

(1− πg)
I{S = πg}
P(S = πg)

I{Yig ≤ q0,πg ,τ |S=πg}

]

τ = E

[
(1−Dig)

I{S = 0}
P(S = 0)

I{Yig ≤ q0,0,τ |S=0}

]
Proof. See appendix

From this lemma ϕ e�ects can be written conditioning in the groups and treatment status

to then obtain the quantiles:

Corollary 1 (Identi�cation of QDE, QIE and QSE). Under assumptions A1-A3 the

quantiles e�ects, ϕDπg ,τ , ϕ
I
πg ,τ , ϕ

S
d,πg ,π′g ,τ

, are identi�ed.
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Proof. The proof is direct since they are functional of the data.

Using the QDE, QIE and QSE it is possible to capture the direct and indirect e�ects

of the treatment, but not the e�ects of the change in distribution due to saturation. The

seminal paper of Philipson (2000) proposes to divide the changes in the distribution of Y ,

more speci�cally E(Yig|d, S = πg), into two parts: i) a part from changes in distribution

due to proportions of treated denominated �external e�ects� (or spillover) and ii) a second

part attributed to treatment status named as �private e�ects�.

To capture the private and spillover e�ects it is necessary to use the law of total

expectation and partition the sample space as follows2: E(Yi) = πE(Yi|Di = 1) + (1 −
π)E(Yi|Di = 0). Deriving with respect to π: dE(Y )

dπ
= E(Yi|Di = 1) − E(Yi|Di = 0).

Note that there is only private e�ects, because the expectation is not conditioned in

the proportion of treated. So, to get both e�ects it is necessary rewriting the mean as:

E(Yig|πg) = πgE(Yig|S = πg, Dig = 1) + (1 − πg)E(Yig|S = πg, Dig = 0). Deriving gives

the results of Philipson (2000, p.5).

dE(Yig|πg)
dπg

= [E(Yig|S = πg, Dig = 1)− E(Yig|S = πg, Dig = 0)]+

+

[
πg
dE(Yig|Dig = 1)

dπg
+ (1− πg)

dE(Yig|Dig = 0)

dπg

]

In the case of quantiles it is necessary rewriting the cumulative distribution function

by weighting for the proportion of treated individuals in each group:

FY |S=πg(qπg) = πgP[Y ∗∗ig (1, S = πg) ≤ qπg |S = πg, Dig = 1]+

+ (1− πg)P[Y ∗∗ig (0, S = πg) ≤ qπg |S = πg, Dig = 0]
(12)

The following lemma shows the e�ect of πg on the unconditional quantile qπg :

Lemma 2 (Saturation e�ects on the unconditional quantile). Under assumptions A1-A2

2The law of total expectation states that if A1, ..., An are partition of the sample space Ω then E(Y ) =∑n
i=1 E(Y |Ai)P(Ai). For quantiles, discussed below, we can use the law of total probability given by

P(Yig ≤ qπg
) = P({Yig ≤ qπ} ∩ A) + P({Yig ≤ qπ} ∩ Ac) = P(A)P(Yig ≤ qπ|A) + P(Ac)P(Yig ≤ qπ|Ac).

Since the expectation is conditional on two variables, π and D, it will also be used: P(Y |A) =
∑
n P(Y |A∩

B)P(A|B) =
∑
n P(Y |A ∩B)P(B) where B is an independent partition of A.
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the saturation e�ects on the unconditional quantile can be written as:

dqπg
dπg

=
−1

fY (qπg)

[ Quantile Private E�ect (QPE)︷ ︸︸ ︷
P[Yig ≤ qπg |S = πg, Dig = 1]− P[Yig ≤ qπg |S = πg, Dig = 0] +

+ πg
∂P[Yig ≤ qπg |S = πg, Dig = 1]

∂πg
+ (1− πg)

∂P[Yig ≤ qπg |S = πg, Dig = 0]

∂πg︸ ︷︷ ︸
Quantile Spillover E�ect (QSPE)

] (13)

Proof. See appendix

It can be seen that the relationship between the proportion of treated and the quantile

depends on two parts called the Quantile Private E�ect (QPE), di�erence between the

quantiles of treated and controls given the saturation level, and the Quantile Spillover

E�ect (QSPE), de�ned by the relation between the derivatives and the saturation level,

that is, the change in the distribution due to saturation. It should be noted that the

expansion of the program, in this case, does not necessarily increase or reduce qπg , since

the �nal variation will depend on the sizes of QPE, QSPE and also the density of Y valued

in qπg . The e�ects of saturation on each quantile may be di�erent because, depending on

type of program and the interaction, the left tail, center and right tail of the distribution

may be unequally a�ected.

Analyzing the equation (13) it is possible to identify the objects of interest with

randomization, since the variation between groups generates QSPE (note that if there

is no variability between each g, then the derivatives with respect to πg will be null)

and the variation within each group, randomization of treatment, allow get the QPE. If

saturation is 100%, that is, πg = 1, then, as expected, the quantile depend only on the

private e�ects. Suppose that the QPE > 0 and QSPE > 0, that is, private e�ects and

spillover e�ects positive, then
dqπg
dπg

> 0⇔ QPE < −QSPE.
From the equation (13) several comparisons can be made by �xing a quantile and

then conditioning the desire values of saturation and treatment. After presenting and

interpreting the objects of interest, it remains discuss how to estimate the equations

above.

4 Final considerations

The aim of this work is to de�ne and identify the relationship of the saturation of the

treatment with the quantiles of the outcome variable in the presence of treatment spillover.

The literature has developed several estimators to obtain the e�ect of treatment with and

without the presence of spillover for the mean, but there are still no work for quantile and

treatment saturation.

As a continuation of this work we can develop the asymptotic theory as well as make

12



inference and empirical estimates by checking the performance of the estimators. In

addition, one can also remove the assumptions related to randomization and rewrite the

measures using some kind of weighting to correct the treatment selection.

Finally, this work becomes invalid if there is selection in observable or unobservable,

if the program induces network formation or even if not all treated unit are compliers.
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Proofs

A Identi�cation proofs

Proof. Proof of lemma 1

Identi�cation of the quantile for: q1,πg ,τ |S=πg

The de�nition of τ conditional to the group with saturation level S = πg is given by:
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τ = P
(
Y ∗∗ig (1, S = πg) ≤ q1,πg ,τ |S=πg

∣∣S = πg
)

Under the assumption A3 (independence):

τ = P
(
Y ∗∗ig (1, S = πg) ≤ q1,πg ,τ |S=πg

∣∣S = πg, Dig = 1
)

Replacing Yig = Y ∗∗ig (1, S = πg)Dig + Y ∗∗ig (0, S = πg)(1−Dig):

τ = P
(
Yig ≤ q1,πg ,τ |S=πg

∣∣S = πg, Dig = 1
)

Knowing that P(A) = E[I{A}]. When replacing it multiplies by Dig (because it is

conditional on Dig = 1) and I{S = πg} (because it is conditional in the group S = πg):

τ = E
[
DigI{S = πg}I{Yig ≤ q1,πg ,τ |S=πg}

∣∣S = πg, Dig = 1
]

Under the law of total probability:

E[Y |S = πg] = πgE[Y |S = πg, Dig = 1] + (1− πg)E[Y |S = πg, Dig = 0]

Dig=1−−−→ E[Y |S = πg, Dig = 1] =
E[Y |S = πg]

πg

Rewriting

τ = E

[
Dig

πg
I{S = πg}I{Yig ≤ q1,πg ,τ |S=πg}

∣∣∣∣∣S = πg

]
Applying the law of iterated expectations: E[E[Y |X]] = p1E[Y |x = c1] + p2E[Y |x =

c2] + ...+ pME[Y |x = cM ] = E[Y ]
x=c1−−−→ E[Y |x = c1] = E[Y ]

p1

τ = E

[
Dig

πg

I{S = πg}
P(S = πg)

I{Yig ≤ q1,πg ,τ |S=πg}

]
Identi�cation of the quantile for: q0,πg ,τ |S=πg

The de�nition of τ conditional to the group with saturation level S = πg is given by:

τ = P
(
Y ∗∗ig (0, S = πg) ≤ q0,πg ,τ |S=πg

∣∣S = πg
)

Under the assumption A3 (independence):

τ = P
(
Y ∗∗ig (0, S = πg) ≤ q0,πg ,τ |S=πg

∣∣S = πg, Dig = 0
)

Replacing Yig = Y ∗∗ig (1, S = πg)Dig + Y ∗∗ig (0, S = πg)(1−Dig):
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τ = P
(
Yig ≤ q0,πg ,τ |S=πg

∣∣S = πg, Dig = 0
)

Knowing that P(A) = E[I{A}]. When replacing it multiplies by (1−Dig) (because it

is conditional on Dig = 0) and I{S = πg} (because it is conditional in the group S = πg):

τ = E
[
(1−Dig)I{S = πg}I{Yig ≤ q0,πg ,τ |S=πg}

∣∣S = πg, Dig = 0
]

Under the law of total probability:

E[Y |S = πg] = πgE[Y |S = πg, Dig = 1] + (1− πg)[Y |S = πg, Dig = 0]

Dig=0−−−→ E[Y |S = πg, Dig = 0] =
E[Y |S = πg]

(1− πg)

Rewriting

τ = E

[
(1−Dig)

(1− πg)
I{S = πg}I{Yig ≤ q1,πg ,τ |S=πg}

∣∣∣∣∣S = πg

]
Applying the law of iterated expectations: E[E[Y |X]] = p1E[Y |x = c1] + p2E[Y |x =

c2] + ...+ pME[Y |x = cM ] = E[Y ]
x=c1−−−→ E[Y |x = c1] = E[Y ]

p1

τ = E

[
(1−Dig)

(1− πg)
I{S = πg}
P(S = πg)

I{Yig ≤ q1,πg ,τ |S=πg}

]
Identi�cation of the quantile for: q0,0,τ |S=0

The de�nition of τ conditional to the group with saturation level S = 0 is given by:

τ = P
(
Y ∗∗ig (0, S = 0) ≤ q0,0,τ |S=0

∣∣S = 0
)

Under the assumption A3 (independence):

τ = P
(
Y ∗∗ig (0, S = 0) ≤ q0,0,τ |S=0

∣∣S = 0, Dig = 0
)

Replacing Yig = Y ∗∗ig (1, S = πg)Dig + Y ∗∗ig (0, S = πg)(1−Dig):

τ = P
(
Yig ≤ q0,0,τ |S=0

∣∣S = 0, Dig = 0
)

Knowing that P(A) = E[I{A}]. When replacing it multiplies by (1−Dig) (because it

is conditional on Dig = 0) and I{S = 0} (because it is conditional in the group S = 0):

τ = E
[
(1−Dig)I{S = 0}I{Yig ≤ q0,0,τ |S=0}

∣∣S = 0, Dig = 0
]
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Under the law of total probability:

E[Y |S = πg] = πgE[Y |S = πg, Dig = 1] + (1− πg)[Y |S = πg, Dig = 0]

Dig=0−−−→ E[Y |S = πg, Dig = 0] =
E[Y |S = πg]

(1− πg)

Rewriting

τ = E
[
(1−Dig)I{S = 0}I{Yig ≤ q0,0,τ |S=0}

∣∣∣S = πg

]
Applying the law of iterated expectations: E[E[Y |X]] = p1E[Y |x = c1] + p2E[Y |x =

c2] + ...+ pME[Y |x = cM ] = E[Y ]
x=c1−−−→ E[Y |x = c1] = E[Y ]

p1

τ = E

[
(1−Dig)

I{S = 0}
P(S = 0)

I{Yig ≤ q0,0,τ |S=0}

]

B Unconditional quantile proof

In general, de�ne f(x, y(x)) = c ⇒ f(x, y(x)) − c = f ∗(x, y(x)) = 0. The following

derivative dy
dx

can be calculated using the implicit function theorem:

∂f(x, y(x))

∂x
+
∂f(x, y(x))

∂y

dy

dx
− dc

dx
= 0

⇒ dy

dx
= −

∂f(x,y(x))
∂x

∂f(x,y(x))
∂y

= −
∂f∗(x,y(x))

∂x
∂f∗(x,y(x))

∂y

Proof. Saturation e�ects on the unconditional quantile

Rewriting equation (12):

FY |S=πg(qπg)−πgP[Y ∗∗ig (1, S = πg) ≤ qπg |S = πg, Dig = 1]−

− (1− πg)P[Y ∗∗ig (0, S = πg) ≤ qπg |S = πg, Dig = 0] =

= F ∗(πg, qπg) = 0

(A1)

Applying the implicit function theorem in equation (A1)
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dqπg
dπg

= −
∂F ∗(πg, qπg)/∂πg

∂F ∗(πg, qπg)/∂qπg
=

= − 1

fY (qπg)

[
− P[Y ∗∗ig (1, S = πg) ≤ qπg |S = πg, Dig = 1]− πg

∂P[Y ∗∗ig (1, S = πg) ≤ qπg |S = πg, Dig = 1]

∂πg
−

−
∂P[Y ∗∗ig (0, S = πg) ≤ qπg |S = πg, Dig = 0]

∂πg
+ P[Y ∗∗ig (0, S = πg) ≤ qπg |S = πg, Dig = 0]+

+ πg
∂P[Y ∗∗ig (0, S = πg) ≤ qπg |S = πg, Dig = 0]

∂πg

]

Simplifying and replacing Yig = Y ∗∗ig (1, S = πg)Dig + Y ∗∗ig (0, S = πg)(1−Dig):

dqπg
dπg

=
−1

fY (qπg)

[ Quantile Private E�ect (QPE)︷ ︸︸ ︷
P[Yig ≤ qπg |S = πg, Dig = 1]− P[Yig ≤ qπg |S = πg, Dig = 0] +

+ πg
∂P[Yig ≤ qπg |S = πg, Dig = 1]

∂πg
+ (1− πg)

∂P[Yig ≤ qπg |S = πg, Dig = 0]

∂πg︸ ︷︷ ︸
Quantile Spillover E�ect (QSPE)

]

The A1-A2 assumptions have no explicit role in the proof. Such assumptions allow

the potential outcome Yig(d, S = πg) to depend only on the treatment status and the

saturation level.
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