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Abstract 

It is well known that Markowitz Portfolio Optimization often leads to unreasonable and 

unbalanced portfolios that are optimal in-sample but perform very poorly out-of-sample. 

There is a strong relationship between these poor returns and the fact that covariance 

matrices that are used within the Markowitz framework are degenerated and ill-posed, 

leading to unstable results by inverting them, as a consequence of very small eigenvalues. 

In this paper we circumvent this problem in two steps: the enhancement of traditional risk 

parity techniques, which consider only volatility, aiming to avoid matrix inversions (including 

the widespread Naive Risk Parity model) within the Markowitz framework; the preservation 

of the correlation structure, as much as possible, aiming to isolate a "healthy" portion of the 

correlation matrix, that can be inverted without generating unstable and risky portfolios, 

aiming to rescue the original Markowitz framework, by means of using the Cauchy Interlacing 

Theorem. 

Using Brazilian and US market data, we show that the discussed framework enables one to 

build portfolios that outperform the traditional and the newest risk parity techniques. 
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Abstract

It is well known that Markowitz Portfolio Optimization often leads to
unreasonable and unbalanced portfolios that are optimal in-sample but per-
form very poorly out-of-sample. There is a strong relationship between these
poor returns and the fact that covariance matrices that are used within the
Markowitz framework are degenerated and ill-posed, leading to unstable re-
sults by inverting them, as a consequence of very small eigenvalues.

In this paper we circumvent this problem in two steps: the enhancement
of traditional risk parity techniques, which consider only volatility, aiming to
avoid matrix inversions (including the widespread Naive Risk Parity model)
within the Markowitz framework; the preservation of the correlation structure,
as much as possible, aiming to isolate a "healthy" portion of the correlation
matrix, that can be inverted without generating unstable and risky portfolios,
aiming to rescue the original Markowitz framework, by means of using the
Cauchy Interlacing Theorem.

Using Brazilian and US market data, we show that the discussed framework
enables one to build portfolios that outperform the traditional and the newest
risk parity techniques.

1



1. Introduction

Among portfolio managers and academics, it is not new that optimal mean vari-
ance portfolios are often extreme and perform poorly out of sample, sometimes even
worse than Naive equal weight allocations, see [1].

A simple solution to build diversified portfolios that perform decently out of
sample, and which is currently used by various practitioners to manage hundreds
of billions of dollars, is called naive risk parity (NRP), which assigns the weight of
each asset as proportional to the inverse of the volatility.

It is easy to show that NRP allocation is consistent with Markowitz optimality
when all Sharpe ratios and correlations are the same. These implicit assumptions in
NRP avoid the two main problems associated with Markowitz: inaccuracy of fore-
casted returns and inverting ill-behaved correlation matrices that maybe unstable
to invert.

Our contribution in this paper is two-fold. First we significantly improve the
out of sample performance of NRP but averaging it with a novelty orthogonal port-
folio that we name asymptotically global minimum variance risk parity (MVRP).
Because NPR maybe considered an "aggressive" portfolio (lemma 3.1), we call this
improved allocation balanced risk parity (BRP).

The second contribution is to pursue an innovative approach to circumvent prob-
lematic sample correlation matrices. Using Cauchy Interlacing theorem we find and
preserve the integrity of a large portion of the sample correlation matrix which is
"well behave", in a sense to be made precise, and allow shrinkage only on the "prob-
lematic" part of the correlation structure.

We build a Markowitz optimal portfolio with this procedure, name it Cauchy
Interlacing Risk Parity (CIRP), and show that it has substantially improved out-of-
sample performance over NRP, MVRP, BRP and other diversified allocations that
have been proposed as competitors in the literature.

To move towards more realistic assumptions about Sharpes and correlations, we
estimate expected returns using Bayes-Stein shrinkage (see [2]), where the sample
means are interpolated towards a common value. However, this technique also re-
quires the inversion of the covariance matrix, just like portfolio optimization does,
which enhances the importance of avoiding ill-behaved correlation matrices.

The literature suggests another shrinkage technique (see [3]) where the correla-
tion matrix actually used is the interpolation between the sample matrix and equal
correlations for all assets. These authors provide a formula for the optimal interpola-
tion size. It is also important to notice that NRP may be seen as an extreme version
of this matrix shrinkage, where most information contained in the correlation struc-
ture is fully collapsed to its mean and, hence, a lot of diversification opportunities
are lost.



2. Dataset Description and the Backtesting Proce-

dure

In this work, for the sake of simplicity, but yet, aiming a minimal level of com-
pleteness, we have used two datasets to study the effects of risk parity approaches
that are discussed along this paper: US market data and Brazilian market data.

For the Brazilian market data, we have selected a window span that comprises
2002 until 2020, where a moving window of 60 months is used to compute all cal-
culations required to backtest the performance of the procedures aforementioned,
using a full dataset with all available stocks prices (> 500 companies). Hence, we
include in the list of investible assets all the 65 stocks in the Bovespa index but also
several off index as well taking into account liquidity thresholds. As of March 2020,
the number of eligible investible stocks was 200, but this number fluctuated with
liquidity within our historical dataset.

For the US market data, we have built a dataset comprising the largest US com-
panies data, within a frame that spans from 1994 until 2020, encompassing more
than 1200 public companies. As a possible major drawback of this second dataset
as a result of its size, we have chosen to shrink the dataset size, by picking up the
top thirty percent companies with the highest returns in the last 60 months, also
within a moving window of the same length. Hence, we avoid any computational
problem regarding processing time, given the fact that, for this first paper, we have
not yet optimized our computational procedure for a very large matrix, such as a
potential correlation matrix with 1200 columns / rows.

Furthermore, all companies within each window frame of 60 months which had
more than ten percent of prices that had an “not available” were excluded at each
backtest epoch. This approach aims to fix two potential issues: avoid to introduce
noisy observations on the covariance matrix as a consequence of substituting not
available data by zeroes; and fixing for illiquidity effects (it is straightforward to
notice that assets which are more often tradable, are more liquid).

All portfolios we build and strategies we develop in this paper are only rebal-
anced on the last business day of each month and are held constant until the next
rebalance day. Some portfolios will be long only but others will be long-short, but
the aggregate stock allocations always need to add up to 100%.

It is also important to mention that, in the case of Brazilian data, Ibovespa is
a very concentrated index with the top 5 companies adding to almost 50% of its
total value. We aim to build diversified portfolios with optimality rational using this
broader set of stocks with the goal of having better risk adjusted performance than
the index.

When covariances are known but there is uncertainty about expected returns,
previous work (see [4]) have shown that the optimal portfolio under the most con-
servative set of expected returns within the uncertainty bounds converges to the
global minimum variance portfolio when the level of uncertainty is arbitrarily high.



As the table below shows, the underperformance of the Markowitz Portfolio that
uses sample data for both expected returns and covariances is dismal, with yearly
average historical returning -84.76% versus 7.85% for Ibovespa. This is unfortunate
but typical. Many other works have verified that Markowitz portfolios, which are
optimal in-sample, perform very poorly out-of-sample.

Ibovespa
Equal

Weights

Markowitz
Equal Expect Returns Sample

(Minimum Variance Portfolio) Historical
Historical yr. Avg. Return (i) 7,85% 13,37% 12,08% -84,76%

Volatility (ii) 23,05% 22,82% 127,61% 808,01%
Downside Volatility (iii) 16,40% 17,73% 113,96% 1115,26%

Max Drawdown (iv) -49,58% -41,98% -209% -2600%
Sharpe Ratio (i)/(ii) 0,34 0,59 0,09 -0,10
Sortino Ratio (i)/(iii) 0,48 0,75 0,11 -0,08
Calmar Ratio -(i)/(iv) 6,32 0,32 0,06 -0,03

Recovery Time (yrs) -(iv)/(i) 0,16 3,13 17,31 -30,67
Leverage (Gross Exposure) 100% 100% 2367% 6919%

The historical annual average return of the Markowitz global minimum variance
portfolio (same expected returns) is 12.08%, better than the Ibovespa Index, but
still below the naïve 1/N equal weight portfolio. And the typical risk levels as mea-
sure by volatility, downside volatility and maximum drawdown are unacceptable.

This optimal portfolio is also very leveraged, with gross exposure (the absolute
sum of longs and short) equal to 2300%. In practice, this kind of leverage would be
unattainable because of amount of collateral that would be required. The typical
risk measure (volatility, downside volatility and maximum drawdown) are also worse
than the equal weight portfolio.

Our goal in this paper is to rescue Markowitz and build optimal, diversified and
balanced portfolios with good risk-reward performance in the backtest procedure.

Our first step will be to revise, reinterpret within the optimality framework and
significantly improve risk parity allocations with a novelty addition. This already
gets us a long way and delivers portfolios with better risk-rewards profile.

However, risk parity, even our improved version, ignores or oversimplifies the corre-
lation structure, wasting diversification opportunities. This is consciously done in
order to avoid the risk of inverting the correlation matrix, which are often quasi-ill-
defined and may generate very unbalanced and unreasonable optimal portfolios.

We use the Cauchy Interlacing Theorem to make encouraging progress in dealing
with the risk of facing complicated correlation matrices. The theorem allows us
to find and use the "good" portion of the correlation matrix to construct better,
diversified, optimal portfolio.



3. Improving Risk Parity Allocations

It is well known that optimal mean variance portfolios are often extreme and
perform poorly out of sample, sometimes even worst than Naive equal weight allo-
cations, see [1].

Naive Risk Parity (NRP) is a well established methodology that is currently adopted
in the financial industry to build diversified portfolios and help practitioners man-
aged hundreds of billions of dollars in various markets. NRP simply assigns weights
that are proportional to the inverse of the volatility of each asset, that is

WNRP
i =

1
σi

∑

i

[

1
σi

] .

In the appendix, we prove the following Lemma that lends some rationality to NRP
allocations:

Lemma 3.1. If all assets have the same Sharpe ratio and all correlations are the
same, then NRP allocation is the portfolio that achieves the maximum Sharpe Ratio.

The assumptions in lemma 3.1 about the Sharpe Ratios allows NRP to avoid the
first major pitfall in Markowitz Optimizations: forecasting expected returns and
dealing with challenging correlation matrices.

Nonetheless, lemma 3.1 suggests that NRP is an “aggressive” portfolio and to counter
balance it, we define an alternative diversified portfolio with conservative bias, which
we name asymptotic global minimum variance risk parity (MVRP) portfolio.

Define de average of inverse volatilities as
1

σ́N

=

∑

i

[

1
σi

]

N
, and the weights of this

new portfolio as:

WNRP
i =

1
σi
×

(

1
σi
− 1

σ́N

)

∑

i

[

1
σi
×

(

1
σi
− 1

σ́N

)]

In the appendix we prove the following lemma:

Lemma 3.2. If all correlations are the same and different from zero, and σN con-
verges as you increase N, then MVRP allocation converges to the global minimum
variance portfolio. If the correlations are all zero then the Global min variance port-
folio is given by weights that are proportional to the inverse of the variance of each
asset.

To the best of our knowledge MVRP has been completely overlooked in the lit-
erature, by academics and practitioners.

We think it makes a lot of sense to consider MRRP in this context not just be-
cause it is conservative and NPR is aggressive, but also because NPR’s implicit



assumption of equal Sharpe ratios for all assets contrasts with the usual high uncer-
tainty about estimation of expected returns.

To address parameter uncertainty under the Markowitz framework, [4] solved a
minmax optimization and obtain an analytic solution for the most conservative op-
timal portfolio when all possible expected returns within some bounds of parameter
uncertainty are considered. They prove that this optimal minimax portfolio gets
arbitrarily close to the global minimum variance portfolio as the error uncertainty
growths.

Lemma 3.3 below, which we prove in the appendix, lends strong support to the
compelling idea of combining NPR and MVRP to improve risk-reward profile.

Lemma 3.3. If all correlations are the same the NRP and MVRP portfolios are
orthogonal.

We define a balanced risk parity (BRP) allocation as the simple average between
NRP and MVRP with 50% weights assigned to them. More refined or optimized
weighting scheme might be possible.

Using our dataset, the out-of-sample backtest results in the table below shows that
a robust 50% weighs generate BRP portfolios with risk rewards measures that out-
perform NRP in risk adjusted terms, with better Sharpe ratio, Sortino and Calmar
ratios, for the Brazilian market data.

NRP MVRP BRP Equal Weights
Sortino 0,65 0,48 0,79 0,75

Downside Risk monthly 4,84% 4,82% 3,74% 5,13%
Downside Risk yearly 16,77% 16,69% 12,96% 17,73%

Sharpe 0,54 0,44 0,66 0,59
Volatility monthly 5,78% 5,28% 4,48% 6,59%
Volatility yearly 20,01% 18,30% 15,52% 22,82%
Returns monthly 0,87% 0,64% 0,81% 1,05%
Returns yearly 10,36% 8,00% 10,17% 13,37%
Max Drawdown 38,67% 46,25% 29,32% 40,71%

Returns March/2020 -30,80% -16,89% -23,85% -32,95%

However, while repeating the same exercise for the US data, these results do not
hold, suggesting that the importance of correlation is greater for this market:



NRP MVRP BRP Equal Weights
Sortino 1,0400 0,2425 0,7600 1,0705

Downside Risk monthly 3,42% 4,57% 3,29% 3,67%
Downside Risk yearly 11,83% 15,83% 11,41% 12,72%

Sharpe 0,77 0,20 0,63 0,77
Volatility monthly 4,62% 5,55% 3,99% 5,11%
Volatility yearly 16,00% 19,23% 13,82% 17,69%
Returns monthly 0,97% 0,31% 0,70% 1,07%
Returns yearly 12,30% 3,84% 8,67% 13,62%
Max Drawdown 48,75% 49,75% 43,60% 49,43%

Returns March/2020 -11,59% -8,62% -10,11% -12,13%

4. Using Cauchy Interlacing Theorem to Preserve

the Correlation Structure

In this section we take the difficult task of dealing with inverting the correlation
matrix, which might be potentially unstable, and the main source of extreme, un-
balanced optimal Markowitz portfolios.

We will sidestep the problem of forecasting the expected returns by using sample
historical returns and the Bayes-Stein shrinkage estimation, please see the appendix
for details. It is worth noticing that this technique also requires the inverse of co-
variance and correlation matrices.

When the sample correlation matrix is quasi-ill-defined, which is often the case
in practical work, a solution explored in the literature is the use of Ledoit-Wolf-
shrinkage (see [3]) where the authors suggest an interpolation between the sample
correlation matrix and a constant correlation matrix, where the constant is the aver-
age sample correlation. The authors provide a formula for the optimal interpolation
size.

In the lemmas of the last section, the equal correlations assumption necessary for
NRP and MVRP to be optimal, may be interpreted as being an “extreme”, 100%,
shrinkage of the correlation matrix towards its average.

We believe this full shrinkage excessively deforms the correlation structure and,
in most cases, destroys important information that could be used for better port-
folio diversification. Even if we adopt the optimal interpolation size proposed by
[3], their technique imposes a shrinkage towards the average correlation that is uni-
formly across the whole correlation matrix, which sees to be inefficient.

This brings us to the main contribution of this paper. We acknowledge the
need to shrink some correlations to push the full matrix away from being ill-defined.
However, we believe a portion of the correlation matrix is “healthy” and worth keep-
ing intact. To help us identify this portion we will use the following theorem (see [5]):



Cauchy’s Interlacing theorem: Let A hermitian matrix of order n > 1 and B a
main submatrix from A, of order r ≤ n. If λ1 ≥ . . . ≥ λn are the eigenvalues of A and
θ1 ≥ . . . ≥ θr are the eigenvalues of B, so λi ≥ θi ≥ λi+n−r, for 1 ≤ i ≤ r.

Correlation matrices of N assets often have eigenvalues very close to zero when N is
large. Sometimes, when the number of correlations to be estimated N(N − 1)/2 is
too large compared to the number of dates T available for estimation, we even run
into the unfortunate situation of having negative eigenvalues, indicating the matrix
is not even positive-semi definite and, hence, couldn’t hope to be a proper Correla-
tion matrix.

The problems about inverting the correlation matrix is essentially a problem of
having eigenvalues too close to zero, or that the ratio of the largest eigenvalue and
the smallest eigenvalue, the condition number, is too big.

The Cauchy Interlacing theorem assures us that when you remove an asset, the
smallest eigenvalue increases and the largest eigenvalue decreases and, hence, the
condition number decreases. Therefore, we implement a recursive procedure whereby
in each interaction we remove the asset that promotes the largest decrease in the
condition number.

We loop this recursive Cauchy Interlacing procedure until the correlation submatrix
is “well behaved enough”. To make this statement more precise, at each iteration we
evaluate portfolio leverage, computed as the gross exposure, which is the absolute
sum of the long and short parts of the optimal Markowitz portfolio with maximum
Sharpe ratio, which should be lower than an arbitrary value.

It is worth mentioning that other stopping criteria can also be used instead of im-
posing a a minimum eigenvalue. Positiveness conditions for the minimum variance
portfolio or other prescribed economic rationales can be used, for example.
In this specific case, the rationale for this stopping criteria is that high leverage
not only tends to make the portfolio unstable out-of-sample but also requires large
collateral, sometime unfeasible or with the risk of triggering margin calls in volatile
markets and forced liquidation is sharp sell offs.

We believe we should not do any shrinkage to the correlation submatrix of the
assets that were not removed by this recursive procedure. We keep this portion of
the correlation matrix intact and this maximum Sharpe ratio optimal sub-portfolio,
that uses the sample covariance submatrix and sample historical returns with Stein-
shrinkage, we name it the Cauchy Interlacing Risk Parity (CIRP) allocation.

For the assets that were removed by the recursive Cauchy interlacing procedure,
we use MVRP, that is, we apply extreme correlation shrinkage. We call this portfo-
lio the restricted MVRP.

The lemma below shows that the restricted MVRP and CIPR might offer good
diversification opportunity. It is a similar rationale that lead us to the same conclu-
sion for MVRP and NRP.



Lemma 4.1. For any CIRP asset, if its correlations with all non-CIPR are the
same, then CIRP and restricted MVRP portfolios are orthogonal.

We define the Balanced Cauchy Intelacing Risk Parity (BCIRP) as the combina-
tion of CIRP and restricted MVRP with weights equal the inverse of their volatilities.

For completeness, we have also added in the table above the Hierarchical Risk
Parity (HRP) allocation, which uses clustering and graphs theory to produce ro-
bust portfolios that have been used by some practitioners as a superior alternative
to NRP. Also, we have added the Maximum Decorrelated portfolio built on top of
the assets selected by the CIRP algorithm. Please see [6] and [7][8] respectively for
further details.

That said, in the extensive Table 2 (Appendix D) we show that a pure Maximum
Sharpe portfolio with assets selected by using the CIRP procedure performs vastly
better than all competitor allocations in the backtest of our dataset, for the Brazil-
ian Data, while BCIRP performance results are encouraging, in terms of other risk
measures. The overall performance is even more impressive when observing Figure
1 (Appendix D).

In terms of the US Data, in the extensive Table 1 (Appendix D) we show that a
maximum decorrelated portfolio with assets selected by using the CIRP procedure
performs vastly better than all competitor allocations in the backtest of our dataset,
while HRP performance results are also good in terms of other risk measures. The
overall performance is also even more impressive when observing Figure 2 (Appendix
D), suggesting that while one is aiming to build more aggressive portfolios, a CIRP
based strategy is very attractive.

5. Mathematical Implementation of CIRP

Given a matrix A, the idea is to find the least degenerate main submatrix of A
in each iteration, that is, that submatrix that has the highest minimum eigenvalue,
such that this minimum eigenvalue is greater than an arbitrary number.
So

A =

[

B XT

X Z

]

(1)

With A ∈ R
n×n, B ∈ R

(n−k)×(n−k), where 1 ≤ k,X ∈ Rk and Z ∈ R
k×k.

We begin our analysis when k = 1, finding the least degenerate submatrix (the
principal submatrix that contains the largest least eigenvalue among all possible
principal submatrices). Once this submatrix has been found, we compare whether
its minimum eigenvalue is greater than or equal to our stopping criteria. If it does
not comply, we pass to the case k = 2 and so on.
Cauchy’s interlacing eigenvalues theorem tells us that

λmin(A) ≤ λmin(Bn−1) ≤ λmin(Bn−2) ≤ . . . ≤ λmin(B1).



Therefore, it ensures that our method stops for a minimum imposed eigenvalue as
a stopping criterion.

Using this method, we show that it is possible to obtain a better way of working
with the covariance matrix, based on the Cauchy interlacing eigenvalues theorem.
The algorithm’s objective is to eliminate assets that affect the stability of the co-
variance matrix, in addition to maintaining the assets that preserve the maximum
information content for the Markowitz application. Further details on matrix theory
are provided in the Appendix B.



6. Conclusions and Future Research

We started this paper stating that it is well known that Markowitz Portfolio
Optimization often leads to unreasonable and unbalanced portfolios and its possible
main causes are related to the fact that covariance matrices that are used within
the Markowitz framework are degenerated and ill-posed.

In order to save the traditional (and still theoretically elegant) Markowitz frame-
work by understanding its limitations and circumventing them by making use of a
simple but yet powerful mathematical framework to preserve the correlation struc-
ture and optimize results.

By making extensive use of large datasets for two different markets, we show that
somehow (Maximum Decorrelated Portfolio based on a correlation matrix obtained
by the CIRP method - in the case of US data; or Maximum Sharpe porfolios based
on James-Stein Estimator and CIRP covariance matrix - in the case of Brazilian
data) our approach outperforms the traditional existing techniques and the so mod-
ern HRP (Hierarchical Risk Parity), which is based on Machine Learning techniques.

But yet, there is a huge room for further improvements. A more efficient imple-
mentation of the CIRP algorithm is needed, in order to allow an efficient analysis
of even larger correlation matrices.

Also, there is a clear path involving the research of the impacts building portfo-
lios and diversifing risk within sub-optimal portfolios chosen using risk factors, such
as "low-vol", "beta", "momentum" (which was partially explored here for the US
data), and other potential factors as well.

Furthermore, other possible extensions of this work are (but not limited to)
testing the performance for other markets; evaluate other stoppage criteria, such
as a fixed minimum eigenvalue for the correlation matrices; how to obtain long-
only portfolios within the Markowitz Framework; and, finally, extending this work
to variable selection to exclude collinearity issues in a broader set of regression
problems, which typically involve covariance matrices analysis and computations.



Appendix

A. Proof of Lemmas

Lemma A.1. If all assets have the same Sharpe ratios ś = si =
µi

σi

and all the pair-

wise correlations ρ are the same, then NRP allocation is the portfolio that achieves
the maximum Sharpe Ratio.

Proof:

We would like to maximize the portfolio Sharpe ratio
µTw

√

(wT
∑

w)
over all pos-

sible w. First notice that this objective function is invariant to scale, so that we

only need to very that the maximum is achieved for wi
i =

1

σi

.

Taking ln(), in order to maximize ln(µTw)− 1

2
ln

(

wTΣw
)

we have to verify the

first order conditions (F.O.C.):
µ

µTw
− Σw

wTΣw
= 0.

Define the correlation matrix C(ρ) =











1 ρ . . . ρ
ρ 1 . . . ρ
...

...
...

...
ρ ρ . . . 1











, so that Covariance matrix

become
∑

= diag(σ).C(ρ).diag(σ), where diag(σ) is de diagonal matrix of volatil-

ities.

With this notation, pre-multiplying the F.O.C by diag(σ)−1 and noticing that

diag(σ)−1.µ =







µi

σ1

...
µi

σn






= ś







1
...
1






, the F.O.C becomes

ś







1
...
1







µTw
− C(ρ).diag(σ).w

wT
∑

w
= 0

To verify that this equation is valid for w =







1
σ1

...
1
σn






, we just need to compute the

pieces
(i) µTw = nś,

(ii) C(ρ).diag(σ).w = C(ρ).







1
...
1






= (1− ρ+ nρ)







1
...
1






and

(iii) wTΣw = wTdiag(σ).C(ρ).diag(σ)w =







1
...
1







′

C(ρ)







1
...
1






= n(1− ρ+ nρ)

and substitute them in. This completes the proof.

Lemma A.2. if all correlations are the same and different from zero and σ́N con-



verges as you increase N , then MVRP allocation

WNRP
i =

1
σi
×

(

1
σi
− 1

σ́N

)

∑

i

[

1
σi
×

(

1
σi
− 1

σ́N

)] ,

where
1

σ́N

=

∑

i

[

1
σi

]

N
, converges to the global minimum variance portfolio (GMVP).

If the correlations are all zero then the GMVP is given by weights that are propor-
tional to the inverse of the variance of each assets.

Proof:

The minimum variance portfolio is given by wi = γ.
∑−1







1
...
1






, with γ







1
...
1







∑−1







1
...
1






.

The correlation matrix C(ρ) =











1 ρ . . . ρ
ρ 1 . . . ρ
...

...
...

...
ρ ρ . . . 1











has the inverse

C(ρ) =
1 + (N + 2)ρ

1 + (N + 2)ρ− (N − 1)ρ2











1 ρ̂ . . . ρ̂
ρ̂ 1 . . . ρ̂
...

...
...

...
ρ̂ ρ̂ . . . 1











, where ρ̂ =
−ρ

1 + (N + 2)ρ

Hence

w = γ.diag(σ−1).C(ρ)−1.diag(σ−1)







1
...
1






= γ.diag(σ−1).C(ρ)−1







1
σ1

...
1
σN







= γ
1 + (N − 2)ρ

1 + (N − 2)ρ− (N − 1)ρ2
diag(σ−1)











1−ρ̂
σ1

+ ρ̂
∑

i

1
σ1

...
1−ρ̂
σN

+ ρ̂
∑

i

1
σI











w = γ
1 + (N − 2)ρ

1 + (N − 2)ρ− (N − 1)ρ2











1
σ1
.
(

1−ρ̂
σ1

+ ρ̂N
σN

)

...
1
σN

.
(

1−ρ̂
σN

+ ρ̂N
σN

)











If ρ̂ = 0, and the i-th component of the global minimum variance portfolio is

proportional to
1

σi
2
.

If ρ̂ 6= 0, then as N → ∞ we have ρ̂ → ∞ and ρ̂.N → −1. Therefore, in the
limit, the i-th component of the global minimum variance portfolio is proportional

to
1

σi

(

1

i
− 1

σ́N

)

. This completes the proof.



Lemma A.3. If all correlations are the same the NRP and MVRP portfolios are
orthogonal.

Proof:
The covariance between NRP and MVRP is

wNRP T
wMVRP =

1
∑

i

(

1
σi

)







1
σ1

...
1
σN






diag(σ).C(ρ).diag(σ)











1
σ1

(

1
σ1

− 1
σ́N

)

...
1
σN

(

1
σN

− N
σ́N

)











1
∑

i

[

1
σ1

(

1
σ1

− 1
σ́N

)]

Simple math give us:

(i)







1
σ1

...
1
σ1






.diag(σ) =







1
...
1






and

(ii)C(ρ)diag(σ)











1
σ1

(

1
σ1

− 1
σ́N

)

...
1
σN

(

1
σN

− N
σ́N

)











= C(ρ)







1
σ1

− 1
σ́N

...
1
σN

− 1
σ́N






=











(

1
σ1

− 1
σ́N

)

(1− ρ)
...

(

1
σN

− 1
σ́N

)

(1− ρ)











Multiplying (i) * (ii) sums up to zero.
Hence the covariance is zero, proving the claim.

Lemma A.4. For any CIRP asset, if its correlations with all non-CIPR are the
same, then CIRP and restricted MVRP portfolios are orthogonal.

Proof:
Let P be the number of assets selected by the recursive CIRP procedure and

ΨCIRP their PxP correlation matrix. Let M = N-P the number of non-CIRP stocks,
or equivalently, the restricted MVRP stocks. Denote their MxM correlation matrix
by ΨRESTRICTEDMRP

and the cross correlation matrix PxM between CIRP and non-
CIRP assets as ΨCross.
By assumption, each one of the P CIPR assets have the same correlation with all

Non-CIPR assets, that is, Ψcross =







ρ1
...
ρP







(

1 . . . 1
)

The covariance between CIRP

and MVRP is

COV =

(

WCIRP

0Mx1

)

diag(σ)

(

ΨCIRP ΨCross

ΨCross ΨRestrictedMRP

)

diag(σ)

(

0Px1

WRestrictedMRP

)

However,

diag(σ)

(

0P×1

WRestrictedMRP

)

= diag(σ)









0P×1

1
σP+1

(

1
σP+1

− 1
σ́P+M

)

1
σP+1

(

1
σP+M

− 1
σ́P+M

)









Where
1

σ́P+M

=

∑

i

[

1
σP+1

]

M
Sothe covariance becomes



Cov =







WCIRP
1 .σ1

...
WCIRP

N .σN






ΨCross







1
σP+1

− 1
σ́P+M

...
1

σP+1
− 1

σ́P+M







Cov =







WCIRP
1 .σ1

...
WCIRP

N .σN













ρ1
...
ρP







(

1 . . . 1
)







1
σP+1

− 1
σ́P+M

...
1

σP+1
− 1

σ́P+M







Cov =







WCIRP
1 .σ1

...
WCIRP

N .σN













ρ1
...
ρP







∑

i

[

1
σP+1

]

M

however,
(

1 . . . 1
)







1
σP+1

− 1
σ́P+M

...
1

σP+1
− 1

σ́P+M






=

∑

i

[

1

σP+i

− 1

σ́P+M

]

= 0

So Cov = 0, proving the Claim.

B. Proof of Cauchy Interlacing Theorem

B.1. Notions of linear algebra

We will recall certain definitions of linear algebra. For those interested in study-
ing this topic in depth, see [9].

Definition B.1. Let A ∈ F
n×n(F = R∨C).λ ∈ F is an eigenvalue of A if, and only

if, there is a nonzero vector v ∈ R
n that satisfies the equation Av = λv. Where v is

called an eigenvector associated of A with the eigenvalue λ.

Example B.1. Let be

A =





1 −1 4
3 2 −1
2 1 −1





with eigenvalues λ1 = 3, λ2 = 1, λ3 = −2 and eigenvectores respective
v1 = (1, 2, 1), v2 = (1,−4,−1), v3 = (1,−1,−1).

Definition B.2. Let A ∈ F
n×n. The characteristic polynomial of the matrix A,

denoted by pA(x), is given by pA(x) = det(A− xI).

Example B.2. Let A be a square matrix from the example (B.1).
The characteristic polynomial is

pA(x) = det(A− xI) = det





1− λ −1 4
3 2− λ −1
2 1 −1− λ





= λ3 − 2λ2 − 5λ+ 6 = (λ− 3)(λ− 1)(λ+ 2).



Theorem B.1. The number λ ∈ F is an eigenvalue of the square matrix A ∈ F
n×x if,

and only if, det(λI−A) = 0. That is, if λ is the root of the characteristic polynomial
pA(x) = det(xI − A). Furthermore, if A has order n, then the characteristic
polynomial pA(x) has degree n.

This can be seen in the examples (B.1) and (B.2).

Definition B.3. A matrix A ∈ F
n×x is called Hermitian matrix, when A = A

T
.

Where A denotes the conjugated matrix of A, and AT denotes the transposed matrix
of A.

Example B.3. The square matrices

A =

[

1 −3
−3 1

]

, B =

[

1 1 + i
1− i 1

]

,

are Hermitian matrices.

Theorem B.2. If A is a hermitian matrix of order n, then its eigenvalues λ1, . . . , λn

are real. In addition, A has unit eigenvectors v1, . . . , vn, two to two orthogonal, with
Avj = λ for j = 1, . . . , n. Such eigenvectors form a orthonormal base of Rn.

If A is a hermitian matrix, λ〈v, v〉 = 〈Av, v〉 = 〈v, Av〉 = λ〈v, v〉. So λ = λ.
For matrix A in the example (B.3), their eigenvalues are λ1 = 4, λ2 = −2.
For matrix B, λ1 = 1 +

√
2, λ2 =

√
2.

Observation B.1. How the eigenvalues of a Hermitian matrix are real, so we can
renamed and ordered them how λ1 ≥ . . . ≥ λn.

Definition B.4. Let A ∈ F
n×n. A square matrix B is a main submatrix of order m

of A, with m < n, if B is obtained by the deletion of n−m rows and n−m columns
of A.

Example B.4. For matrix A in the example (B.1),

B =

[

1 −1
3 2

]

, C =

[

1 4
2 −1

]

, D =
[

2
]

are submatrices of A.

B.2. Rayleigh’s principle

Let A be a hermitian matrix of order n and λ1 ≥ . . . ≥ λn its eigenvalues,
with eigenvectors v1, . . . , vn respectively, two to two orthogonal, such that form a
orthonormal base of Rn. We have λi = vTi Avi, for i = 1, 2, . . . , n.

B.2.1. Rayleigh ratio

Theorem B.3 (Rayleigh’s principle). Let A be a hermitian matrix of order n and
λ1 ≥ . . . ≥ λn its eigenvalues. So

λ1 = max
‖v‖=1

vTAv,

and the maximum is reached when v is a unitary eigenvector associated with the
eigenvalue λ1.



Proof: Considering v1, . . . , vn unitary eigenvalues two to two orthonormal of A,
such that form a basis for R

n. Therefore, for v ∈ R
n unitary (‖ v ‖= 1), we have

v =
n

∑

i=0

civi.

Thus

1 = 〈v, v〉 =
〈

n
∑

i=0

civi,
n

∑

j=0

cjvj

〉

=
n

∑

i=0

n
∑

j=0

cicj〈vi, vj〉

=
n

∑

i=0

| ci | .

Also, how

Av = A(
n

∑

i=0

civi) =
n

∑

i=0

ciAvi =
n

∑

i=0

ciλivi.

Thus

〈Av, v〉 =
〈

n
∑

i=0

ciλivi,
n

∑

i=0

civi

〉

=
n

∑

i=0

λi | ci |2≤ λ1(| c1 |2 + . . .+ | cn |2) = λ1.

Then, as we are working on the closed and bounded set {x ∈ R
n :‖ x ‖= 1}, then it

reaches a maximum, and as 〈Av1, v1〉 = λ1. Thus

λ1 = max
‖v‖=1

vTAv.

This is, λ1 is the largest value defined by the quadratic form 〈Av, v〉 in the unit
sphere ‖ v ‖= 1.

Observation B.2. Let A be a hermitian matrix of order n and λ1 ≥ . . . ≥ λn its
eigenvalues. Analogous to the previous theorem, we have to

λn = min
‖v‖=1

vTAv

The minimum is reached when v is the unit eigenvector associated with the eigenvalue
λn.

Example B.5. Let

A =

[

1 2
2 1

]

(2)

whose characteristic polynomial is given by

pA(x) = det(xI − A) = x2 − 2x− 3 = (x+ 1)(x− 3).

With eigenvalues λ1 = 3, λ2 = −1, and orthonormal eigenvectors
v1 = (

√
2/2,

√
2/2)T , v2 = (

√
2/2,−

√
2/2)T .

By Rayleigh’s principle we have

λ1 = max
‖v‖=1

vTAv = max
v2
1
+v2

2
=1
v21 + 4v1v2 + v22.

Using optimization methods we obtain that λ1 = 3, which takes as an argument the
unit vector (

√
2/2,

√
2/2)T .



Corollary B.1. Let A be a hermitian matrix of order n and λ1 ≥ . . . ≥ λn its
eigenvalues. So

λ1 = max
x 6=0

xTAx

xTx
.

The expression xTAx
xT x

is called Rayleigh quotient.

Proof: Since x 6= 0 we have ‖ x ‖> 0, so we get

xTAx

xTx
=

〈Ax, x〉
‖ x ‖2 =

〈

A
x

‖ x ‖ ,
x

‖ x ‖

〉

= vTAv,

where v is a unit vector.

Theorem B.4 (Generalized Rayleigh Principle). Let A be a hermitian matrix of
order n and λ1 ≥ . . . ≥ λn its eigenvalues. For i ≥ 2, be v1, . . . , vi−1 unitary eigen-
vectors two to two orthogonal, associated with eigenvalues respectively λ1, . . . , λi−1.
So

λi = max
‖v‖=1,v⊥v1...,vi−1

vTAv

The maximum is reached when v is the eigenvector associated with the eigenvalue
λi.

Proof: Considering v1, . . . , vn unitary eigenvalues two to two orthonormal of A,
forming a basis for R

n.
For v ∈ R

n unitary, we have to v = c1v1 + . . .+ ci−1vi−1 + civi + . . .+ cnvn.
So we have

1 =‖ v ‖2=
n

∑

i=0

| ci |

Also
〈v, vk〉 = 〈c1v1 + . . .+ cnvn, vk〉 = ck〈vk, vk〉 = ck, ∀k = 1, . . . , n.

Also, how do we want v ⊥ v1, . . . , vi−1, so ck = 〈v, vk〉 = 0, ∀k = 1, . . . , i− 1.
So

〈Av, v〉 =
〈

n
∑

i=0

ciλivi,

n
∑

i=0

civi

〉

= λi | ci |2 + . . .+λn | cn |2≤ λi(| ci |2 + . . .+ | cn |2) = λi.

Example B.6. Let be

A =





3 0 0
0 2 0
0 0 1



 (3)

with eigenvalues λ1 = 3, λ2 = 2, λ3 = 1, and their respective eigenvectors v1 =
(1, 0, 0),
v2 = (0, 1, 0), v3 = (0, 0, 1). By the Generalized Rayleigh Principle

λ2 = max
u2
1
+u2

2
+u2

3
=1,〈u,v1〉=0

(3u2
1 + 2u2

2 + u2
3) = max

u2
1
+u2

2
+u2

3
=1,u1=0

(3v21 + 2v22 + v23)

= max
u2
2
+u2

3
=1
(2v22 + v23) = 2.



B.3. Cauchy’s interlacing eigenvalue theorem

Theorem B.5 (Courant-Fischer theorem). Let A be a hermitian matrix of order n
and λ1 ≥ . . . ≥ λn its eigenvalues. So, for i < n, we have

λi+1 = min
u1,...,ui

[

max
‖v‖=1,v⊥u1...,ui

vTAv

]

.

Proof: let’s define the function

φ(u1, . . . , ui) = max
‖v‖=1,v⊥u1...,ui

vTAv. (4)

This is well defined because it is the maximum of a continuous function in a compact
set.
Follows from Theorem B.4 that

φ(v1 . . . , vi) = λi+1.

Consider all vectors v0 of the form

v0 = c1v1 + . . .+ civi + ci+1vi+1. (5)

Of the conditions we have to

〈v0, uk〉 =
i+1
∑

j=1

cj〈cj, uk〉 = 0, ∀k = 1, . . . , i.

This system provides equations for variables c1, . . . , ci+1. As the homogeneous system
has more variables than equations, we have that there are γ1 . . . , γi+1 with λk 6= 0,
for some k, such that cj = λγj, for 1 ≤ j ≤ i+ 1, is solution for every value of λ.
Considering

λ =

(

i+1
∑

j=1

| γj |2
)−1/2

we obtain a solution in the system with
∑

| cj |= 1.

Then the vector v0 =
∑

cjvj satisfies all the conditions of maximization of equation

(4). So we have to φ(u1, . . . , ui) ≥ 〈Av0, v0〉.
How

〈Av0, v0〉 =
〈

i+1
∑

j=1

cjλjvj,

i+1
∑

k=1

ckvk

〉

=
i+1
∑

j=1

| cj |2 λj ≥ λj+1

i+1
∑

j=1

| cj |2= λj.

This
φ(u1, . . . , ui) ≥ λi+1,

for any set of vetores {u1, . . . , ui}, and by the equation (5) we get the equality of
the statement.



Theorem B.6 (Cauchy’s interlacing eigenvalue theorem). Let A hermitian matrix
of order n > 1 and B be a main submatrix of order n− 1 from A.
If

λ1 ≥ . . . ≥ λn are the eigenvalues of A and

θ1 ≥ . . . ≥ θn−1 are the eigenvalues of B,

so
λ1 ≥ θ1 ≥ λ2θ2 ≥ . . . ≥ λn−1 ≥ θn−1 ≥ λn.

Proof: Let us first show the case where B is the main submatrix of order n− 1 of
A obtained by deleting the last row and column.

A =

[

B z
zT ann

]

(6)

Let the vector v ∈ R
T be such that v = (u 0)T , so Av = Bu. For any vectors

x1, . . . , xi−1, with i < n, we have

max
‖v‖=1,v⊥x1,...,xi−1

〈Av, v〉 ≥ max
‖v‖=1,v⊥x1,...,xi−1,en

〈Av, v〉, (7)

where en is the canonical vector (0, 0, . . . , 1) ∈ R
n.

Taking xj = (wj xn
j )

T , with wj ∈ R
n, for 1 ≤ j ≤ i− 1. So

max
‖v‖=1,v⊥x1,...,xi−1,en

〈Av, v〉 = max
‖u‖=1,u⊥w1,...,wi−1

〈Bu, u〉.

Then we can define the function

f(x1, . . . , xi−1) = max
‖v‖=1,v⊥x1,...,xi−1,en

〈Av, v〉 = max
‖u‖=1,u⊥w1,...,wi−1

〈Bw,w〉,

taking each coordinate of the vector wj as the first n − 1 coordinates of the vector
xj, for j = 1, . . . , i− 1.
As is the same function, then

min
x1,...,xi−1

[

max
‖v‖=1,v⊥x1,...,xi−1,en

〈Av, v〉
]

= min
w1,...,wi−1

[

max
‖u‖=1,u⊥w1,...,wi−1

〈Bu, u〉
]

= θi. (8)

Let’s note that:
For n = 1 we have

max
‖v‖=1,v⊥en

〈Av, v〉 = max
‖u‖=1

〈Bu, u〉 = θ1.

Using the theorem (B.5) and the equations (7), (8), we have

λi = min
x1,...,xi−1

[

max
‖v‖=1,v⊥x1,...,xi−1

〈Av, v〉
]

≥ min
w1,...,wi−1

[

max
‖u‖=1,u⊥w1,...,wi−1

〈Bu, u〉
]

= θi.

The equation (8), we have

θi = min
x1,...,xi−1

φ(x1, . . . , xi−1, en), (9)

where we define
φ(x1, . . . , xi) = max

‖v‖=1,v⊥x1...,xi

vTAv.



By the theorem (B.5) we have

min
x1...,xi

φ(x1, . . . , xi) = λi+1. (10)

In the problem (9), we consider xn = en, then in the equation (10) we are more
likely to find a minimum, thus

θi = min
x1,...,xi−1

φ(x1, . . . , xi−1, en) ≥ min
x1...,xi

φ(x1, . . . , xi) = λi+1.

Example B.7. Considering a matrix A of order n, and a submatrix B such that

A =

[

B 0
0 Z

]

(11)

Let w 6= 0 be an eigenvector of real matrix B, with its respective eigenvalue λw.
So λw = wTBw

wTw
, because wTBw = wTλww.

The vector w0 = (w 0)T is an eigenvector of A with its eigenvalue λw0
.

How Bw = λww, so Aw0 = Bw = λww = λww0.
If we impose that w is the smallest eigenvector of B, not necessarily the smallest
eigenvalue of A, therefore λminA

≤ λw.

Theorem B.7 (Generalized Cauchy’s interlacing eigenvalue theorem). Let A her-
mitian matrix of order n > 1 and Br be a main submatrix of order r from A whit
1 ≤ r < n.
If

λ1 ≥ . . . ≥ λn are the eigenvalues of A and

θ1 ≥ . . . ≥ θr are the eigenvalues of B,

so
λi ≥ θi ≥ λi+n−r,

for 1 ≤ i ≤ r.

Proof: We proceed by induction in n− r.
For n− r = 1 we are in the case of the previous theorem.
Suppose the result is valid for n − r − 1 and we denote by γ1 ≥ . . . ≥ γr+1 the
eigenvalues of the matrix Br+1. By theorem (B.6) we have γi ≥ θi ≥ γi+1.
So we have

λi ≥ γi ≥ θi ≥ γi+1 ≥ λi+n−r.

Thus
λi ≥ θi ≥ λi+n−r.

Example B.8. Let be

A =





2 1 1
1 2 1
1 1 3



 (12)

and a submatrix

B =

[

2 1
1 2

]

(13)



For each matrix we obtain their respective eigenvalues of A and B.

λ1 = 3 +
√
2, λ2 = 3−

√
2, λ3 = 1

θ1 = 3, θ2 = 1

By the theorem we have to compare for the matrices A y B

3 +
√
2 ≥ 3 ≥ 3−

√
2 ≥ 1 ≥ 1

C. Stein Shrinkage

Stein-Shrinkage (see [10]) procedure is sometimes used to estimate expected re-
turns as interpolation between the sample historical expected returns and a fixed
“grand” average return, which should reduce the estimation error. The main idea is
to acknowledge the uncertainty on the parameters estimation. Therefore, a Bayes
procedure is applied in order to deal with such an uncertainty. The novelty is to
minimize the estimation error of the whole portfolio instead of individual assets,
which is more precise.
Basically the Bayes-Stein estimator gives us the assets’ expected return to be con-
sidered for optimal allocation. In that case, the estimated expected return, RBS,
is:

RBS = (1− w)R + wrMV 1

where

R is an n× 1 vector of the mean sample returns;
rMV is a scalar representing the expected return of the minimum variance portfolio;
1 is nx1 vector of ones;

w = min

(

1,
n−2
T

(

R + rMV
)′ ∑−1 (R + rMV

)

)

;

n is the number of assets;
T is the size sample;
∑

is the covariance matrix of returns.

Both the RBS e w result from the Bayes-Stein shrinkage procedure.



D. Tables and Images

Figure 1: Cumulative Returns for Brazil

Figure 2: Cumulative Returns for US



Markowitz + Stein BCIRP HRP NRP MVRP BRP Max Decorrelated (CIRP) Equal Weights Index Max Sharpe CIRP
Sortino 0,0000 0,7930 1,1526 1,0400 0,2425 0,7600 1,4068 1,0705 0,5685

Downside Risk monthly 474,70% 3,06% 3,04% 3,42% 4,57% 3,29% 3,27% 3,67% 3,31%
Downside Risk yearly 1644,43% 10,61% 10,54% 11,83% 15,83% 11,41% 11,34% 12,72% 11,46%

Sharpe Ratio 0 0,59 0,87 0,77 0,20 0,63 0,86 0,77 0,42
Returns montthly 0,68% 0,96% 0,97% 0,31% 0,70% 1,24% 1,07% 0,53%

Returns yearly 8,41% 12,15% 12,30% 3,84% 8,67% 15,96% 13,62% 6,52%
Volatility yearly 1292,69% 14,35% 13,94% 16,00% 19,23% 13,82% 18,55% 17,69% 15,59%

Volatility monthly 373,17% 4,14% 4,02% 4,62% 5,55% 3,99% 5,36% 5,11% 4,50%
Returns March/2020 -0,25% -11,36% -10,81% -11,59% -8,62% -10,11% -9,19% -12,13% -11,36%

Max Drawdown 39,93% 44,25% 48,75% 49,75% 43,60% 52,08% 49,43% 43,42%

Table 1: Results for US Data

Markowitz + Stein BCIRP HRP NRP MVRP BRP Max Decorrelated (CIRP) Equal Weights Index Max Sharpe CIRP
Sortino 0 1,00 0,72 0,65 0,48 0,79 0,25 0,75 1,16

Downside Risk monthly 676,94% 3,10% 4,14% 4,84% 4,82% 3,74% 5,13% 5,12% 4,53%
Downside Risk yearly 2344,99% 10,75% 14,36% 16,77% 16,69% 12,96% 17,76% 17,73% 15,69%

Sharpe 0 0,75 0,76 0,54 0,44 0,66 0,17 0,59 0,88
Volatility monthly 671,58% 4,16% 4,46% 5,78% 5,28% 4,48% 7,72% 6,59% 6,01%
Volatility yearly 2326,42% 14,41% 15,44% 20,01% 18,30% 15,52% 26,73% 22,82% 20,82%

Returns montthly 0,86% 0,83% 0,87% 0,64% 0,81% 0,37% 1,05% 1,41%
Returns yearly 10,81% 10,36% 10,90% 8,00% 10,17% 4,47% 13,37% 18,28%
Max Drawdown 12468,97% 26,20% 32,27% 38,67% 46,25% 29,32% 53,72% 40,71% 37,53%

Returns March/2020 -56,36% -15,54% -25,26% -30,80% -16,89% -23,85% -12,80% -32,95% -12,81%

Table 2: Results for Brazilian Data
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