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experimental research. However, DID does not consider treatment-induced changes to a 
network linking treated and control units. Our instrumental variable network DID 
methodology controls first for the endogeneity of the network to the treatment and, 
second, for the direct and indirect role of the treatment on any network member. Monte 
Carlo simulations and an estimation of the drought impact on global wheat trade and 
production demonstrate the performance of our new estimator. Results show that DID 
disregarding the network and its changes leads to significant underestimates of overall 
treatment effects. 
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1. Introduction 

Difference-in-differences (DID) is a standard quasi-experimental method for estimating 

treatment effects in applied econometrics (Lechner, 2010; Card, 1990; Card and Krueger, 1994; 

Abadie et al., 2010, 2014). Over the last few years, the literature has grown aware of the 

importance of incorporating spatial dependence within the DID framework. For instance, when 

observations are geographical units fixed in space, the treatments are likely to be spatially 

correlated and/or the individuals’ responses to the treatment are prone to spatial autocorrelation 

(Delgado and Florax, 2015; Chagas et al., 2016; Dubé et al., 2014). Spatially autocorrelated 

treatments do not violate the stable unit treatment value assumption (SUTVA), a standard DID 

assumption that assumes potential outcome for a unit is unrelated to the treatment status of another 

unit. However, spatially autocorrelated responses violate the SUTVA, leading to potentially biased 

and inconsistent estimates of treatment effects (Kolak and Anselin, 2019). Delgado and Florax 

(2015) formalize this result and conduct a simulation analysis to show the biases arising from 

ignoring the spatial correlation in treatment response. In addition, they measure the presence and 

magnitude of the indirect effect of the treatment on the control units (spillover) and on the treated 

units (spillover and feedback effects). Based on this development, Lima and Barbosa (2019) apply 

a spatial DID (SDID) model to estimate the effect of flash floods. They discover that municipalities 

directly affected by these events experienced an average 8.9% decline in per capita GDP while 

those affected indirectly experienced a 1.09% decline. Chagas et al. (2016) further account for 

spatial interactions between treated and untreated regions when measuring the effect of burning 

sugarcane before harvest on hospitalization due to respiratory problems in Brazil. They find that 

the presence of sugarcane production in treated regions causes an increase of 1.49 cases per 

thousand people compared to the control group and that the influence on the neighboring untreated 

regions is 1.34 cases per thousand people.   

In this paper, we extend SDID by considering the case where regions are connected in an 

economic network that is prone to changes in response to the treatment. SDID relies on a network 

that is exogenous, constant in time, and purely based on the geographical proximity of the spatial 

units. However, the capacity of geographical proximity to subsume all forms of interregional 

interactions has been challenged multiple times (Corrado and Fingleton, 2012; Kang and 

Dall’erba, 2016) more especially because a large amount of literature has already highlighted the 

main pull and push factors that drive networks based on socio-economic processes such as trade 
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(e.g. Anderson, 1979; Yotov et al., 2016), migration (Cullinan and Duggan, 2016; Cooke and 

Boyle, 2011), knowledge flows (Peri, 2005; Jaffe, 1986) and peer effects (Mayer and Puller, 2008; 

Jackson and Yariv, 2010; Kelejian and Piras, 2014; Hsieh and Lee, 2016). As such, this paper 

offers the methodological framework and an application that correspond to the case of 

interregional DID with a network structure affected by the treatment. We name it the instrumental 

variable network difference-in-difference process, or IV-NDID for short. This framework accounts 

for endogeneity of the network to the treatment in a first-stage regression while the role of the 

treatment on the treated areas and on any member of the network is measured in the second stage. 

As such, our approach differs from other contributions in which the network is endogenous but is 

time-invariant (Elhorst, 2010; Kelejian and Piras, 2014; Bramoullé et al., 2009). 

A recent study by Comola and Prina (2020) also adopt a two-stage approach and dynamic 

interactions following a treatment. However, several elements distinguish our work from theirs. 

First, their network variable suffers from confounding factors. Their treatment is to randomly 

assign access to formal savings accounts and the outcome variable is meat consumption observed 

across 915 households of 19 villages in Nepal. The network matrix (i) is based on repeated 

financial exchanges across households, (ii) is observed over two time periods, and (iii) only the 

links within a village are counted. The authors recognize that their identification strategy is 

challenged by the presence of other social linkages, such as family and friendship ties, both within 

and across villages.  

By contrast, our network is defined by the trade linkages that take place, and evolve, following 

the impact of a drought on domestic and foreign wheat production. In addition, trade is the only 

plausible channel that connects a drought event in a country and the wheat production in another 

country; hence, we believe our estimates do not suffer from misidentification. 

The second major difference is in the choice of the excluded instruments needed in the first-

stage estimation of the peer effect WY (W is the network matrix) and of its treatment-induced 

change. Comola and Prina (2020) follow the standard statistical approach suggested by Kelejian 

and Prucha (1998) and adopt the spatial lag of the covariates and their cross-product. Our approach, 

on the other hand, relies on economic theory to choose the excluded instruments as a set of pull 

and push factors commonly used to estimate a gravity model (Head and Mayer, 2014; Yotov et 

al., 2016).  
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Finally, we choose a spatial structure that is based on local spillovers only, the SLX model 

(spatial lag of X), whereas Comola and Prina’s (2020) approach, called the SDM model (Spatial 

Durbin Model), is based on the spatial lag of the dependent and exogenous variables, the latter 

being the treatment effect. While the difference stems from the nature of the spatial process under 

study, trade versus peer-effect, the authors still meet the challenge that the SDM does not allow 

for identification if the observed spatial pattern in the data is due to peer effects or interaction 

among the error terms. As a result, if these two effects differ, it is possible that both are estimated 

incorrectly (Gibbons and Overman, 2012; Pace and Zhu, 2012).  

We describe in section 2 the conceptual framework that extends the basic DID setting to the 

IV-NDID case. Section 3 offers Monte Carlo simulations over various sample sizes in order to 

demonstrate the bias in the estimates that disregard interregional externalities and the endogeneity 

of their network structure. Section 4 focuses on an application of the IV-NDID framework that 

measures how drought events affect the international production and trade of wheat. Without a 

doubt, drought achieves the identification conditions of a treatment variable as its exogeneity and 

random distribution are unquestionable.  

The results suggest that failing to account for the transmission of the treatment effect through 

the trade network leads to underestimates of the impact of drought on agriculture. This result 

allows us to contribute not only to the nascent literature on DID with endogenous networks 

(Comola and Prina, 2020; Dieye et al., 2015) but also to the fairly small literature focusing on the 

impact of weather events on agricultural trade (Jones and Olken, 2010; Dallman, 2019, see 

Magalhães et al., 2021 for a review). In the latter, only two contributions have studied how 

weather-induced changes in trade might affect an outcome variable. The first one, Costinot et al. 

(2016), finds that after accounting for the trade and production adjustments, climate change is 

estimated to have an impact on agriculture equivalent to a 0.26% decrease in global GDP. The 

second one, Dall’erba et al. (2021), concludes that the capacity of the U.S. interstate trade of crops 

to mitigate the impact of climate change on agricultural profit is worth $14.5 billion. Additional 

research in this area is therefore needed. Finally, we will summarize the main results and offer 

some concluding remarks in section 5. 

 

2. The IV-NDID: conceptual framework 

The SUTVA assumption that underpins the validity of DID estimates relies on the idea that 
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the potential outcome observed in one or a group of units (the control group) is unaffected by the 

treatment taking place in other units. Recent contributions in statistics and regional and urban 

economics (Sobel, 2006; Delgado and Florax, 2015; Chagas et al., 2016; Kolak and Anselin, 2019) 

have demonstrated that the neutrality of the treatment in untreated areas is likely to be violated 

when the units of observations are spatially dependent. As indicated in Sobel (2006), failure to 

recognize externalities in space can result in a universally harmful treatment being estimated as 

beneficial.  

The traditional DID considers two groups of regions, the treated group and the untreated one 

(control group), and it focuses on their outcome before (b) and after (a) the treatment. If both 

groups are in their steady state before the treatment, it is reasonable that their outcomes are similar 

conditional on each group’s individual characteristics (Card, 1990). Because some of the 

characteristics cannot be observed, it is common to control for unit fixed effects in addition to 

observables. Furthermore, common shocks impacting all regions are traditionally modeled through 

a time fixed effect. Therefore, the before and after treatment outcomes in the control group (region 

0) and in the treated group (region 1) can be described as: 

Before treatment:  After treatment:  

𝑦!",$% = 𝜇! + 𝜃" + 	𝜑(x!" , β) + 𝜖!" (1) 𝑦!",$& = 𝑦!",$%  (3) 

𝑦!",'% = 𝑦!",$%  (2) 𝑦!",'& = 𝑦!",$& + 𝛼 (4) 

 

where 𝑦!" is the dependent variable, 𝜇! and 𝜃" represent the individual and time fixed effects 

respectively, x!" is a vector of observable individual characteristic, 𝜑(⋅) is a generic function 

linear in the parameters (β), and 𝜖!" is an idiosyncratic error term with the usual i.i.d. properties 

which support the SUTVA assumption and allow proper estimation of the treatment effect 𝛼.   

Based on (1)-(4), we obtain the Average Treatment Effect (ATE) as: 

ATE = E3𝑦!",'& − 𝑦!",'% 5 − 𝐸3𝑦!",$& − 𝑦!",$% 5 = 𝛼    (5) 

 
Defining 𝐷!" as region	𝑖’s indicator of treatment in time 𝑡 ≥ 𝜏!, where 𝜏! represents the time 

when region i receives the treatment, then we can write: 

𝑦!" = (1 − 𝐷!")𝑦!",$ + 𝐷!"𝑦!",'      (6) 

𝐷!" = 𝕀(𝑡 ≥ 𝜏! , 𝑖 = 1,… , 𝑛)       (7) 

where 𝕀(. ) is an indicator variable equal to 1 if the condition is satisfied and zero otherwise. 
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A panel data regression allows us to identify the ATE using 𝐷!" as the treatment on the treated 

regions in the treated period: 

𝑦!" = 𝛼𝐷!" + 𝜇! + 𝜃" + 	𝜑(x!" , β) + 𝜖!"     (8) 

 

Let 𝑦A' =
'
(
∑ 𝑦!",'!  and 𝑦A$ =

'
(
∑ 𝑦!",$!  be the sample average for the treated and nontreated 

regions respectively; then the panel data estimator is:  

𝛼C = Δ	𝑦A' − Δ	𝑦A$=E𝑦A'& − 𝑦A'%F − (𝑦A$& − 𝑦A$%)     (9) 

 

As indicated above, identification relies on the assumption that one, and only one, of the 

potential outcomes is observable for every member of the population. This requirement is called 

the observation rule and it implies that the potential outcome in one unit, whether treated or not, 

is not affected by the assignment of treatment in other units (Cox, 1958; Rosenbaum, 2010). Yet, 

empirical evidence and a large amount of econometric literature have shown that network 

externalities are more often the rule than the exception when dealing with geographically 

referenced units (e.g., Anselin, 1988; LeSage and Pace, 2009). Considering proximity-based 

spillovers (or spillovers based on a W that is not affected by the treatment) obliges us to 

reformulate Eq. (1)-(4) as follows: 

Before treatment:  After treatment:  

𝑦!",$% = 𝜇! + 𝜃" + 	𝜑(x!" , β) + 𝜖!" (1’) 𝑦!",$& = 𝑦!",$% +𝑤!)𝐷!"𝛾 (3’) 

𝑦!",'% = 𝑦!",$%  (2’) 𝑦!",'& = 𝑦!",$& + 𝛼 (4’) 

 

While the direct effect 𝛼 of the treatment (4’) has not changed compared to the previous case 

(4), the outcome is now subject to the indirect effect of the treatment on all regions conditional on 

the neighborhood of the treated region as captured by 𝑤!)𝐷!" where 𝑤! is the ith vector of the W 

network matrix. Based on (1’)-(4’), we can compute three difference effects: the Average 

Treatment Effect (ATE), the Average Treatment Effect on the Treated (ATET), and the Average 

Treatment Effect on the Nontreated (ATENT): 

ATE = E3𝑦!",'& − 𝑦!",'% 5 − 𝐸3𝑦!",$& − 𝑦!",$% 5 = 	𝛼    (10) 

ATET = E3𝑦!",'& − 𝑦!",'% 5 = 	𝛼 + 𝑤!)𝐷!"𝛾     (11) 

ATENT = E3𝑦!",$& − 𝑦!",$% 5 = 	𝑤!)𝐷!"𝛾      (12) 
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The reduced form model that derives from (3’)-(4’) is: 

𝑦!" = (1 − 𝐷!")𝑦!",$ + 𝐷!"𝑦!",' = 𝛼𝐷!" +𝑤!)𝑑!"𝛾 + 𝜇! + 𝜃" + 	𝜑(x!" , β) + 𝜖!" (13) 

 
or, in matrix format: 

Y" = 𝜇 + 𝜃" + 𝛽(X") +	(𝛼 +𝑊𝛾)D" + Ε"     (14) 

 
where Y" is a 𝑛 × 1 vector of observable dependent variables in 𝑡, 𝜇 is a 𝑛 × 1 vector of non-

observable spatial fixed effect, 𝜃" is a scalar time fixed effect, D"	is a 𝑛 × 1 vector reflecting the 

treatment status of each region in time 𝑡, and X" is a 𝑛 × 𝑘 matrix of independent variables linked 

to the dependent variable by the parameters β. As in DID,	𝛼 captures the effect of the treatment on 

the treated regions; however, compared to DID, the element 𝑊𝛾 represents the indirect effect of 

the treatment on both the treated and the non-treated regions. 

As is traditional in the spatial econometric literature, Equations (10)-(14) consider the network 

relationships as purely exogenous; hence, they are not affected by the treatment. However, 

endogenous network structures such as migration, trade, or social and professional networks can 

be affected by the treatment. While the econometric literature is increasingly focusing on models 

and applications with endogenous interregional structures (e.g. Elhorst, 2010; Qu and Lee, 2015; 

Qu et al., 2020), the latter have never been introduced in a network DID setting until now. 

Considering the response of the network structure to the treatment effect allows us to extend (1’)-

(4’) as follows:  

Before treatment:     After treatment:  

𝑤!"#,%& = 𝜓$𝑥!# , 𝑥"#|𝜌, 𝜇!' + 𝜇"' + 𝜃#', + 𝜖!"#	(15)	 𝑤!"#,%( = 𝑤!"#,%& + 𝛼!∈	+' 	+𝛼"∈+' 			(19)	

𝑤!"#,,& = 𝑤!"#,%& 																																																							(16)	 𝑤!"#,,( = 𝑤!"#,%( 																															(20)	

𝑦!#,%& = 𝜇!
- + 𝜃#

- + 	𝜑(x!# , β) +	𝜀!#																		(17)	 𝑦!#,%( = 𝑦!#,%& + 𝛾∑ 𝑤!"#,%( 𝐷"#	" 					(21)	

𝑦!#,,& = 𝑦!#,%& 																																																												(18)	 𝑦!#,,( = 𝑦!#,%( + 𝛼-																									(22)	

 

where 𝑤!*" represents the network relationship between region 𝑖 and region 𝑗 at time 𝑡. 𝐷*" 

represents the set of treated regions after treatment so that the parameters 𝛼!+ and 𝛼*+ are the direct 

impact of the treatment on the regions treated at the origin and destination respectively. 𝛾 is the 

indirect impact of the treatment in the partner regions after the treatment affects the network 
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structure. This approach allows us to capture the time heterogeneity of the individual’s 

characteristics and of the network. Furthermore, the network itself evolves over space through the 

reallocation of the values and directionality of the origin-destination flows that results from the 

treatment D. 

Compared to Equations (1)-(4), it follows from (15)-(22) that the derivative of 𝑦, with respect 

to the treatment does not only equal 𝛼-. Indeed, it is also determined by the i or j element of the 

partial derivative matrix J below:  

𝐉 ≡
∂	𝐘
∂	𝐃 =

⎣
⎢
⎢
⎢
⎡
∂	Y,
∂	D,

⋯
∂	Y,
∂	D.

⋮ ⋱ ⋮
∂	Y.
∂	D,

⋯
∂	Y.
∂	D.⎦

⎥
⎥
⎥
⎤

 

Based on LeSage and Pace (2010), we define the average direct impact of a treatment D on Y 

as the average of 𝐽!! 	or '
.
∑ /	1!

/	2!
.
,3' = '

.
tr(𝐉). It can also be expressed as: 

ATE = E3𝑦!",'& − 𝑦!",'% 5 − 𝐸3𝑦!",$& − 𝑦!",$% 5 = 𝛼-    (23) 

In addition, because the off-diagonal elements of J are non-zero, the overall channel of 

transmission of treatment D on y is composed of a direct effect (𝛼-) and of the indirect effect 

through a change in the network matrix:  

ATET = E3𝑦!",'& − 𝑦!",'% 5 = 𝛼- + 𝛾∑ 𝑤!*",$& 𝐷*"	*   

   = 𝛼- + 	𝛾 ∑ 𝑤!*",$% 𝐷*" + 𝛾 ∑ E𝑤!*",$& −𝑤!*",$% F𝐷*"**  

= ATDET + ATIET     (24) 

 

where ATDET (the Average Treatment Direct Effect on the Treated) is 𝛼- + 𝛾∑ 𝑤!*",$% 𝐷*"* . This 

corresponds to the effect of the treatment on the treated region if the treatment does not change 

the network structure. In addition, the ATIET (Average Treatment Indirect Effect on the Treated) 

is given by 𝛾 ∑ E𝑤!*",$& −𝑤!*",$% F𝐷*"* , which captures the effect of the treatment on the treated 

region due to the change in the network structure since regions will rearrange their links after the 

intervention. In the same way, we compute the Average Treatment Effect on the Non-Treated 

regions as: 
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ATENT = E3𝑦!",$& − 𝑦!",$% 5 = 𝛾e𝑤!*",$& 𝐷*"	
*

 

= 𝛾 ∑ 𝑤!*",$% 𝐷*" + 𝛾∑ E𝑤!*",$& −𝑤!*",$% F𝐷*"**  

= ATDENT+ ATIENT   (25) 

 

Where the Average Treatment Direct Effect on the Non-Treated, ATDENT = 𝛾 ∑ 𝑤!*",$% 𝐷*"* , 

captures the effect of the treatment on the untreated region without the treatment affecting the 

network structure, while ATIENT = 𝛾∑ E𝑤!*",$& −𝑤!*",$% F𝐷*"* , the Average Treatment Indirect 

Effect on the Non-Treated, captures the effect of the treatment on the untreated regions due to a 

change in the network structure. We note that in this formulation ATIET = ATIENT because the 

change in the network structure affects indirectly and in the same way both the treated and non-

treated regions.  

 

3. The IV-NDID: simulations 

This section focuses on a Monte Carlo evaluation of the IV-NDID estimator so that we can test 

its small sample performance. We assume a world composed of n = 5, 10, 50, or 100 spatial units 

observed over t = 2, 6, or 10 time periods. We start by dividing the panel before and after treatment. 

In each simulation, the treatment starts in the second half of the time period. The treated regions 

are selected according to the proportion p + ζ where p = 0.1 or 0.2 and ζ is a uniformly distributed 

pseudo-random number varying between 0 and 0.2. As a result, the share of treated regions varies 

from 0.1 to 0.3 when p = 0.1 and from 0.2 to 0.4 when p = 0.2.  

For each simulation, the network structure is defined by a function that includes a normally 

distributed exogenous variable 𝑥' in addition to time and spatial fixed effects. The treatment 

impacts the network structure as follows: 

𝑤!*,"∗ = 𝛽'𝑥'!," + 𝛽5𝑥'*," + 𝜇! + 𝜇* + 𝜇" + 𝛿'𝐷!,"67 + 𝛿5𝐷*,"67 

𝑤!*," = exp	(𝑤!*,"∗ )𝜀!*,"       (26) 

where 𝑤!*,"∗  is the deterministic part of the network structure between regions i and j at time t, with 

𝑤!*,"∗ = 0 when i = j.  𝑥'!," and 𝑥'*," are place- and time-specific characteristics. The fixed effects 

𝜇! , 𝜇* and 𝜇" are generated as normal and centered variables. The variables 𝐷!,"67 and 𝐷*,"67 are 

dummy indicators equal to 1 during the period in which the treatment occurs and 0 otherwise. The 
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error term 𝜀!*," follows a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑤!*,"∗ ) distribution as it is the most common estimator in gravity 

models (Santos Silva and Tenreyro, 2006; Yotov et al., 2016). Finally, 𝛽', 𝛽5, 𝛿' and 𝛿5 are the 

parameters of the simulation. The next step consists in using 𝑤!*," to build a row-standardized 

network structure W matrix defined as:  

𝑊!* = p
					0												if	𝑖 = 𝑗
+"#,%

	∑ +"#,%#
				if	𝑖 ≠ 𝑗          (27) 

In the second stage, the variable of interest 𝑦!," is a function of an exogenous and normally 

distributed variable 𝑥5, spatial and time fixed effects, the local treatment, and the treatment 

occurring in the partners: 

𝑦!," = 𝛽9𝑥5!," + 𝜇! + 𝜇" + 𝛿9𝐷!,"67 + 𝛿: ∑ 𝑊!*𝐷*,"67* + 𝜖!,"   (28) 

 

We set the parameters 𝛽', 𝛽5,	𝛽9, 𝛿', 𝛿5,	𝛿9, and 𝛿: equal to 1 in our simulations. Estimations 

are based on a Poisson regression with a multiple fixed effects algorithm that is especially adapted 

to the first-stage simulation and the second-stage panel fixed effect whereby 𝛿: reflects the role 

of	𝑊!*. The results of the simulations are reported in Tables 1 and 2 below. In Table 1, we report 

the results for the parameters of the exogenous characteristics in the first stage (𝛽' and 𝛽5) and in 

the second stage (𝛽9). 

 

Table 1: Monte-Carlo results – exogenous variables 
 𝛽' 𝛽5 𝛽9 
 n = 5 
 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0317 1.0848 1.0176 1.0271 0.9541 1.0018 
t = 6 1.0030 1.0041 1.0036 1.0017 1.0040 0.9994 
t = 10 1.0004 1.0004 1.0004 1.0003 0.9900 1.0053 
 n = 10 
 p = 0.1 p = 0.2 p = 0.1 p =0.2 p = 0.1 p = 0.2 
t = 2 1.0443 1.0247 1.0042 1.0003 0.9991 1.0230 
t = 6 1.0018 1.0009 0.9999 1.0014 0.9983 1.0006 
t = 10 1.0001 1.0002 0.9997 0.9995 1.0035 0.9985 
 n = 50 
 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0127 1.0208 1.0016 1.0012 1.0073 0.9946 
t = 6 1.0010 1.0014 1.0005 1.0005 1.0026 1.0022 
t = 10 1.0009 1.0007 1.0007 1.0006 0.9978 0.9990 
 n = 100 
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 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0379 1.0202 1.0010 1.0019 1.0040 1.0116 
t = 6 1.0013 1.0006 1.0012 1.0008 1.0016 1.0016 
t = 10 1.0008 1.0009 1.0009 1.0004 1.0009 1.0032 

 
The results of Table 1 meet with expectations: when it comes to the exogenous variables, the 

greater the number of observations (both in time and space), the smaller is the bias. The simulation 

results on the treatment effects at origin and at the destination on the network structure (stage 1) 

are reported in Table 2 below. This table also reports the results on the treatment effects and the 

network treatment effect in the second stage.  

 
Table 2: Monte-Carlo results – treatment effects 
 𝛿' 𝛿5 𝛿9 𝛿: 
 n = 5 
 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0571 1.0474 1.0094 1.0020 0.9553 1.0262 0.8157 0.9433 
t = 6 0.9971 1.0047 1.0009 1.0033 1.1161 0.9668 1.1465 0.9696 
t = 10 1.0032 1.0011 0.9975 0.9994 0.9636 0.9971 0.9406 0.9708 
 n = 10 
 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0186 1.0084 1.0011 0.9989 1.0647 0.9530 0.9916 0.7745 
t = 6 0.9992 1.0004 0.9998 1.0018 0.9300 0.9826 0.9661 0.8810 
t = 10 0.9996 1.0011 0.9997 0.9984 1.0025 1.0237 1.0070 1.0544 
 n = 50 
 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0084 1.0152 0.9992 0.9988 1.0426 0.9971 0.9817 0.8844 
t = 6 1.0002 1.0004 1.0003 1.0004 0.9814 1.0100 1.0194 1.0424 
t = 10 1.0004 1.0006 1.0005 1.0001 1.0155 0.9993 1.0450 0.9682 
 n = 100 
 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 p = 0.1 p = 0.2 
t = 2 1.0084 1.0152 0.9992 0.9988 1.0426 0.9971 0.9817 0.8844 
t = 6 1.0002 1.0004 1.0003 1.0004 0.9814 1.0100 1.0194 1.0424 
t = 10 1.0004 1.0006 1.0005 1.0001 1.0155 0.9993 1.0450 0.9682 

 
As expected, the panel with fewer observations in space or time displays the worst results. This 

finding is particularly true for the network parameter 𝛿:. These results are similar to those of 

Chagas et al. (2016) in a SDID context with W exogenous. We also note that the bias diminishes 

as the spatial dimension of the panel increases, except when the time dimension is small (2 time 

periods). We believe that the reason comes from the network coefficient being based on a weighted 

treatment of the partner units. When the number of time observations is small, the IV-NDID 
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parameter is strongly correlated with the time fixed effect. However, as the number of time 

observations increases, it is possible to accurately identify the IV-NDID parameter. We also note 

that estimates on each of the other parameters perform well, even when t is small, which meets our 

expectations.  

We complement the exercise above with a comparison of the performance of the IV-NDID 

estimator with three alternative approaches: the classical DID estimator, the classical SDID 

estimator using a geographical proximity matrix, and the classical NDID estimator using a biased 

network matrix (i.e. a network matrix without the first stage regression). For the distance-based 

weight matrix, we consider a circular world in which each region is bordered by one neighbor on 

the left and right when n = 5; otherwise, the number of neighbors is 3 for n = 10 and is 5 when n 

= 50 or 100. Table 3 below reports the results. The results indicate that if the parameter of interest 

is 𝛽9 (the parameter associated with the exogenous variable on the second stage), then any of the 

DID methods perform well even though DID displays the largest bias, more especially when n < 

10. However, if the focus is on the direct treatment effect (𝛿9) or on the treatment in locations 

captured through a network matrix (𝛿:), then IV-NDID performs significantly better than any of 

the alternatives, indicating that they suffer from an omitted variable bias. DID does not generate a 

measurement of the latter effect, while SDID methods based on exogenous matrices lead to biased 

results, more especially with small n and/or when the number of treated regions is small. 

 
Table 3: Monte-Carlo results – comparison of selected parameters across DID methods 
  𝛽. 𝛿. 𝛿/ 

t p DID 
SDID 
geo NDID 

IV-
NDID DID 

SDID 
geo NDID 

IV-
NDID DID 

SDID 
geo NDID 

IV-
NDID 

n = 5 
2 0.1 0.946 0.974 0.901 0.954 0.814 0.949 0.861 0.955 0.000 0.210 0.440 0.816 
2 0.2 0.987 1.014 1.041 1.002 0.820 0.714 0.898 1.026 0.000 -0.018 0.853 0.943 
6 0.1 1.005 1.004 1.004 1.004 0.825 0.851 1.110 1.116 0.000 0.146 1.116 1.147 
6 0.2 0.999 0.999 1.001 0.999 0.743 0.754 0.962 0.967 0.000 0.088 0.907 0.970 
10 0.1 0.993 0.991 0.991 0.990 0.738 0.751 0.952 0.964 0.000 0.016 0.871 0.941 
10 0.2 1.005 1.005 1.006 1.005 0.757 0.774 0.994 0.997 0.000 0.008 0.956 0.971 

n = 10 
2 0.1 0.995 0.984 0.994 0.999 0.972 0.993 1.076 1.065 0.000 0.018 0.894 0.992 
2 0.2 1.013 1.014 1.025 1.023 0.839 0.830 0.914 0.953 0.000 -0.028 0.635 0.775 
6 0.1 0.999 1.001 0.998 0.998 0.825 0.836 0.929 0.930 0.000 0.008 0.964 0.966 
6 0.2 1.001 1.002 1.002 1.001 0.897 0.907 0.988 0.983 0.000 0.079 0.854 0.881 
10 0.1 1.003 1.003 1.004 1.003 0.895 0.896 0.999 1.002 0.000 -0.028 0.982 1.007 
10 0.2 0.999 0.999 0.999 0.998 0.902 0.900 1.010 1.024 0.000 -0.024 0.956 1.054 
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n = 50 
2 0.1 1.008 1.008 1.008 1.007 1.013 1.015 1.042 1.043 0.000 -0.054 1.055 0.982 
2 0.2 0.994 0.993 0.994 0.995 0.980 0.980 0.994 0.997 0.000 -0.032 0.883 0.884 
6 0.1 1.003 1.003 1.003 1.003 0.962 0.963 0.984 0.981 0.000 -0.015 1.089 1.019 
6 0.2 1.002 1.002 1.002 1.002 0.988 0.987 1.010 1.010 0.000 0.000 0.978 1.042 
10 0.1 0.998 0.998 0.998 0.998 0.995 0.995 1.017 1.016 0.000 0.028 1.077 1.045 
10 0.2 0.999 0.999 0.999 0.999 0.980 0.979 0.998 0.999 0.000 -0.002 0.960 0.968 

n = 100 
2 0.1 1.005 1.005 1.005 1.004 0.985 0.985 1.001 0.999 0.000 0.003 0.814 0.942 
2 0.2 1.011 1.011 1.011 1.012 0.989 0.996 1.009 1.007 0.000 0.014 0.865 0.815 
6 0.1 1.002 1.002 1.002 1.002 1.002 1.000 1.022 1.022 0.000 0.000 0.953 0.989 
6 0.2 1.002 1.002 1.002 1.002 0.973 0.972 0.995 0.994 0.000 0.014 1.082 1.086 
10 0.1 1.001 1.001 1.001 1.001 0.974 0.974 0.995 0.994 0.000 -0.001 1.008 1.037 
10 0.2 1.003 1.003 1.003 1.003 0.979 0.979 0.999 0.999 0.000 -0.013 0.977 0.988 

 
Finally, the last set of simulations refers to the change in the network structure due to the 

treatment 𝐷! and 𝐷* in the first stage regression. In Table 4, the true value corresponds to the 

difference between the simulated 𝑤!*"&  (after the drought occurred) and 𝑤!*"%  (the network structure 

before the treatment): 𝛾 ∑ E𝑤!*",$& −𝑤!*",$% F𝐷*"* . The estimated value corresponds to the difference 

between the estimated 𝑤t!*"&  and 𝑤t!*"% . The estimated value highlights the capacity of IV-NDID to 

estimate how the treatment induces changes in the network. Finally, the remaining columns report 

the difference between the true and estimated values. For all simulations, the difference between 

simulated and estimated values is insignificant, showing that the simulated network is close to the 

observed network after the drought. 
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Table 4: Monte-Carlo results – comparison between observed and simulated network 

after the treatment. 

t p true estimated difference true estimated difference 
 n = 5 n = 50 

2 0.1 0.0704 0.0702 0.0001 0.0086 0.0085 0.0001 
2 0.2 0.0609 0.0619 0.0001 0.0071 0.0070 0.0001 
6 0.1 0.0248 0.0257 -0.0002 0.0048 0.0048 0.0000 
6 0.2 0.0259 0.0264 -0.0001 0.0022 0.0022 0.0000 
10 0.1 0.0123 0.0122 0.0001 0.0021 0.0021 0.0000 
10 0.2 0.0047 0.0058 -0.0002 0.0017 0.0017 0.0000 

 n = 10 n = 100 
2 0.1 0.0418 0.0423 0.0000 0.0089 0.0094 -0.0001 
2 0.2 0.0386 0.0393 0.0000 0.0069 0.0066 0.0000 
6 0.1 0.0213 0.0215 0.0000 0.0048 0.0048 0.0000 
6 0.2 0.0157 0.0159 -0.0001 0.0021 0.0021 0.0000 
10 0.1 0.0122 0.0123 0.0000 0.0015 0.0015 0.0000 
10 0.2 0.0070 0.0070 0.0000 0.0010 0.0010 0.0000 

 

4. Application to the effect of drought events on wheat trade and production 

This section applies our IV-NDID estimator to the international trade and production (in 

volume) of wheat. Wheat is an important staple food crop and is one of the most widely produced 

and traded agricultural commodities in the world. In 2018, wheat accounted for $114 billion in 

production and over $41 billion of trade (Food and Agriculture Organization of the United Nations, 

FAO, 2020) and trailed only soybeans in terms of total traded value across agricultural 

commodities. Wheat is not only traded in large amounts, but is exported by a wide assortment of 

countries. In 2018, a total of 28 countries undertook wheat exports of $100 million or greater in 

value. Compared to the number of similarly large exporters in other major crops (11 countries 

exporting such volumes in soybeans, 22 in corn, and 18 in rice), it clearly indicates the extent to 

which wheat is produced and traded across many regions. Similar figures for the number of 

countries with imports surpassing $100 million – 69 countries in wheat compared to 36 in 

soybeans, 52 in corn, and 54 in rice – reflect the crucial importance of international wheat trade in 

meeting the excess demands of dozens of countries. 

Drought events are one of the greatest threats to agricultural productivity and crop yields, 

particularly for wheat. Wheat production is highly susceptible to stress from drought conditions, 

more so than corn or soybeans. A meta-analysis of the agronomic literature by Daryanto et al. 
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(2016) suggests a typical reduction in wheat yields of 20.6% under drought conditions. While plant 

breeders have recently begun to develop and introduce drought-resistant wheat varieties (Khadka 

et al., 2020), technological advances in this direction have been enabled more slowly than for other 

crops.  

An example of the trade-based externalities that we investigate is the 2008 drought that 

afflicted many Middle Eastern and Central Asian countries, which caused wheat production in the 

region to decline by nearly 22% relative to the previous year (FAS, 2008). These countries also 

witnessed a significant contraction of their wheat exports due to the production losses. However, 

the total value of wheat exports from the rest of the world to the Middle Eastern countries increased 

by 224% relative to the previous year (FAO, 2020). The countries that supplied these exports 

(mostly the United States, Canada, Russia, and Ukraine) each produced substantially more wheat 

than they had in years prior, an increase in production that can conceivably be attributed as a 

response to the increased import demand from the drought-afflicted Middle East. In the large 

majority of countries wheat is grown in two seasons, winter and spring, and wheat can be stored 

for a decade or more without losing any of its nutritional benefits; hence, producing countries has 

the capacity to answer increased demand within the same year when a drought takes place abroad.  

While the 2008 drought is illustrative of the direct and indirect (trade-based) impacts of 

drought on wheat trade and production, this episode provides no systematic causal evidence of the 

phenomenon that we seek to analyze. As a result, we turn to the gravity model to estimate the 

determinants of bilateral trading relationships, including drought, and thus the economic linkages 

that determine the scope for spillovers across regions. The gravity model’s accuracy in describing 

the factors that influence trade has made it one of the most successful approaches in empirical 

economics. Beyond its empirical success, the gravity relationship can be derived based on a wide 

assortment of theoretical foundations, both demand-based (e.g., Anderson, 1979; Bergstrand, 

1985) and supply-based (e.g., Eaton and Kortum, 2002; Chaney, 2008). 

Implementing a now standard approach, we estimate our gravity model of bilateral trade using 

a Poisson pseudo-maximum likelihood (PPML) estimator, as suggested by Santos Silva and 

Tenreyro (2006), to account for zero trade flows and heteroskedasticity in the error terms.  The 

equation that we estimate is:	 

 

𝑋!*"=exp[𝜶')𝑿!"+𝜶5)𝑿*"+𝛼9𝐷!"+𝛼:𝐷*" + 𝛼;𝐹𝑇𝐴!*"+𝜙!*+𝜂"+𝜀!*"]  (29) 
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where 𝑋!*" is the value of bilateral wheat exports from i to j in year t, 𝑿!" is a vector of exporter 

supply-side factors that includes exporter i's value of wheat production (measured with a three-

year lag to avoid simultaneity with the second stage estimation), as well as observed temperature, 

precipitation and their squared terms to control for their non-linear effects. The latter three are 

measured during the growing season for wheat, calculated across each country’s land area devoted 

to wheat production.1 We also control for the extent to which irrigation is used, as the degree to 

which farmers are able to rely on irrigation versus rainfall as a water source captures the natural 

resources endowments and the ability of producers to mitigate the negative impacts of drought. 

Because of the potential simultaneity of drought conditions and irrigation – the countries that have 

recently experienced drought are conceivably more likely to use irrigation more extensively – we 

introduce the irrigation variable with a three-year lag (Dall’erba and Dominguez, 2016). Irrigation 

is measured by the percent of cropland within a country under irrigation and is not wheat specific 

as crop-specific data are not available for our panel. 

Similarly, for importer demand-side factors 𝑿*" we include three measures to capture importer 

j’s demand for wheat imports. These include the value added in importer j’s food processing sector 

to reflect j’s demand for wheat, the population of j to account for consumer demand, and the 

combined estimated weight of j’s cattle, hog, and chicken stocks to reflect demand for wheat as 

animal feed. We also include the same temperature, precipitation, and irrigation variables for j as 

previously described for i, as the seasonal weather conditions in importer j and the ability of 

producers to mitigate these conditions using irrigation are likely to impact j’s productive capacity 

and thus its demand for imports. 𝐹𝑇𝐴!*" in equation Error! Reference source not found., is an 

indicator variable for i and j sharing membership in a free trade agreement to account for time-

varying changes in bilateral trade costs, and the pair- and time-specific fixed effects 𝜙!* and 𝜂". 

The dyadic fixed effect 𝜙!* controls for long-run determinants of bilateral trade costs (including 

commonly used gravity covariates such as distance, contiguity, common language, etc.) as well as 

exporter- and importer-specific features.  

 
1 Appendix 1 provides details on how these data are calculated for the growing area(s) of each country. 



 
17 

The variables of primary interest here are the drought measures for the exporter and importer 

– the treatment, in the context of the difference-in-differences setting.2 𝐷!" and 𝐷*" are indicator 

variables equal to one if the average drought conditions in a particular country-year during the 

growing season for wheat qualified as “moderate drought” or worse as measured by the 

Standardized Precipitation-Evapotranspiration Index (SPEI) drought measure, and zero otherwise. 

The coefficient 𝛼9 thus reflects how i’s exports to j are impacted by the presence of drought 

conditions in i, and since drought in an exporting country is likely to diminish a producer’s supply 

capacity and thus its propensity to export, we expect 𝛼9 to be negative. Analogously, 𝛼: reflects 

how drought conditions in j impact its demand for crop imports from i. As drought conditions are 

similarly likely to diminish j’s productive capacity, causing j’s excess demand for crops to increase 

and to be satisfied through imports, 𝛼: is expected to be positive.  

 

Table 5 – Variable descriptions and summary statistics 

Variable Description Source Mean Std. 
Dev. 

Xijt Bilateral wheat trade flows (1,000 USD) CEPII’s BACI 8,085.6 55,426.6 
Production 
valueit 

Value of wheat production (million USD) FAO (2020) 1532.2 3821.4 

Popjt Population (millions) World Bank, 
2020 

57.8 176.0 

Food procjt Value added in food processing (million 
USD) 

Eora database 15,604.0 36,081.8 

Livestockjt Weight of combined livestock (tons) FAO (2020) 6,589.1 15,710.0 
Irrigationit/jt Percentage of cropland under irrigation FAO (2020) 2.88 3.01 
FTAijt Shared free trade agreement membership Gurevich and 

Herman 
(2018) 

0.43 0.50 

Tempit/jt Temperature in wheat-growing areas (10 
°C) 

CRU 1.95 0.48 

Precipit/jt Precipitation in wheat-growing areas (10 
cm) 

CRU 0.78 0.67  

Dit/jt Indicator of average SPEI < –0.7 in wheat 
growing areas 

CRU 0.20 0.40 

W� itDjt Export-share-weighted average of drought 
in partners 

 0.19 0.27 

Productionit Wheat production (1,000 metric tons) FAO (2020) 6,450.6 16,111.7 
Areait Wheat area planted (1,000 hectares) FAO (2020) 2,236.2 5,216.0 
Yieldit Wheat yield (100 grams/hectare) FAO (2020) 28,623.2 17,675.4 

 
2 Appendix 2 provides details on how the drought variable is calculated.  
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Note: FAO is the Food and Agriculture Organization. CEPII’s BACI is the International Trade 
Database (BACI in French) of the Center for Research and Expertise of the World Economy 
(CEPII in French). The CRU data (Climatic Research Unit, version 3.26) have been treated by 
Villoria and Chen (2018) and Villoria et al. (2018). 
 

The data used cover the years 1995-2015 for a panel of 97 exporting countries and 89 importing 

countries. Table  describes each variable used in the analysis and provides basic summary statistics 

for each. The second-stage analysis, presented further below, includes the same 97 wheat-

producing countries as in the first stage.3  

The estimation results for the first-stage gravity equation (36) are presented in Table . 

Significant estimates on the variables reflecting the size of exporters’ supply (total wheat 

production) and importers’ demand (population, and total weight of livestock) are positive, in 

accordance with intuition and the underlying structure of gravity. Likewise, common FTA 

membership positively influences bilateral trade between partners. As expected from the literature 

(Magalhães et al., 2021), evidence on the role played by temperature and precipitation on exports 

and imports is mixed. Estimates on these variables are generally insignificant apart from the 

negative estimate on the linear temperature term for importers. However, because temperature and 

precipitation are inherently correlated with the drought treatment dummy, and are also likely to be 

correlated with how much a particular country exports or imports in a particular year, their 

inclusion is nonetheless necessary. In addition, we find that the extent of irrigation in both the 

exporting and importing country in a given trading relationship is negatively associated with the 

level of trade. We hypothesize that the extent of irrigation is negatively correlated with the quality 

of the country’s natural endowments for wheat production (meaning more efficient producing and 

exporting countries rely less on irrigation). Alternatively, countries possessing a significant 

amount of irrigated farmland reflect a relative comparative advantage in crops such as fruits and 

vegetables that rely more extensively on irrigation than wheat production. 

The main variables of interest are the drought indicator variables. The coefficients behave 

as anticipated: a drought in an exporting country reduces exports by 12.1% (= exp(–0.129) – 1). 

Dall’erba et al. (2021) find a similar result with respect to the impact of a local drought on the 

domestic export of crops across U.S. states, even though the marginal effect they calculate is not 

statistically significant. They justify it by indicating that the large producers are likely to 

 
3 Appendix 3 lists the countries chosen in the analysis. 



 
19 

compensate the decrease in production by drawing on reserves built over the previous years. They 

did not find any indication that, following a drought, a state would favor domestic versus foreign 

markets. Finally, the results confirm our assumption that a drought in an importing country 

increases its imports. Specifically, the estimate implies a 6.8% (= exp(0.066) – 1)  increase in 

wheat exports to a destination experiencing drought, all other things held constant. In the U.S. 

interstate case, Dall’erba et al. (2021) find an elasticity of ∂X!*"/ ∂𝐷*"	between 6.3-9.4% 

depending on the specification. 

 

Table 6 – Gravity estimation of wheat trade 
Exporter variables Importer variables 
log(Prod.i,t–3) 0.290** 

(0.115) 
log(Food proc.jt) –0.085 

(0.082) 
 log(Popjt) 1.400*** 

(0.364) 
log(Livestockjt) 0.578*** 

(0.167) 
Irrigationi,t–3 –0.457*** 

(0.120) 
Irrigationj,t–3 –0.059** 

(0.029) 
Temperatureit 2.501 

(2.599) 
Temperaturejt –1.655** 

(0.764) 
Temperatureit2 –0.431 

(0.759) 
Temperaturejt2 0.362* 

(0.217) 
Precipit –0.158 

(0.617) 
Precipjt 0.088 

(0.156) 
Precipit2 0.006 

(0.281) 
Precipjt2 –0.031 

(0.031) 
Dit –0.129** 

(0.063) 
Djt 0.066* 

(0.035) 
FTAijt 0.122** 

(0.061) 
 

Observations 53,497 
Pseudo R2 0.888 
Pair FEs Y 
Year FEs Y 

 

 Notes: Dependent variable is the unidirectional value of bilateral trade. 
Estimation method is PPML. Dit = mean value of SPEI in growing season < –
0.7. Standard errors clustered by importer–year and exporter-year reported in 
parentheses.  *** p < 0.01, ** p < 0.05, * p < 0.1. 
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In the second stage, we estimate the impact of drought events on wheat production in terms 

of both (1) local effects of drought on production in afflicted regions and (2) spillover effects on 

production that arise when a producing country’s export destinations are impacted by drought. 

From the gravity analysis in the first stage, we can account for the way in which drought events – 

and the consequent impacts on trade – affect the network linkages connecting trading partners. As 

trade is the channel through which negative productivity shocks in one locale generate spillover 

effects on other regions, we use the newly generated trade flows (row-standardized estimated 

values) in the second stage to account for the endogenous nature of trade with respect to the 

drought treatment.  

The estimating equation for the second stage represents wheat production in i as a function 

of both local drought (the direct difference-in-differences treatment effect), as well as drought in 

trading partners (the indirect network difference-in-differences spillover effect): 

 

𝑌!" = 𝒁!") 𝜷' + β5𝐷!" + β9𝑾�!"𝑫*" + 𝜆! + 𝜂" + 𝜈!" (30) 

 

where 𝑌!" is the outcome variable for country i in year t, which reflects wheat production along 

three dimensions: the total physical quantity of production, the amount of land area allocated to 

wheat production in a given year, and yield (production over area). Each of these outcome 

variables is expressed in logarithms and will be regressed separately. Production is a function of 

local characteristics 𝒁!" which encompass variables for contemporaneous local weather conditions 

(temperature and precipitation as well as squared terms of each) as well as lagged (t – 3) irrigation 

capacity to control for its endogeneity (Dall’erba and Dominguez, 2016) as done in the first stage.  

We should anticipate local drought conditions to have a negative effect on production, largely 

because of physical impacts driving lower yields and productivity. Externalities 𝑾�!"𝑫*"	should 

generally evince positive impacts – if export destinations are afflicted by a drought, producers that 

sell to these destinations are likely to produce more in response, largely through increases in 

planted area. In this sense we capture both the intensive margins (output per planted area) and 

extensive margins (how much land area is devoted to production) and delineate the local impact 

versus the externalities of the drought treatment along these dimensions. Note that 𝑾�!"𝑫*" 

corresponds to the export-share-weighted indirect treatment from drought in i’s export destinations 

since 𝑾�!" is row-standardized (∑ 𝑤t!*"*<! = 1, with 𝑤t!*" = 0 for i = j). As such, the extent to which 
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a drought in a trading partner will indirectly impact production in i depends on the importance of 

a particular destination in exporter i’s total exports. 

Note one implication of the row-standardization of 𝑾�!": because in the first-stage gravity 

equation the drought treatment uniformly affects origin i’s exports to all of its partners, in this 

particular setting, a change in the treatment status of i does not alter 𝑾�!". This is because the 

systematic shock that reduces i’s exports to all destinations by the same proportional amount does 

not change the relative importance of any particular importer as measured by 𝑤t!*". This adjustment 

in trade is consistent with the absolute level of i’s exports changing as demonstrated in Appendix 

4. However, the treatment status of j does alter the structure of 𝑾�!", with the overall marginal 

impact of 𝐷*" on 𝑌!" depending on three elements: (1) the importance of j in i’s network (𝑤t!*"), (2) 

how the importance of j changes as a result of the treatment in j (∂𝑤t!*"/ ∂𝐷*"), and (3) how the 

importance of regions besides j (and thus the scope for spillovers from these other regions) changes 

in response to the treatment in j (∂𝑤t!="/ ∂𝐷*"). The derivation of this result is also given in 

Appendix 44.  

Results from estimating equation (30) are shown in Error! Reference source not found.. 

Because 𝑾�!"𝑫*" is an estimated variable, the standard errors in this estimation are calculated by 

bootstrap using 200 replications (Monchuk et al., 2011; Jin and Lee, 2015). For comparison 

purposes, we also calculate an alternative version of the weighted drought measure using an 

(exogenous) spatial weight matrix 𝑾"
>!?", which is comprised of (row-standardized) weights 

reflecting the inverse geographical distance between a producer and its trading partners.5 We find 

significant evidence for the adverse effect of a domestic drought on production, an effect that, as 

in the first stage trade analysis, aligns with expectations of a profoundly negative impacts of 

drought on wheat yields (column 3). Area planted is not impacted by local drought, which is to be 

expected given that future local drought conditions are likely to be unanticipated at the time that 

such extensive margin decisions are made by growers. Importantly, we find positive and 

significant impacts from the estimates on W� itDjt in both total production and planted area (columns 

1 and 2). When country i’s export destinations are afflicted by a drought, wheat production in 

 
4 Note, however, that all the results presented in Table 7 are consistent with a globally-standardized weight matrix 
𝑤&'( = 𝑋&'( ∑ ∑ 𝑋&'('&)'⁄  which implies that ∂𝑤'&' ∂𝐷&⁄ ≠ 0. 
5 Bilateral distances are taken from the U.S. International Trade Commission gravity dataset and are calculated based 
on population-weighted great circle distance between countries. 
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country i increases and this positive supply response occurs entirely through an expansion in 

planted area. The fact that none of the estimates based on the exogenous, geographical distance-

based spatial weight matrix 𝑾"
>!?" enter significantly (columns 4 through 6) confirms the Monte 

Carlo simulations of section 3 and suggests that (endogenous) trading relationships are the channel 

through which these effects are mediated. 

The remaining results indicate that the estimates of the coefficients on temperature and 

precipitation are scattered and largely non-significant for temperature. However, both total 

production and yield seem to maintain a significant, positive and non-linear relationship with 

precipitation. The extent of a country’s irrigation is again negatively correlated with production 

(column 1), a relationship that seems to be based on countries with more area under irrigation 

simply devoting less land to wheat production. Another element that explains this negative 

marginal effect is that our measure of irrigation is not wheat specific, and as explained in the first-

stage analysis, could potentially be positively correlated with unfavorable weather and/or soil 

conditions for agriculture. 

 

Table 7- Wheat production as a function of local and international drought 
 IV-NDID: Export-Share-Weighted W  SDID-geo: Inverse-Distance-Weighted W 
 Production Area Yield  Production Area Yield 
 (1) (2) (3)  (4) (5) (6) 
        
Temperature,@ –0.272 0.436 –0.708*  –0.296 0.412 –0.709* 
 (0.733) (0.609) (0.384)  (0.696) (0.658) (0.395) 
Temperature,@5  –0.111 –0.249 0.138  –0.094 –0.232 0.139 
 (0.214) (0.182) (0.112)  (0.201) (0.197) (0.114) 
Precipitation,@ 0.319* 0.263* 0.056  0.307* 0.252* 0.055 
 (0.166) (0.154) (0.058)  (0.163) (0.147) (0.055) 
Precipitation,@5  –0.090* –0.063 –0.027**  –0.089* –0.062 –0.027** 
 (0.052) (0.046) (0.012)  (0.049) (0.046) (0.012) 
Irrigation,,@A9 –0.191*** –0.187*** –0.005  –0.191*** –0.186*** –0.005 
 (0.021) (0.021) (0.008)  (0.023) (0.021) (0.008) 
D,@ –0.051* 0.029 –0.079***  –0.045 0.033 –0.079*** 
 (0.027) (0.025) (0.015)  (0.028) (0.024) (0.016) 
W�iDjt 0.090** 0.085** 0.005     
 (0.043) (0.034) (0.022)     
Wi
distDjt     0.045 0.045 0.001 

     (0.117) (0.096) (0.052) 
        
Observations 2,037 2,037 2,037  2,037 2,037 2,037 
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R2 0.981 0.984 0.902  0.981 0.983 0.902 
Country FEs Y Y Y  Y Y Y 
Year FEs Y Y Y  Y Y Y 
Notes: Dependent variables expressed in logarithms. Estimation method is OLS. Bootstrapped standard 
errors reported in parentheses. Dit = mean value of SPEI in growing season < –0.7.  
*** p < 0.01, ** p < 0.05, * p < 0.10 
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Table 8 – Average treatment effect on the treated – differences across DID specifications 

 IV-NDID NDID SDID-geo DID 
 (1) (2) (3) (4) 
     
Dit –0.051* –0.046* –0.045 –0.044 
 (0.027) (0.028) (0.028) (0.031) 
WiDjt 0.090** 0.032 0.045  
 (0.043) (0.039) (0.117)  
     
Observations 2,037 2,037 2,037 2,037 
R2 0.981 0.981 0.981 0.981 
Country FEs Y Y Y Y 
Year FEs Y Y Y Y 
Notes: Dependent variable is log production by country. Estimation method is OLS. 
Bootstrapped standard errors reported in parentheses. Drought = mean value of SPEI in 
growing season < –0.7. *** p < 0.01, ** p < 0.05, * p < 0.10 

 

Finally, we report in Table 8 the average treatment on the treated for each of the four versions 

of W listed in the Monte Carlo results of Table 3. The findings of Table 8 indicate that the only 

specification that leads to a significant direct and indirect impact of drought on the (log of) 

production is through the IV-NDID method. Other approaches generate estimates with the 

expected sign but suffer from a missing variable bias (DID) or poorly measured interactions 

(NDID and SDID-geo), hence confirming their lesser performance already measured in Table 3. 

In summary, our results indicate clearly that the overall effect would be biased if the units of our 

sample had been treated as isolated individuals. Indeed, by accounting for the drought-induced 

changes in trade, we see the indirect effect becomes significant and more than compensates for the 

magnitude of the direct effect. 

A decomposition of the average treatment effect on the treated (ATET) between the average 

treatment direct effect on the treated (ATDET) and the network effect on the treated (ATIET) as 

in Eq. (24) requires the estimated values 𝛼-� = -0.051 and γC = 0.090 from the results in Table 7 

column 1. Defining ∑ 𝑤!*"% 𝐷*"*  as the treatment status of the neighbors weighted by the predicted 

importance-weight in the absence of treatment (i.e., when Djt = 0 in the first-stage regression) and 

∑ 𝑤!*"& 𝐷*"*  as the treatment status of neighbors weighted by the predicted importance-weight based 

on observed treatment status, we calculate ∑ 𝑤CD"% 𝐷D"D
AAAAAAAAAAAA = 0.0173 and ∑ E𝑤CD"& −𝑤CD"% F𝐷D"D

AAAAAAAAAAAAAAAAAAAAAAA = 0.0005 

as the sample averages of the weighted treatment-in-neighbors measures. Therefore, drought still 



 
25 

has a negative direct effect on wheat production since ATDET is -0.049 (= -0.051+0.090 ×

0.0173). It is counteracted, although to a lower extent, by the positive impact on the network 

change as ATIET is 4.5× 10A; (= 0.090 × 0.0005). When it comes to the average treatment 

effect on the non-treated regions (ATENT, Eq. 25), the decomposition leads to an average 

treatment direct effect on the non-treated of 1.5× 10A9 while the indirect effect (network change) 

is also positive and small at 4.5× 10A;. 

 
5. Conclusion 

There has been a surge in interest in the DID framework over the last decade. However, its 

increasing application to geographically-referenced data has raised doubt about its capacity to deal 

with the presence of externalities across units of observations in the context of endogenous 

networks such as trade, migration and peer-effects that link observations with each other. In the 

presence of such externalities, the SUTVA assumption upon which this framework relies does not 

hold, estimates can be biased, and conclusions about the validity of a treatment unreliable.  

This manuscript offers the conceptual framework, simulations and application necessary to 

highlight that a large amount of interregional network structures are, in fact, endogenous to a 

treatment. In such a setting, the actual impact of the treatment takes place not only directly – as 

expected from the usual DID – but also in the partner units and through the changes it creates in 

the system-wide network structure. Our Monte Carlo simulations, as well as our application based 

on the impact of drought events on the international trade and production of wheat, indicate that 

failure to account for the presence of all three effects underestimates the true marginal effect of 

the treatment. This result is related to the fact that the treatment status leads to changes in the 

network between and across treated and non-treated. Treated countries see a reduction in yield and 

production that leads to an increase in their imports and thus to an increase in area planted and in 

production in the non-treated (exporting) countries. 

We believe our contribution paves the way for future research avenues as interregional network 

data – e.g., migration, supply-chains, co-patenting, social networks – continue to grow in 

availability and detail. Identifying the right network channel(s) between partners is still a challenge 

as uncertainty remains over the form of the correct spatial structure(s), its (their) proper 

measurement and its (their) capacity to encompass all network interactions. However, these data 

complement the trade flow data which have dominated the library of network data for decades and, 
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in turn, offer researchers the capacity to investigate (or reinvestigate) the impact of a large number 

of policies and shocks of interest.   
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Appendix 

 
Appendix 1- Temperature and precipitation data 

To measure growing-area-specific temperature and precipitation data, we use data from 

Climatic Research Unit (CRU), version 3.26 (Harris et al., 2014) which records monthly weather 

data at a 0.5° resolution. CRU provides monthly time-series temperature (degrees Celsius) and 

precipitation (millimeters per month) data from 1901 to 2017; each year’s data possesses 

information on a total of 67,421 geographical cells. We use the mean value of temperature and 

precipitation in the growing season by country. For each country, we use the code, world map, 

production weight (Monfreda et al., 2008) and growing season (Sacks et al., 2010) from Villoria 

et al. (2018). Production weight by cell is calculated based on the number of hectares allocated to 

wheat production within each cell. Data used to measure the specific timing of the growing season 

in each region are based on information for each cell’s longitude, latitude, and the planting and 

harvest months. 

 

Appendix 2- Drought data 

The severity of drought conditions in the wheat-producing areas for each country for each year 

in the data is calculated using the Standardized Precipitation-Evapotranspiration Index (SPEI), a 

numerical measure of drought conditions developed by climatologists as a way to consistently 

quantify the intensity of drought events using information on both temperature and precipitation 

at a particular location (Vicente-Serrano et al., 2010), which we calculate using monthly weather 

data (from the Climatic Research Unit data version 3.26; Harris et al., 2014).  

SPEI is calculated by first estimating the potential evapotranspiration (PET; the amount of 

evaporation that would occur at a location over a period of time if a sufficient water source were 

available) using a Thornthwaite (1948) function, which relates observed temperature to PET. The 

difference between the modeled PET and observed precipitation is defined as a region’s water 

balance – essentially, a location’s “excess demand” for water. We then estimate the parameters of 

a normal distribution of water balance over 37 years of monthly observations for each country’s 

growing areas for wheat and compare the observed value with the estimated distribution. The 

number of deviations in a particular country-year above or below the country’s historical mean 
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gives the value for SPEI, and we define average values below –0.7 (the cutoff for “moderate 

drought” as classified by the National Drought Mitigation Center) over a growing season as the 

cutoff for the drought treatment.6 

Country-level historic temperature, precipitation and drought data over the growing season for 

each year over the period 1941-2014 come from Villoria and Chen (2018) and Villoria et al. 

(2018). The associated code and original data are available in the GitHub at the following link: 

https://github.com/ElsevierSoftwareX/SOFTX-D-16-00082/tree/master/examples. 

 

Appendix 3- List of countries 

Note that because our analysis includes climatological data for wheat-growing areas in both 

exporting and importing countries, we can only include data on trading relationships in which both 

partners are wheat producers. While this data restriction could potentially leave out major 

importers that do not produce their own wheat, the data used in our estimation accounts for 70% 

of total wheat trade over the 1995 to 2015 sample period. 

Several major trans-shipment countries produce very little or no wheat, but nonetheless record 

significant export volumes in the trade data: Belgium, Hong Kong, the Netherlands, and Singapore, 

all of which we exclude from the estimation. The full list of countries included in the analysis is 

given in Table A1. 

 

  

 
6See https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx for a description of how 
particular SPEI values correspond to different degrees of drought severity. While values of SPEI of –0.7 and below 
defines the threshold for moderate drought that we adopt, to our knowledge, no consistent standard exists in the 
climatological literature that demarcates mild versus moderate drought, moderate versus severe, etc.  
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Table A1: Wheat-producing countries  
Afghanistan Greece Paraguay 
Albania Guatemala Peru 
Algeria Honduras Poland 
Argentina Hungary Portugal 
Armenia India Romania 
Australia Iran Russia 
Austria Iraq Rwanda 
Azerbaijan Israel Saudi Arabia 
Bangladesh Italy Slovakia 
Belarus Japan Slovenia 
Bhutan Jordan South Africa 
Bolivia Kazakhstan South Korea 
Bosnia and Herzegovina Kenya Spain 
Brazil Kyrgyzstan Sudan 
Bulgaria Latvia Sweden 
Burundi Lebanon Switzerland 
Canada Libya Syria 
Chile Lithuania Tajikistan 
China Macedonia Thailand 
Colombia Malawi Tunisia 
Croatia Mexico Turkey 
Czech Republic Moldova Turkmenistan 
Dem. Rep. of the Congo Mongolia Uganda 
Denmark Morocco Ukraine 
Ecuador Mozambique United Kingdom 
Egypt Myanmar United States 
Eritrea Nepal Uruguay 
Estonia New Zealand Uzbekistan 
Ethiopia Niger Yemen 
Finland Nigeria Zambia 
France Norway Zimbabwe 
Georgia Oman 

 

Germany Pakistan 
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Appendix 4- Derivation of marginal treatment effects with endogenous network structure 
and row-standardized W 
 

In the exposition of treatment effects in the IV-NDID setting in section 2, we assume a general 

form describing the endogenous W network that links regions. In the simulation and empirical 

application, however, we assume a row-standardized W matrix based on the importance of region 

j as an export destination for region i such that the elements of the W matrix (with time subscripts 

omitted for simplicity) as given by 

 

𝑤!* =
𝑋!*

∑ 𝑋!**<!
=

𝑒𝑥𝑝�𝑿!)𝛂' + 𝑿*)𝛂5 + α9𝐷! + α:𝐷* + 𝜀!*�
∑ 𝑒𝑥𝑝�𝑿!)𝛂' + 𝑿*)𝛂5 + α9𝐷! + α:𝐷* + 𝜀!*�*<!

	

 
sum to one for each i ≠ j (∑ 𝑤!*!<* = 1 with 𝑤!* = 0 for i = j). 𝑋!* reflects the value of exports 

from i to j, 𝑿𝒊 and 𝑿* are exogenous exporter- and importer-specific factors, and 𝐷! and 𝐷* reflect 

the treatment status of i and j, respectively. 

The second stage IV-NDID equation, which uses estimates of 𝑤!*, 𝑤t!* = 𝑋�!*/∑ 𝑋�!**<!  (where 

𝑋�!* are predicted trade values based on estimated coefficients from the first stage regression), is 

described by 

 
𝑌! = 𝒁!)𝛽' + β5𝐷! + β9𝑊�!𝐷* = 𝑍!)𝛽' + β5𝐷! + β9∑ 𝑤t!*𝐷**<! ,  

 
where 𝑌! is the outcome in region i and 𝒁!) is a vector of exogenous variables. 

 

Effect of local treatment 𝑫𝒊 on local outcome 𝒀𝒊 

The overall effect of the treatment, either locally or in neighbors, depends on several elements. 

The impact of the local treatment is given by 

 
∂𝑌!
∂𝐷!

= β5 +
∂Eβ9∑ 𝑤t!*𝐷*𝒋<𝒊 F

∂𝐷!
= β5 + β9e

∂𝑤t!*
∂𝐷!

𝐷*
𝒋<𝒊

. 

 
This effect is comprised of the direct local effect (β5) and the spatial spillover effects that result 

from 𝐷!’s impact on the network structure (β9 ∑
/+G "#
/H"

𝐷*𝒋<𝒊 ). It is possible to show that, because of 
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the row-standardization imposed on W, the treatment status of i does not alter the structure of 𝑾�𝒊, 

that is, that ∂𝑤t!*/ ∂𝐷! = 0	∀𝑗. Using the definition of 𝑤t!*, we have 

𝑤t!* =
𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�

∑ 𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�*<!
 

=
IJKL𝑿"

*𝛂G+O𝑿#
*𝛂G,OPG-H"OPG.H#Q

IJKR𝑿"
*𝛂G+O𝑿+*𝛂G,OPG-H"OPG.H+SOIJKR𝑿"

*𝛂G+O𝑿,*𝛂G,OPG-H"OPG.H,SO		...		OIJKR𝑿"
*𝛂G+O𝑿/* 𝛂G,OPG-H"OPG.H/S

  

 
Therefore,  

 
∂𝑤t!*
∂𝐷!

=
αt9𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*� ∑ 𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�*<!

3∑ 𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�*<! 55
 

−
αt9𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*� ∑ 𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�*<!

3∑ 𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�*<! 55
 

 

=
αt9𝑋�!* ∑ 𝑋�!**<! 	− 	αt9𝑋�!* ∑ 𝑋�!**<!

3∑ 𝑋�!**<! 55
 

= 0  
 

Intuitively, because the treatment in this case is defined such that it impacts all of i’s network 

linkages proportionally, the systematic shock to all i’s relationships with its neighbors does not 

alter the relative importance of one neighbor over another in i’s network. In the context of our 

application, this reflects that by construction an export shock in region i that is common to all of 

i’s bilateral trading relationships does not change its trade shares with its export destinations, 

despite altering the level of trade itself. 

 

Effect of treatment in neighbor 𝑫𝒋 on local outcome 𝒀𝒊 

The effect on 𝑌! of the treatment in a neighboring region (∂𝑌!/ ∂𝐷*) only depends on the 

spillover effect (∂Eβ9 ∑ 𝑤t!*𝐷*𝒋<𝒊 F/ ∂𝐷*); however, this effect itself depends on (1) the strength of 

the linkage between i and j (𝑤t!*), (2) how the link between i and j adjusts in response to the 

treatment in j (∂𝑤t!*/ ∂𝐷*), and (3) how the importance of i’s other neighbors, 𝑤t!= for 𝑘 ≠ 𝑖, 𝑗, 

changes in response to the treatment (∂𝑤t!=/ ∂𝐷*): 
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∂𝑌!
∂𝐷*

=
∂Eβ9 ∑ 𝑤t!*𝐷*𝒋<𝒊 F

∂𝐷*
 

= β9 ¡
∂𝑤t!*𝐷*
∂𝐷*

+ e
∂𝑤t!=𝐷=
∂𝐷*=<!,*

¢ 

= β9 ¡
∂𝑤t!*
∂𝐷*

𝐷* +𝑤t!*
∂𝐷*
∂𝐷*

+ e
∂𝑤t!=𝐷=
∂𝐷*=<!,*

¢ 

= β9 ¡
∂𝑤t!*
∂𝐷*

𝐷* +𝑤t!* + e
∂𝑤t!=
∂𝐷*=<!,*

𝐷=¢. 

 
Again using the definition of 𝑤t!*, for the differential in the first term we have 
 

∂𝑤t!*
∂𝐷*

=
αt:𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*� ∑ 𝑒𝑥𝑝{𝑿!)𝛂t' + 𝑿=) 𝛂t5 + αt9𝐷! + αt:𝐷=}=<!

[∑ 𝑒𝑥𝑝{𝑿!)𝛂t' + 𝑿=) 𝛂t5 + αt9𝐷! + αt:𝐷=}=<! ]5  

−
αt:𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�

3∑ 𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�*<! 55
 

=
αt:𝑋�!* ∑ 𝑋�!==<! 	− 	αt:𝑋�!*5

3∑ 𝑋�!==<! 55
 

= αt:𝑤t!*E1 − 𝑤t!*F 

 
In words, this term reflects the readjustment in i’s relationship with j that occurs because of the 

treatment which, in turn, is a function of the magnitude of the treatment’s effect on the bilateral 

linkage (αt:), the importance of j in i’s network (𝑤t!*), and the relative importance of i’s linkages 

with all other regions besides j E1 − 𝑤t!*F. 

For the differential in the final term, we have: 

 
∂𝑤t!=
∂𝐷*

=
−αt:𝑒𝑥𝑝�𝑿!)𝛂t' + 𝑿*)𝛂t5 + αt9𝐷! + αt:𝐷*�𝑒𝑥𝑝{𝑿!)𝛂t' + 𝑿=) 𝛂t5 + αt9𝐷! + αt:𝐷=}

[∑ 𝑒𝑥𝑝{𝑿!)𝛂t' + 𝑿U)𝛂t5 + αt9𝐷! + αt:𝐷U}U<! ]5  

=
−αt:𝑋�!*𝑋�!=
3∑ 𝑋�!UU<! 55

 

= −αt:𝑤t!*𝑤t!=  
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which, similarly to the expression for ∂𝑤t!*/ ∂𝐷*, shows that the change in k’s importance in i’s 

network because of a change in j’s treatment status is a function of the first-stage adjustment effects 

(αt:), j’s importance in i’s network (𝑤t!*), and k’s importance in i’s network (𝑤t!=). 

 Substituting these terms into the expression for ∂𝑌!/ ∂𝐷* above and manipulating yields: 

 

𝜕𝑌!
𝜕𝐷*

= 𝛽9 ¡𝛼C:𝑤t!*E1 − 𝑤t!*F𝐷* +𝑤t!* − 𝛼C:𝑤t!* e 𝑤t!=
=<!,*

𝐷=¢ .	

 
This expression reflects the three components described above of the marginal effect of a 

neighbor’s treatment on the local outcome. Specifically, 𝛼C:𝑤t!*E1 − 𝑤t!*F𝐷* depicts the impact 

from the adjustment in 𝑤t!* because of j’s treatment status, 𝑤t!* captures the importance of j in i’s 

network, and −𝛼C:𝑤t!* ∑ 𝑤t!==<!,* 𝐷= measures the adjustment effects that arise because of the 

change in 𝑤t!* and resulting change 𝑤t!= for all other neighbors 𝑘 ≠ 𝑗. The latter element alters the 

scope for spillovers arising from treated neighboring regions besides j. Thus, formulations of W 

that do not explicitly account for the endogeneity of the network (such as distance) omit the 

network adjustment effects and are likely to produce biased estimates of 𝛽9 as demonstrated in 

tables 3 and 8. 

 

 

 

 
 

 


