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Abstract

A recently proposed mechanism for the provision of continuous public goods is the
so-called quadratic funding mechanism, which has been shown to provide socially optimal
outcomes under complete information. In this work we show that the conditions to obtain
the same desirable property under incomplete information are strongly restrictive. We
also propose two measures for the size of the inefficiency and show how that deadweight
loss responds to changes in the size of the population, the valuation of the public good by
individuals and the variance of the expected value of contributions to the fund.

Keywords: Public goods provision, incomplete information, quadratic funding mecha-
nism.
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1 Introduction

Public goods provision is one of the problems in Public Economics that attracts a signifi-
cant share of the attention of theorists and applied researchers alike. Non-excludability and
non-rivalry of these kinds of goods make arising the well-known free-rider problem, which
represents a challenge both for the theoretical and applied point of view. Samuelson (1954)
was one of the pioneers in identifying and modeling the problem and proposing solutions. A
classic solution for the problem is the Lindahl taxation (Lindahl (1958)); in it, the central
planner (government) uses the private demand of each participant to determine the optimal
level of funding and, charge participants according to their marginal willingness to pay. Evi-
dent difficulties for that solution are the definition of personalized markets for the good and
confidence in individuals’ truthful revelation of values.

Modern mechanism proposals include restrictions of participation and incentives to reveal
the true valuation for the public good. Clarke (1971), Groves (1973), and Groves and Led-
yard (1977) contributed with the formulation of government allocation-taxation schemes that
recover the Pareto optimality, even in general equilibrium frameworks. Some criticisms have
been made regarding that mechanism due to its weakness to collusions formation and other
impractical issues (Rothkopf (2007)). Walker (1981)proposes a variation of this mechanism
that manages to satisfy both efficiency and individual rationality. Nevertheless, the resulting
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mechanism is subject to the instability of equilibria, an essential property for its practical
implementation (Healy (2006)). Tideman and Plassmann (2017) make a detailed discussion
of mechanisms in this literature and their common characteristics.

Buterin et al. (2019) have recently proposed a new mechanism capable of attaining op-
timality in the private provision of a public good: the quadratic funding (QF) mechanism.
It is based on the quadratic voting mechanism proposed by Weyl (Posner and Weyl (2017)),
which is already applied to democratic politics and corporate governance. The authors claim
that QF would not require any assumption about the set of public goods to be funded nor
about the number of individuals contributing to these public goods. Such properties are not
shared by other mechanisms in the literature and would make the mechanism particularly
well-suited for situations where one would wish for the individuals themselves to propose
public goods for funding, rather than letting these individuals choose contributions for a fixed
set of public goods. The QF mechanism is already used in platforms for funding public goods
and open-source projects, such as HackerLink and Gitcoin.

When models of public goods provision include the possibility of incomplete information
regarding individual characteristics, it is often the case that inefficiency increases. Some
works in the literature show different ways to include incomplete information in the public
good provision model and its consequences. Menezes et al. (2001)and Bag and Roy (2008)
consider the incomplete information in the participants’ preferences. Gradstein (1992) and
Gradstein et al. (1994) insert the incomplete information in the contributors’ wealth. Finally,
Maldonado and Rodrigues-Neto (2016) model the information incompleteness stemming from
the anonymity of the players.

This work analyzes the effects of incomplete information in public goods provision games
when the QF mechanism finances the provision of the public good. Due to the positive
results of this sort of funding mechanisms when individuals have complete information and
the conjecture proposed in Buterin et al. (2019) that those results would also be valid in
incomplete information settings, we propose a model with those characteristics and study
under which conditions the efficiency property remains. We show that the Pareto optimality
of the private and decentralized provision is only satisfied under very restrictive conditions.
We provide necessary and sufficient conditions to obtain efficiency, and we also propose two
measures for the size of the inefficiency in that type of game.

This article contains five sections. After this introductory section, section 2 defines the
public good provision game under complete information and with general funding mecha-
nisms. We prove that QF is the unique mechanism providing efficiency among a class of
funding mechanisms. In addition, we give necessary and sufficient conditions to have such
efficiency with null or strictly positive amounts of the public good, complementing some con-
clusions obtained by Buterin et al. (2019). Section 3 extends the framework to the incomplete
information case and proves necessary and sufficient conditions for efficiency in this setting.
In particular, we prove that QF is efficient for individuals with CRRA utility functions for the
public good if and only if the relative risk aversion coefficient is equal to ½, a very restrictive
condition. Given the large class of models where the inefficiency of private provision of the
public good is present, section 4 proposes two measures for the size of the inefficiency (dead-
weight loss) of the equilibrium. We analyze the response of those measures to variations in the
parameters related to the incomplete information and the number of participants; this is for
assessing possible asymptotic efficiency. Finally, in section 5, we summarize some conclusions
of the work, and in the Appendix, we provide the proofs of the stated propositions.
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2 The quadratic funding mechanism

In this section, we present the quadratic funding mechanism (henceforth QF) for the pro-
vision of continuous public goods when the individuals own complete information regarding
the preferences of the participants. We analyze properties of existence and efficiency of the
solution of that mechanism. This will serve as a benchmark for the ensuing analysis under
incomplete information.

There exist n ≥ 2 individuals identified by the elements in the set N = {1, 2, · · · , n} and
a single public good to be provided. Each individual i ∈ N is defined by its quasilinear utility
function ui : R+ × R → R defined as ui(F,m) = vi(F ) + m, where the linear good is the
numeraire and vi : R+ → R represents the monetary-equivalent utility of consumption of the
public good. We assume every function vi is C1, strictly increasing, and strictly concave.
Moreover, we suppose that for every i ∈ N , limF→∞ v

′
i(F ) = 0. As we show later, this

hypothesis will guarantee the existence of an efficient public good provision level.1

Definition 2.1. A funding mechanism is a function Φ : Rn+ → R+ that determines, for
any contribution profile of the individuals to the public good c := (c1, c2, · · · , cn) ∈ Rn+, a level
of public good provision Φ(c) = F ∈ R+.

In words, a funding mechanism is a technology that transforms individual contributions
(inputs) into a level of the public good to be provided (output). The simple and classical
funding mechanism is the linear technology Φ(c) =

∑n
i=1 ci. Whenever possible, a central

planner would choose a funding mechanism that fosters individual contributions that gener-
ate efficient output levels. However, before delving into efficiency, let us define the concept
of a public good contribution game with a funding mechanism and its corresponding Nash
equilibrium.

Definition 2.2. A public good provision game with a funding mechanism Φ under
complete information is defined by

G = {(vi)i∈N ,Φ} .

Definition 2.3. An allocation c∗ ∈ Rn+ is an equilibrium for G if, for all i ∈ N , we have that
vi(Φ(c∗i , c

∗
−i))−c∗i ≥ vi(Φ(z, c∗−i))−z, for all z ≥ 0. Equivalently, c∗i = arg maxz≥0 vi(Φ(z, c∗−i))−

z.
An equilibrium c∗ is called interior if c∗i > 0, for all i ∈ N .

Now, let us turn to the definition of efficiency, or optimality. The social welfare function
in this context is the function assigning to each level of public good provision its social net
value, namely,

W (F ) =

(
n∑
i=1

vi(F )

)
− F.

From a normative point of view, a desirable property for a funding mechanism is the
ability to generate private contributions that attain efficient levels of the public good. We
formalize these notions in the following definitions.

1That hypothesis may be weakened. For example, if we assume instead that for all i ∈ N there exists F ≥ 0
such that v′i(F ) < 1/n, the same conclusions can be obtained.
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Definition 2.4. A funding level F e ≥ 0 is said to be a socially optimal provision, or
efficient provision, if

F e = arg max
F≥0

(
n∑
i=1

vi(F )

)
− F.

That is, F e maximizes the total social welfare. The first order condition, which is necessary
and sufficient in our setting, implies that

∑n
i=1 v

′
i(F

e) ≤ 1, with equality holding when F e > 0.

Definition 2.5. Let G = {(vi)i∈N ,Φ}. The funding mechanism Φ is optimal, or efficient,
if there exists an equilibrium c∗ ∈ Rn+ for G, such that Φ(c∗) is a socially optimal provision.

Definition 2.5 is our own, and it is slightly different from that stated by Buterin et al.
(2019). Their definition of funding mechanism optimality is akin to definition 2.4, which is
related to the optimality of the public good level, and not to the mechanism. Furthermore,
it is not linked with the effect of the funding mechanism on individual decisions. More
importantly, it excludes the possibility of a multiplicity of equilibria, which we will show to
occur even for quadratic funding. For these reasons, definition 2.5 is more appropriate for
mechanism optimality.

As previously discussed, the technology defining the funding mechanism Φ may be a
general one with some suitable properties. Homogeneity of degree one (Φ(λc) = λΦ(c)) guar-
antees the irrelevance of the units used to measure the contributions. Anonymity (Φ(c) =
Φ(σ(c)), where σ(·) is the permutation operator), guarantees the irrelevance of the order
of contributors. Inada’s condition of the i−player when someone else is contributing with a
strictly positive amount (limci→0 Φi(ci, c−i) = +∞, where c−i 6= 0 and Φi is the partial deriva-
tive of Φ with respect to the ith component) stimulates individual i to contribute whenever
other individuals are providing positive contributions to the public good. A technology owning

all these properties is the CES technology Φ(c) = [
∑n

i=1 c
ρ
i ]
1/ρ

, with ρ < 1 to guarantee the
strict convexity of the technology. To this family of technologies belongs the QF mechanism.

Definition 2.6. The quadratic funding mechanism is defined by the function ΦQF :
Rn+ → R+ given by:

ΦQF (c) =

(
n∑
i=1

(ci)
1/2

)2

.

In addition to satisfying the properties mentioned in the paragraph above, the QF mech-
anism was extensively discussed in Posner and Weyl (2017) as a quadratic voting rule, high-
lighting its efficiency properties and the concerns to achieve them. As a funding mechanism,
we show in the following propositions that, among all the CES mechanisms, QF is the only
one that provides an efficient public good level.

Firstly, let us prove that under very general hypotheses on the individuals’ utilities we
have a unique efficient level of the public good.

Proposition 2.1. Suppose that, for all i ∈ N , we have that vi ∈ C1 is a strictly concave
function, and limF→∞ v

′
i(F ) = 0. Then, there exists a unique efficient provision F e ≥ 0.

Before stating the result linking equilibria with QF and efficiency, let us show that interior
equilibria generated by games with CES funding mechanisms are efficient only when the QF
funding mechanism is used.
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Proposition 2.2. Let G be a game where for all i ∈ N , vi ∈ C1 is an increasing and strictly

concave function, and the funding mechanism is Φ(c) = [
∑n

i=1 c
ρ
i ]
1/ρ

, ρ < 1. If c � 0 is an
interior equilibrium of this mechanism and the efficient allocation is F e > 0, then:

(i) If ρ > 1/2, then Φ(c) < F e;

(ii) If ρ < 1/2, then Φ(c) > F e;

(iii) If ρ = 1/2, then Φ(c) = F e.

The proposition above guarantees that, among the CES funding mechanisms, only QF
generates efficient levels of the public good, provided that an equilibrium exists and the
corresponding contributions are strictly positive. For this reason we will center our analysis
on the QF mechanism. In the remainder of this section, we study existence and efficiency
of equilibrium under this mechanism, and then conclude some additional properties of the
equilibria when we restrict the analysis to CRRA utility functions for the public good.

The following proposition states existence and efficiency even in the case of corner solu-
tions.

Proposition 2.3. Suppose that, for all i ∈ N , we have that vi ∈ C1 is a strictly increasing and
strictly concave function, and limF→+∞ v

′
i(F ) = 0. Then, the quadratic funding mechanism

is optimal.

Despite the proposition 2.3 asserting that QF generates at least one equilibrium that
provides an efficient level of the public good, it is important to highlight that it may also
generate other inefficient equilibrium (an equilibrium providing an inefficient level of the
public good). For example, consider the hypotheses of that proposition and suppose that
(a) for all i ∈ N we have that v′i(0) ≤ 1 and (b)

∑n
i=1 v

′
i(0) > 1. In such case, it is easy

to check that (a) implies that c∗ = 0 is an equilibrium. On the other hand, under (b) there
exists F e > 0 satisfying

∑n
i=1 v

′
i(F

e) = 1 and therefore, F e > 0 is the efficient level. With

that level we can define, for each i ∈ N , c∗∗i =
(
v′i(F

e) · (F e)1/2
)2

and easily verify that
c∗∗ = (c∗∗1 , · · · , c∗∗n ) is an interior equilibrium providing the efficient level of the public good.
Thus, we can resume these analyses in the following proposition.

Proposition 2.4. Suppose that, for all i ∈ N , we have that vi ∈ C1 is a strictly increasing and
strictly concave function, and limF→+∞ v

′
i(F ) = 0. Then, the quadratic funding mechanism

has an inefficient equilibria if and only if for all i ∈ N we have that v′i(0) ≤ 1 and zero is not
the efficient provision.

To finalize this section, let us illustrate the case where the preferences of a participant is
represented by a CRRA utility function. The reason for that is two-fold: first, we want to
analyze the reaction of the best-response of an individual to variations of the contributions of
all others, depending on the risk aversion parameter, and second, because these results will
be useful for later analysis with incomplete information.

To be precise, let i = 1 index the individual with utility function for the public good
v1(F ) = βF 1−γ/(1 − γ), if γ 6= 1 and v1(F ) = ln(F ), if γ = 1. The first order condition
defining c1, the best-response of this individual to the contribution profile c−1 of all the other
individuals is:
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c
1/2
1∑n

j=1 c
1/2
j

=
β(∑n

j=1 c
1/2
j

)2γ . (1)

The right-hand-side of (1) represents the marginal utility of increasing the provision of the
public good in one (infinitesimal) unit, whereas the left-hand-side is the marginal increase of
the individual contribution per unit of increase in the level of the public good.

To analyze the best-response variation to changes in the contributions of other individuals,
let us rewrite (1) as follows:

c
1/2
1 = β(c

1/2
1 +

n∑
j 6=1

c
1/2
j )1−2γ .

Thus, if γ > 1/2, then an increase in the aggregate square-roots of the others’ contributions
will produce a reduction in the best-response c1. The reciprocal effect is obtained if γ < 1/2.
Finally, if γ = 1/2, the best-response of individual i = 1 does not depend on the contributions
of her peers.

To summarize the above analysis we state the following proposition.

Proposition 2.5. Suppose that an individual has a CRRA utility function for the public
good with relative risk aversion coefficient γ > 0. Then, the individual’s contribution to the
public good is a decreasing function of the aggregate square-roots of the other individuals’
contributions if, and only if, γ ≥ 1/2.

An interesting conclusion that results from proposition 2.5 is the stabilizer response of
an individual with constant relative risk aversion to variations in the contributions of her
peers. If she is highly risk averse (γ > 1/2), decreases in the others’ contributions lead her to
contribute more. On the other hand, with a low risk aversion (γ < 1/2) she diminishes her
own contribution when she perceives that the other participants diminish theirs. In the limit
case (γ = 1/2) , she is indifferent to variations of others’ contributions.

3 Quadratic funding under incomplete information

In this section we will extend the public good contribution game with funding mechanism
framework to the case where participants have incomplete information regarding their pref-
erences for the good. We prove existence and efficiency of equilibria and that the conditions
for efficiency under the quadratic funding mechanism are strong, that is, efficiency under QF
is difficult to attain under incomplete information.

As in section 2 we have a set N of individuals. For each i ∈ N there exists a finite
set of types Θi = {θ`i ; 1 ≤ ` ≤ Li, Li ∈ N} associated and an expected utility function
ui : R+ × R × Θi → R defined as ui(F,m; θi) = vi(F ; θi) + m, where the linear good is the
numeraire and vi : R+ ×Θi → R represents the monetary-equivalent expected utility of i for
a level F ≥ 0 of funding for the public good when her type is θi ∈ Θi. We use Θ = ×ni=1Θi

as the set of all possible states of the world. The joint probability distribution of types is
Pr : Θ → [0, 1], which is assumed to be common knowledge. As in the complete information
case, we assume that, for every i ∈ N and θi ∈ Θi, vi(·; θi) ∈ C1 is a strictly increasing and
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strictly concave function, and limF→∞ v
′
i(F ; θi) = 0. With all these elements we can define

the framework under incomplete information.

Definition 3.1. A public good provision game with funding mechanism Φ and in-
complete information is defined by

G =
{

(vi,Θi)i∈N ,Pr,Φ
}
.

For that kind of game, the Bayes-Nash equilibrium concept is as follows.

Definition 3.2. A profile c∗ = (c∗1, · · · , c∗n), where for all i ∈ N , c∗i : Θi → R+ is an
equilibrium for G if, for each i ∈ N and each θi ∈ Θi, the following is satisfied for all
z ∈ R+ :

E
[
vi(Φ(c∗i (θi), c

∗
−i(θ−i)); θi)

∣∣ θi]− c∗i (θi) ≥ E [vi(Φ(z, c∗−i(θ−i)); θi)
∣∣ θi]− z.

Alternatively, for all i ∈ N and all θi ∈ Θi, c∗ satisfies:

c∗i (θi) = arg max
z∈R+

E
[
vi(Φ(z, c∗−i(θ−i)); θi)

∣∣ θi]− z.
To deal with the efficiency concept, we will adopt the ex-post efficiency idea, where the

central planner is maximizing the welfare function W (F ; θ) =
∑n

i=1 vi(F ; θi) − F, for each
type profile θ ∈ Θ. Then we propose the next definition.

Definition 3.3. We say that F e : Θ → R+ is an (ex-post) efficient provision for G if,
for all θ ∈ Θ,

F e(θ) = arg max
F≥0

(
n∑
i=1

vi (F ; θi)

)
− F.

It follows from the first order conditions that, for all θ ∈ Θ, we have
∑n

i=1 v
′
i(F

e(θ); θi) ≤ 1,
with equality if F e(θ) > 0.

As a direct extension of definition 2.5 to the incomplete information framework, we have
the following definition.

Definition 3.4. The funding mechanism Φ is optimal, or efficient for G =
{

(vi,Θi)i∈N ,Pr,Φ
}

if there exists an equilibrium contribution profile c∗ such that, for all θ ∈ Θ, Φ(c∗(θ)) = F e(θ)
is an efficient provision for G.

Since QF was the only mechanism producing efficient interior equilibria under complete
information among all CES mechanisms, we will restrict our analysis to this funding mecha-
nism under incomplete information and study in which cases the same property is preserved.
The QF mechanism is analogously defined in this context and in order to simplify notations
we use F (θ) := ΦQF (c(θ)) to denote the funding provided by QF when players choose the
strategy profile c(θ) and F ∗(θ) := ΦQF (c∗(θ)) if c∗ is an equilibrium for QF.

Before stating our first results in this framework, let us analyze the level of the public
good provided by QF in the case of interior equilibria. Thus, let c∗ be an interior equilibrium
for the QF mechanism (c∗(θ)� 0 for all θ ∈ Θ). The first order conditions imply that for all
i ∈ N and all θi ∈ Θi we must have

(c∗i (θi))
1/2 = E

[
v′i(F

∗(θ)); θi) · (F ∗(θ))1/2
∣∣∣ θi] . (2)
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Taking the expected value in (2), making the summation and rearranging the terms, we
obtain:

E

[[(
n∑
i=1

v′i(F
∗(θ)); θi)

)
− 1

]
· (F ∗(θ))1/2

]
= 0. (3)

Notice that equation (3) does not imply that the term in the inside brackets must be zero
(which corresponds to the case of efficient provision of the public good). Indeed, as we show
later, this implication does not follow. It is also important to highlight that in the complete
information framework the same problem does not appear since there is no expected value
and the term in the inside brackets is always null for positive funding of the public good.

Our first result is the existence and uniqueness of efficient provision.

Proposition 3.1. Suppose that, for all i ∈ N and all θi ∈ Θi, we have that vi(·; θi) ∈ C1

is a strictly concave function and limF→∞ v
′
i(F ; θi) = 0. Then, there exists a unique efficient

provision F e : Θ→ R+.

To prove the existence of equilibrium of games with QF mechanisms, we will first prove
that the best-response correspondence is at most single valued, and that there exists a stable
domain where the best-response functions are defined.

Lemma 3.1. Suppose that, for all i ∈ N and θi ∈ Θi, we have that vi(·; θi) ∈ C1 is a strictly
increasing and strictly concave function. Then, for any i ∈ N and c−i ∈ Rn−1+ , the best-
response correspondence ci(·; c−i) : Θi → R+ is at most single valued.

Lemma 3.2. Suppose that, for all i ∈ N and θi ∈ Θi, we have that vi(·; θi) ∈ C1 is a strictly
concave function and limF→∞ v

′
i(F ; θi) = 0. Then, there exists A > 0 such that, for any

i ∈ N and θi ∈ Θi, if the contributions of all other individuals belong to [0, A] for any profile
of types, then i’s best-response also belongs to that interval.

Now, we can state, under very classical assumptions on fundamentals, the existence of
equilibrium for the game with incomplete information.

Proposition 3.2. Suppose that, for all i ∈ N and θi ∈ Θi, we have that vi(·; θi) ∈ C1 is a
strictly increasing and strictly concave function, and limF→∞ v

′
i(F ; θi) = 0. Then, there exists

an equilibrium for the quadratic funding mechanism.

Despite the existence of equilibrium for QF under general conditions on fundamentals,
efficiency is rarely fulfilled. Unlike efficiency under complete information, when individuals
are uncertain of the preferences of their peers, efficiency only results under strong conditions
on the utility functions. In the sequel, we will establish a number of necessary and sufficient
conditions that guarantee this property.

First, let us consider scenarios where not providing the public good might be efficient.

Proposition 3.3. Suppose that for all i ∈ N and θi ∈ Θi the function vi(·; θi) ∈ C1 is
a strictly increasing and strictly concave function, and limF→∞ v

′
i(F ; θi) = 0. Additionally,

suppose that there exists some θ′ ∈ Θ such that F e(θ′) = 0, and that Pr(θ) > 0 for all θ ∈ Θ.
Then, the quadratic funding mechanism is efficient if and only if F e(θ) = 0 for all θ ∈ Θ.
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Proposition 3.3 does not have a counterpart in the complete information setting and
shows that there exists a broad range of public good games with quadratic funding where the
equilibrium is not efficient. It suffices to exist two profiles, one with zero efficient provision
and another with positive efficient provision, to have inefficiency of the equilibrium. Thus, in
order to look for the cases where efficiency of QF is obtained, let us consider games where
the efficient level of the public good is strictly positive and try to find conditions on the
preferences that allows for the efficiency of the equilibrium. The following proposition states
those conditions.

Proposition 3.4. Suppose that for all i ∈ N and θi ∈ Θi the function vi(·; θi) ∈ C1 is strictly
increasing and strictly concave, and limF→∞ v

′
i(F ; θi) = 0. Additionally, suppose that F e(θ) >

0, for all θ ∈ Θ and there is only one individual with more than one type; namely, there exists
j ∈ N such that |Θj | > 1 and Θi = {θ1i } for all i 6= j. Then, the quadratic funding mechanism
is efficient if, and only if, there exists A ∈ R such that

∑
i 6=j v

′
i(F

e(θ); θ1i ) = A(F e(θ))−1/2 for

all θ ∈ Θ. Furthermore, we have that A =
∑

i 6=j(c
∗
i (θ

1
i ))

1/2.

In words, in the simple case of only one individual having several types and the efficient
provision level always being positive, a necessary and sufficient condition for having an efficient
equilibrium for QF is that the aggregate marginal utility of all other individuals is similar to
a marginal CRRA utility function with risk aversion coefficient equal to 1/2, when evaluated
in the efficient level of public good provision. That gives us a clue about where we can look
for utility functions that allows for efficiency of equilibrium.

It is possible to obtain utility functions with diverse formats that produce an efficient
equilibrium. For example, suppose that n = 3, the utility functions of individuals 2 and 3
are v2(F ; θ12) = F 1/2 + (F + 1)1/6 and v3(F ; θ13) = F 1/2 − (F + 1)1/6, and let v1(·; θ1) be a
function satisfying the hypotheses of proposition 3.4. Both v2 and v3 are strictly increasing and
strictly concave functions. Since v′2(F ; θ12) + v′3(F ; θ13) = 4F−1/2, proposition 3.4 guarantees
the efficiency of QF , no matter what the function v1 is and the number of types it could have.

To finalize this section, we state the result that shows the strong conditions under which the
equilibrium of quadratic funding is efficient for the class of CRRA utility functions representing
the preferences of the participants. It is worth noting the contrast with the case of the complete
information framework. In proposition 2.2 we had that, with very general conditions on the
utility functions of the contributors, the efficiency of the equilibrium is guaranteed. However,
even though the contributors have CRRA utility functions, the uncertainty regarding the
preferences makes each player contribute amounts that, when aggregated by the funding
mechanism, are not efficient, except in the special case where every individual has a risk
aversion coefficient equal to 1/2.

Proposition 3.5. Suppose that for every i ∈ N and θi ∈ Θi, we have that vi(F ; θi) =
βi(θi)F

1−γ/(1− γ), where βi(θi) > 0 and γ > 0. Additionally, suppose that for some j ∈ N ,
there exist θkj , θ

`
j ∈ Θj such that βj(θ

k
j ) 6= βj(θ

`
j), and that Pr(θ) > 0 for all θ ∈ Θ. Then, the

quadratic funding mechanism is efficient if, and only if, γ = 1/2.

Thus, we can conclude that in games of public goods provision and incomplete information,
QF is efficient under very restricted circumstances. Cases where individual contributions
are aggregated by the QF mechanism so as to result in efficiency only occur in exceptional
situations, as in the example mentioned above. Therefore, in general, the QF mechanism in a
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framework with incomplete information is not efficient, a finding that stands in contrast with
what Buterin et al. (2019) conjectured.

4 Measuring the deadweight loss

Due to the generic inefficiency of the equilibrium that QF produces when the game has
incomplete information, in this section we analyze the size of such inefficiency as well as its
sensitivity to variations in fundamental parameters of the model. We are going to define some
measures of the size of the inefficiency, and analyze their behavior when either information or
risk aversion changes or when the size of the population increases.

Before defining the measures of inefficiency, let us introduce the notion of “second-best”
level of the public good in a game G = {(vi)i∈N ,Φ} .

Definition 4.1. We say that FEA ≥ 0 is an ex-ante efficient provision for G if

FEA = arg max
F≥0

E

[(
N∑
i=1

Vi (F ; θi)

)
− F

]
.

That is, if it maximizes the expected total social welfare before the individual types are known.
From the first order conditions it is characterized by

∑n
i=1E

[
v′i(F

EA; θi)
]
≤ 1, with equality

whenever FEA > 0.

Notice the difference between the ex-ante and the ex-post efficient provision given in
Definition 3.3. The ex-ante efficient provision represents the optimal level of public good
provision when the probability distribution of types is used to measure the welfare of the
society. Consequently, this provision level is the best that the central planner could choose
without using any mechanism to acquire information about the types.

Having defined both ex-ante and ex-post optimal provision levels of the public good, we
can define our measures for the size of inefficiency.

Definition 4.2. The absolute deadweight loss for the contribution-based quadratic funding
mechanism in the game G is

∆WA := E [W (F e(θ))−W (F ∗(θ))] .

Definition 4.3. The relative deadweight loss for the contribution-based quadratic funding
mechanism in the game G is

∆WR :=
E [W (F e(θ))−W (F ∗(θ))]

E [W (F e(θ))−W (FEA)]
.

In words, the absolute deadweight loss is the expected loss in monetary terms of using
the QF equilibrium to fund the public good instead of using the efficient level of the public
good for each profile of types that individuals may have. On the other hand, the relative
deadweight loss measures the ratio between the absolute deadweight loss and the deadweight
loss of providing the ex-ante efficient level of the public good rather than the ex-post efficient
level. When this measure is lower (greater) than one, using QF is better (worse) than providing
the ex-ante optimal level of the public good.
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These measures were inspired by others in the literature (Vives (2002) and Rustichini
et al. (1994)); however, to the best of our knowledge were not used in frameworks like the one
presented here.

In the next two subsections we will analyze the response of the inefficiency measures
proposed above to changes in either the level of uncertainty contained in the incomplete
information of the game or in the number of participants in the society.

4.1 Changes in the level of uncertainty

To measure the changes in welfare resulting from changes in the level of uncertainty of the
model, we consider the next simple two-player setting. There are two individuals (n = 2),
|Θ1| = 2, and |Θ2| = 1. Let α := Pr(θ1 = θ11) be the probability of individual i = 1 has the
type θ11. The utility functions for the public good of these individuals, given their possible
types, are

v1(F ; θ11) =
F 1−γ

1− γ
,

v1(F ; θ21) = β1
F 1−γ

1− γ
,

v2(F ; θ12) = β2
F 1−γ

1− γ
,

where β1, β2 ∈ [0.1, 50]. We now solve the individual problems.
The first individual solves, for each of her types,

max
c1≥0

β̃1

(
c
1/2
1 + c2(θ

1
2)1/2

)2(1−γ)
1− γ

− c1,

where β̃1 is either 1 or β1 if θi1 is either θ11 or θ21, respectively. Solving for each type, it results(
c1(θ

1
1)
)1/2

=
[(
c1(θ

1
1)
)1/2

+
(
c2(θ

1
2)
)1/2]1−2γ

. (4)

(
c1(θ

2
1)
)1/2

= β1

[(
c1(θ

2
1)
)1/2

+
(
c2(θ

1
2)
)1/2]1−2γ

. (5)

Analogously, for individual 2, we have

max
c2≥0

α

β2
(
c
1/2
1 (θ11) + c

1/2
2

)2(1−γ)
1− γ

+ (1− α)

β2
(
c
1/2
1 (θ21) + c

1/2
2

)1−γ
1− γ

− c2
⇒
(
c2(θ

1
2)
)1/2

= αβ2

[(
c1(θ

1
1)
)1/2

+
(
c2(θ

1
2)
)1/2]1−2γ

+ (1− α)β2

[(
c1(θ

2
1)
)1/2

+
(
c2(θ

1
2)
)1/2]1−2γ

.

(6)

Solving the equations (4), (5) and (6) numerically, we obtain the QF equilibrium for this
game.

11



The ex-post efficient level of the public good is the solution of:

max
F≥0

(β̃1 + β2)
F 1−γ

1− γ
− F,

which implies that
F e(θ11, θ

1
2) = (1 + β2)

1/γ . (7)

F e(θ21, θ
1
2) = (β1 + β2)

1/γ . (8)

Lastly, the ex-ante optimal provision level for the public good solves

max
F≥0

α

[
F 1−γ

1− γ

]
+ (1− α)

[
β1
F 1−γ

1− γ

]
+ β2

F 1−γ

1− γ
− F,

from which it results that
FEA = (α+ (1− α)β1 + β2)

1/γ . (9)

For the first group of numerical illustrations, let us fix β1 = 2, β2 = 1 and consider two
alternative values for the risk aversion coefficient, γ = 1 and γ = 1/4. Those values of γ are
chosen because γ = 1/2 is a threshold value, from which individuals have different responses
to increases in the other participants’ contributions, as we stated in proposition 2.5 for the
complete information setting.

Let us start varying α to capture the effect of the degree of uncertainty on welfare. In
Figure 1, the resulting inverted “U” shape has an intuitive explanation: the closer the game
is to complete information (α = 0 or α = 1) the lower the deadweight loss is, and it is highest
at about halfway between these values (α ≈ 0.48 and α ≈ 0.53) depending on the value of γ.

Figure 1: Absolute deadweight loss as a function of α ∈ [0, 1].

Now, let us analyze the relative deadweight loss when α varies in (0, 1). Figure 2 shows the
monotonic response to increases in the probability of individual 1 having lower valuation for
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the public good. Notice that ∆WR is not defined for α = 0 or α = 1, since the ex-ante optimal
provision is efficient in those cases. When γ = 1, increases in the probability of individual 1
being of the lower type makes QF less inefficient than the the ex-ante optimal provision level.
This is compatible with the stabilizing behavior of the best response functions in this case,
reported in proposition 2.5. When γ = 1/4 the opposite behavior is observed augmenting
the inefficiency with respect to that of the ex-ante provision level. In both cases, QF is
considerably more efficient than the ex-ante optimal provision, as the relative deadweight loss
ranges between 0.05 and 0.11.

Figure 2: Relative deadweight loss as a function of α ∈ (0, 1).

Next, we describe the response of the changes in welfare to variation in the intensity
of the incomplete information shock. Namely, fixing the probability of being of type θ11,
α = 1/2 we vary the value of the shock β1. In Figure 3 we can observe that for both values of
γ, the absolute deadweight loss increases as the game moves away from the case of complete
information (β1 = 1). When γ = 1 > 1/2, an increase in β1 generates an increase in individual
1’s contributions (for both types) and a decrease in the individual 2’s contribution. As β1
grows arbitrarily large, the second term on the right-hand side of 6 goes to zero. Then,
individual 2’s contribution converges to a positive value, that explains the concave shape of
the function for β1 > 1. For β1 < 1, the same logic implies that individual 2’s contribution
grows at increasing rates, and so we observe a convex behavior. When γ = 1/4 < 1/2, an
analogous reasoning explains the convex shape observed in the figure.

Figure 4 presents the plots for the relative deadweight loss when varying β1. We only
consider values β1 > 1, since ∆WR is not defined when β1 = 1. In both cases, ∆WR

converges to zero as β1 goes to infinity, indicating that the inefficiency of the ex-ante optimal
provision becomes even greater than that of the QF mechanism when the intensity of the
incomplete information grows. It shows that the ex-ante level of the public good does not
bring as much information as the QF mechanism for the provision of the public good, thus the
later is less and less inefficient than the former as the intensity of the incomplete information
increases.

To finalize this subsection we analyze the impact of variations in the risk aversion param-
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Figure 3: Absolute deadweight loss as a function of β1 ∈ [0.1, 50].

eter on the relative deadweight loss. In Figure 5 we fix α = 1/2 and β1 = 2, and vary the
value of the relative risk aversion coefficient in the interval [0.1, 5]. This interval is compatible
with values for this parameter found in empirical works (Huang et al. (2008) and Gandelman
and Hernández-Murillo (2014)). We can observe that it approaches efficiency as γ goes to
1/2, just as proposition 3.5 asserted. When γ moves away from this value, the inefficiency of
QF augments more than that of the ex-ante level; however, the relative inefficiency remains
below the unity, meaning that QF is less inefficient than the second best ex-ante optimal level
of funding for the public good.

4.2 Changes in the population size

To analyze the welfare changes as a response to population size increases, we consider an
example where each individual may have one of two types with the same utility functions.
Specifically, for i ∈ N , let |Θi| = 2, let Pr(θi = θ1i ) = Pr(θi = θ1i | θj) = 1/2 for all i, j ∈ N
and i 6= j, and let their utility functions of consuming the public good for each type be given
by

vi(F ; θ1i ) =
F 1−γ

1− γ

vi(F ; θ2i ) = 2
F 1−γ

1− γ
.

Given the above setup, we have that the probability of 0 ≤ k ≤ n individuals being of
type 1 follows a Bernoulli distribution. As individuals are symmetric, their contributions to
the public good are identical whenever they have the same type, so let us use the notation
x1 := ci(θ

1
i ) and x2 := ci(θ

2
i ) to refer to these contributions. The first order conditions for the

problem of an individual with type 1 can be written as

(x1)1/2 =
1

2n−1

n−1∑
k=0

(
n− 1

k

)[
(k + 1)(x1)1/2 + (n− 1− k)(x2)1/2

]1−2γ
. (10)
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Figure 4: Relative deadweight loss as a function of β1 ∈ [0.1, 50].

Respectively, for an individual with type 2:

(x2)1/2 =
1

2n−1

n−1∑
k=0

(
n− 1

k

)
2
[
(k(x1)1/2 + (n− k)(x2)1/2

]1−2γ
. (11)

Solving the equations (10) and (11) numerically, we obtain the QF equilibrium for this
game.

The ex-post efficient provision level only depends on the number of individuals with a
certain type. For a state of the world θ ∈ Θ where the number of individuals with type 1 is
0 ≤ k ≤ n, the efficient provision solves

max
F≥0

k
F 1−γ

1− γ
+ 2(n− k)

F 1−γ

1− γ
− F,

whose first order conditions imply that

F e(θ) = (2n− k)1/γ . (12)

And finally, the ex-ante optimal provision level must solve

max
F≥0

[
1

2n

n∑
k=0

(
n

k

)
(k + 2(n− k))

F 1−γ

1− γ

]
− F,

whose explicit solution is

FEA =

[
1

2n

n∑
k=0

(
n

k

)
(2n− k)

]1/γ
. (13)

With the analytic forms found above we are going to check two possible properties that
the deadweight loss could have: if the inefficiency converges to zero as the population size
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Figure 5: Relative deadweight loss as a function of γ ∈ [0.1, 5].

increases and/or if at least the per capita inefficiency goes to zero. Some works in the literature
assessed such questions (Lalley and Weyl (2019) and Rustichini et al. (1994)). We also analyze
the asymptotic behavior of the relative deadweight loss as the number of participants goes to
infinity.

Firstly, let us think about the two evident effects that an increase in the population size
brings to the equilibrium. One of them is that larger population increases, ceteris paribus, the
number of contributions to the public good, which in turn would augment the variance of the
provision level. This effect intensifies the problem generated by incomplete information, re-
sulting in an increase in deadweight loss. On the other hand, a second effect takes place, which
is dependent on γ. When n increases, as the extra individuals make positive contributions,
this would ceteris paribus raise the level of funding for the public good. However, proposition
2.5 asserted (at least in the complete information case) that different values of γ result in
different responses of individual contributions to changes in aggregate provision. Namely, if
γ > 1/2, individuals reduce their contributions, converging to zero as n approaches infinity.
This promotes a reduction in the dispersion of contributions, and thus lowers the problem
caused by incomplete information. The opposite occurs when γ < 1/2, so the variance of
contribution increases, contributing to an increase in inefficiency. From now on, we will refer
these effects as contributor quantity effect and contribution dispersion effect, respectively.

Figure 6 shows the absolute deadweight loss for γ = 1. Here, as expected, the contribution
dispersion effect does lower the rate of growth of inefficiency. The intensity of the effect is
large enough to stabilize the deadweight loss, however it does not converge to zero. Hence,
we conclude that QF is not asymptotically efficient. On the other hand, we can see that the
deadweight loss per capita does converge to zero. It is worth noting that there is a peak at
n = 4, showing that the contributor quantity effect is strong enough for 2 ≤ n ≤ 4 to make
the deadweight loss per capita increase with population.

Now, in Figure 7 we have the case γ = 1/4. The combination of a positive contributor
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Figure 6: Absolute deadweight loss as a function of 1 ≤ n ≤ 200, for γ = 1.

quantity effect and a positive contribution dispersion effect makes the total absolute dead-
weight loss grow at increasing rates, reaching the largest order of magnitude of all figures
presented until now. The contribution dispersion effect is so strong that even the absolute
deadweight loss per capita is a convex function of n.

Figure 7: Absolute deadweight loss as a function of 1 ≤ n ≤ 200, for γ = 1/4.

Finally, we show the relative deadweight loss in Figure 8. Notice that all these graphs
exhibit the same shape, growing at decreasing rates and (apparently) converging to a positive
value. This highlights the advantage of QF in letting individuals choose their own contri-
butions using their private information; however, a larger population diminishes the relative
importance of the information possessed by each individual, thus lowering the comparative
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efficiency of this mechanism.

Figure 8: Relative deadweight loss as a function of 1 ≤ n ≤ 200.

Let us comment each case in that figure. For γ = 0.499 (slightly lower than 1/2) we
already argued that the contribution dispersion effect is much lower than the contributor
quantity effect, making the absolute deadweight loss jointly increase with the population
size. However, the inefficiency is much lower than the ex-ante inefficiency, thus the relative
inefficiency is very low. In the case of γ = 1 the inefficiency measure converges to 1 when n goes
to infinity, indicating that QF is asymptotically equivalent to the ex-ante provision in terms
of efficiency. When γ = 1/4, despite the absolute deadweight loss becoming considerably high
for large populations, the ex-ante optimal provision has an even higher expected inefficiency
for larger populations. Lastly, if γ = 3/2, we can see that QF becomes more inefficient than
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using the ex-ante optimal provision.

5 Conclusions

Mechanisms to attain the efficiency of decentralized public good provision are widely studied
and discussed in the literature. The difficulties aroused by the possible collusion formations
or inefficiencies of the majority rule bring a challenge for theoretical and applied modeling of
some of those mechanisms. In this sense, the quadratic funding mechanism for providing a
public good appears as a solution for reaching the Pareto optimality in a decentralized way.
Its simplicity and optimality when the efficient amount is strictly positive make it a promis-
ing scheme for financing public goods whenever the individuals have complete information
regarding their peers’ preferences.

In this work, we analyze the extent to which efficiency is maintained when there is incom-
plete information in the model. The conclusions are that only under very restrictive conditions
on the utility functions of the participants is it possible to reach efficiency. We provide several
necessary and sufficient conditions to guarantee the efficiency of the equilibrium. In partic-
ular, we show that, for the class of CRRA utility functions representing the participants’
preferences for the public good, the efficiency results if and only if the risk aversion coefficient
is equal to ½.

We also propose two measures for the inefficiency size (the deadweight loss) for this incom-
plete information game: the equilibrium’s absolute and relative deadweight loss. In absolute
(monetary equivalent) terms, the first compares the welfare loss of using the private provision
rather than the ex-post optimal provision. The other measure is the ratio between the abso-
lute deadweight loss and the welfare loss of the ex-ante (second-best) optimal provision. That
second-best allocation is the central planner’s provision given that she only knows the distri-
butions of the individuals’ types. The ratio compares the inefficiency of the private provision
with that of the second-best alternative. We provide several analyses of how those measures
vary when parameters of the incomplete information or the number of participants change.

We believe that the results presented here may contribute to the better applying of the QF
mechanism, given that in many situations, the contributors do not have complete information
regarding the benefits that the public good may bring to the peers. Additionally, estimating
changes to a measure of relative deadweight loss similar to the one develped here when the
fundamentals of the model vary can be valuable tools for Public Economics.
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Appendix

Proof. (Proposition 2.1) Let the function v : R+ → R be defined as v(F ) =
∑n

i=1 vi(F ). With
the assumptions given, we have that v ∈ C1 is strictly concave, and that limF→∞ v

′(F ) = 0.
We then have two cases: v′(0) ≤ 1 or v′(0) > 1. In the first case, it follows from 2.4 that
F = 0 is optimal. Furthermore, since v is a strictly concave function, we have that v′(F ) < 1
for all F > 0 and thus, again from 2.4, there can be no socially optimal provision F > 0.
Thus, F e = 0 is the unique efficient provision.

Now suppose that v′(0) > 1. It follows that F = 0 is not optimal. As limF→∞ v
′(F ) = 0,

we have that there exists A ∈ R such that v′(A) < 1. Thus, since v′ is continuous, v′(0) > 1
and v′(A) < 1, it follows that there exists 0 < B < A such that v′(B) = 1. Additionally,
since v′ is strictly decreasing, we have that v′(F ) 6= 1 for all F 6= B. Therefore, F e = B is
the unique efficient provision.

We then have that in both cases there is a unique efficient provision F e ≥ 0, as desired.

Proof. (Proposition 2.2) The first order condition for the individual i having and interior
solution is:

v′i(Φ(c))
(1

ρ

)[ n∑
i=1

cρi
](1/ρ)−1

(ρcρ−1i ) = 1⇒ v′i(Φ(c)) =
c1−ρi[∑n

i=1 c
ρ
i

](1/ρ)−1
.

Summing up on i and arranging:

n∑
i=1

v′i(Φ(c)) =

∑n
i=1 c

1−ρ
i[∑n

i=1 c
ρ
i

](1/ρ)−1 =

[
[
∑n

i=1 c
1−ρ
i ]1/(1−ρ)[∑n

i=1 c
ρ
i

]1/ρ
]1−ρ

≡ E. (14)

It is clear that if ρ = 1/2, then E = 1; therefore Φ(c) = F e and (iii) results.
Now, let us define the function f : R \ {0} → R by f(ρ) = [

∑n
i=1 c

ρ
i ]
1/ρ. We are going to

prove that f is a strictly increasing function. Taking the logarithm and the derivative:

f ′(ρ)

f(ρ)
=

∑n
i=1 c

ρ
i ln(ci)

ρ
∑n

i=1 c
ρ
i

−
ln(
∑n

i=1 c
ρ
i )

ρ2

=
1

ρ2
∑n

i=1 c
ρ
i

{
ρ

n∑
i=1

cρi ln(ci)−

(
n∑
i=1

cρi

)
ln

(
n∑
i=1

cρi

)}
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⇒ f ′(ρ) =
f(ρ)

ρ2
∑n

i=1 c
ρ
i

{
n∑
i=1

cρi

[
ln(cρi )− ln

(
n∑
i=1

cρi

)]}
.

Since the term in brackets is always negative, f ′(ρ) < 0 and f is a strictly decreasing

function. Finally, since E =
[
f(1−ρ)
f(ρ)

]
, v =

∑n
i=1 vi is a strictly concave function and ρ < 1,

from (14) we can conclude:

Φ(c) < F e ⇔ E > 1⇔ f(1− ρ) > f(ρ)⇔ 1− ρ < ρ⇔ ρ >
1

2
.

Analogously, Φ(c) > F e ⇔ ρ < 1
2 . Thus (i) and (ii) are proved.

Proof. (Proposition 2.3) By proposition 2.1, we know that the hypotheses adopted here guar-
antee that there is a unique socially optimal provision F e ≥ 0. There are two cases: F e = 0
or F e > 0. First, suppose we have F e = 0. We are going to show that 0 is an equilibrium for
ΦQF . Consider the problem faced by some individual i ∈ N when all other individuals are
contributing zero to the mechanism:

max
ci≥0

vi

([
c
1/2
i + 0

]2)
− ci.

Which can be written as
max
ci≥0

vi (ci)− ci.

Thus, the first order condition for the individual i is that v′i(ci) ≤ 1, with equality holding
when ci > 0. But note that, since F e = 0, we have from definition 2.4 that

∑n
j=1 v

′
j(0) ≤ 1.

In particular, since vj is increasing for all j ∈ N , this implies that v′i(0) ≤ 1. Thus, ci = 0
satisfies the first order condition for i. But since the choice of i was arbitrary, we have that
0 is an equilibrium for ΦQF .

Now the other case, suppose F e > 0. For all i ∈ N , let

ci =
(
v′i(F

e) · (F e)1/2
)2
. (15)

It is easy to check that F e = ΦQF (c) = [
∑n

i=1 c
1/2
i ]2. Rearranging, we obtain

v′i(F
e) =

(ci)
1/2

(F e)1/2
,

which is precisely the first order condition for the individual i’s optimization problem in the
QF mechanism. We can thus conclude that the vector c = (c1, · · · , cn) as defined by (15) is
an equilibrium of QF and its provision is optimal.

Thus, in all cases, there exists an equilibrium allocation c∗ such that ΦQF (c∗) = F e, as
we wanted to show.
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Proof. (Proposition 3.1) Let v : R+ × Θ → R be defined by v(F ; θ) =
∑n

i=1 vi(F ; θi). By a
straightforward argument similar to that presented in the proof of 2.1 we can prove that for
each θ ∈ Θ, there is a unique efficient funding F e(θ) ≥ 0. In this way, we construct a unique
function F e : Θ→ R+ that maps each profile of types to its efficient funding.

Proof. (Lemma 3.1) Without loss of generality, let us consider i = 1. Let θ1 ∈ Θ1 be the type
of this individual, and suppose that there exist a, b ∈ R+, a < b, best-responses to c−i. Let
ε = b1/2 − a1/2 > 0. From the first order conditions, we have

a1/2 = E

v′1
[a1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

 · [a1/2 +
n∑
i=2

(ci(θi))
1/2

] ∣∣∣∣∣∣ θi


= a1/2E

v′1
[a1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

∣∣∣∣∣∣ θi


+ E

v′1
[a1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

 · [ n∑
i=2

(ci(θi))
1/2

] ∣∣∣∣∣∣ θi
 .

Notice that the term in the third line above is nonnegative; thus, the equality above is satisfied

only if E
[
v′1

([
a1/2 +

∑n
i=2(ci(θi))

1/2
]2

; θi

) ∣∣∣ θi] ≤ 1. Thus, since b > a and v′1 is strictly

decreasing, we have that

E

v′1
[b1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

 · [ n∑
i=2

(ci(θi))
1/2

] ∣∣∣∣∣∣ θi


< E

v′1
[a1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

 · [ n∑
i=2

(ci(θi))
1/2

] ∣∣∣∣∣∣ θi
 ,

and

b1/2E

v′1
[b1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

∣∣∣∣∣∣ θi


< a1/2E

v′1
[a1/2 +

n∑
i=2

(ci(θi))
1/2

]2
; θi

∣∣∣∣∣∣ θi
+ ε.

Thus, adding the inequalities and using the fact that a and b satisfy the first order conditions,
it follows that a1/2 + ε > b1/2. But this contradicts the definition of ε. This contradiction
completes the proof.

Proof. (Lemma 3.2) Under the given hypotheses, we can then define, for each i ∈ N , a
function fi : Θi → R+ mapping each θi to f(θi) > 0 such that v′i(f(θi); θi) < 1/n. Now,
letting A := max{fi(θi); i ∈ N , θi ∈ Θi}, by the hypothesis of strict concavity of vi it follows
that v′i(A; θi) < 1/n, for all i ∈ N and all θi ∈ Θi. Now, suppose that, for some j ∈ N , we
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have that ci(θi) ∈ [0, A] for all i 6= j and all θi ∈ Θi, and the best-response of j with type
θj ∈ Θj is k > A. Since k > 0, the first order conditions for individual j’s problem imply that

k1/2 = E

v′j
k1/2 +

∑
i 6=j

(ci(θi))
1/2

2

; θj

 ·
k1/2 +

∑
i 6=j

(ci(θi))
1/2

 ∣∣∣∣∣∣ θj


<
1

n
E

k1/2 +
∑
i 6=j

(ci(θi))
1/2

∣∣∣∣∣∣ θj


<
1

n
n · k1/2,

where the first inequality follows from v′j(A; θj) < 1/n and vj(·; θj) being strictly concave,
and the second inequality follows from ci(θi) ∈ [0, A] for all i 6= j. It results that k < k; this
contradiction completes the proof.

Proof. (Proposition 3.2) For each individual i ∈ N , let |Θi| = Li. We can restrict the domain
and range of the best-response functions to the interval [0, A], using A > 0 given in lemma
3.2. Thus, the problem of individual i with type θi is

max
ci∈[0,A]

E
[
vi
(
ΦQF (ci, c−i(θ−i)); θi

) ∣∣ θi]− ci.
Notice that the function that is being maximized is continuous and the feasibility correspon-
dence is continuous and compact valued (it is the constant interval [0, A]). Thus, by the
Theorem of the Maximum (Berge (1963), ch. 6), we have that the best response correspon-
dence for i is not empty and is upper hemicontinuous. Additionally, by lemma 3.1, we can
conclude that it is a continuous function. Hence, the whole game best-response function
BR : [0, A]

∑n
i=1 Li → [0, A]

∑n
i=1 Li is also continuous. Since [0, A]

∑n
i=1 Li is a compact and

non-empty set, the Brouwer fixed point theorem (Milnor (1965)) allows us to conclude that
BR has a fixed point which is clearly an equilibrium for QF.

Proof. (Proposition 3.3) First, suppose that F e(θ) = 0 for all θ ∈ Θ. Let us prove that
(θ) = 0 for all θ is an equilibrium for QF. Suppose that, for some i ∈ N we have that all other
individuals are playing the strategy profile c−i(θ−i) = 0. The problem faced by the individual
i with some type θi ∈ Θi is given by

max
ci≥0

E
[
vi
(
ΦQF (ci, c−i(θ−i)); θi

) ∣∣ θi]− ci.
Substituting c−i(θ−i) = 0 and the definition of QF, the problem above becomes

max
ci≥0

vi (ci; θi)− ci,

let ci(θi) be the solution, then the first order conditions are

v′i(ci(θi); θi) ≤ 1,

with equality holding if ci(θi) > 0. Since F e(θ) = 0 for all θ ∈ Θ, it implies that
∑n

j=1 v
′
j(0; θj) ≤

1. It follows that v′i(0; θi) ≤ 1. Thus, ci(θi) = 0 satisfies the first order conditions for i, as we
wanted to show.
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Let us prove the reciprocal using a contradiction argument. The hypothesis asserts that
there exist θ′ ∈ Θ for which F e(θ′) = 0 and that QF is efficient. Then, suppose that there
is a θ′′ ∈ Θ, such that F e(θ′′) > 0. Let c be an efficient equilibrium for QF. The first order
condition for individual i’s problem for the type profile θ′′ is

E

[
v′i(F

∗(θ)); θ′′i ) ·
(
F ∗(θ)

c∗i (θ
′′
i )

)1/2
∣∣∣∣∣ θ′′i
]
≤ 1, (16)

which cannot be satisfied for c∗i (θ
′′
i ) = 0, since Pr(θ′′) > 0, F ∗(θ′′) = F e(θ′′) > 0, and

v′i(F
∗(θ′′); θ′′i ) > 0. Therefore, c∗i (θ

′′
i ) > 0. Since i is arbitrary, it results c∗(θ′′)� 0. Now, let

us consider the first order condition of individual i’s problem when her type is θ′i,

E

[
v′i(F

∗(θ)); θ′i) ·
(
F ∗(θ)

c∗i (θ
′
i)

)1/2
∣∣∣∣∣ θ′i
]
≤ 1, (17)

with equality holding when c∗i (θ
′
i) > 0. Since Pr(θ′i, θ

′′
−i) > 0, and c∗−i(θ

′′
−i) � 0, we have

that c∗i (θ
′
i) > 0, because the numerator of the expected value when θ = (θ′i, θ

′′
−i) is strictly

positive. Thus, c∗i (θ
′
i) > 0. But then, ΦQF (c(θ′)) > 0 = F e(θ′), which is a contradiction to

the efficiency of QF. This completes the proof.

Proof. (Proposition 3.4) Without loss of generality, let j = 1. First, suppose that QF is effi-
cient, that is, there exists an equilibrium strategy profile c∗ such that ΦQF (c∗(θ)) = F ∗(θ) =
F e(θ). For θ ∈ Θ, the optimality of F e(θ) > 0 implies

v′1(F
e(θ); θ1) +

n∑
i=2

v′i(F
e(θ); θ1i ) = 1.

Thus,
n∑
i=2

v′i(F
e(θ); θ1i ) = 1− v′1(F e(θ); θ1). (18)

Since j = 1 has complete information regarding the other individuals’ preferences, it follows
that

v′1(F
e(θ); θ1) =

(c1(θ))
1/2

(F e(θ))1/2
. (19)

Thus, equations (18) and (19) imply that

n∑
i=2

v′i(F
e(θ); θ1i ) =

∑n
i=2(ci(θ

1
i ))

1/2

(F e(θ))1/2
,

and so letting A =
∑n

i=2(ci(θ
1
i ))

1/2 yields the desired result.
To prove the converse, suppose that there exists a constantA ∈ R such that

∑n
i=2 v

′
i(F

e(θ); θ1i ) =
A(F e(θ))−1/2. Define the contribution of individual i ∈ N with type θi ∈ Θi by

ci(θi) = E
([
v′i(F

e(θ)) · (F e(θ))1/2
∣∣∣ θ1i ])2 , (20)
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which is well-defined since F e(θ) exists and is unique. Note that these contributions satisfy
the first order conditions if the generated level of the public good is equal to F e(θ), so let us
prove this equality.

Since each individual i = 2, · · · , n has only one single type, the conditional expectation in
equation (20) is equal to the unconditional expectation. Taking the square root of both sides
and taking the sum yields

n∑
i=2

(ci(θ
1
i ))

1/2 =
n∑
i=2

E
[
v′i(F

e(θ)) · (F e(θ))1/2
]

= E

[
(F e(θ))1/2

n∑
i=2

v′i(F
e(θ))

]

= E

[
(F e(θ))1/2

A

(F e(θ))1/2

]
= A.

Thus, substituting the left-hand side on
∑n

i=2 v
′
i(F

e(θ); θ1i ) = A(F e(θ))−1/2 we get

n∑
i=2

v′i(F
e(θ); θ1i ) =

∑n
i=2(ci(θ

1
i ))

1/2

(F e(θ))1/2
(21)

On the other hand, since the individual 1 has complete information, rearranging (20) we get

v′1(F
e(θ); θ1) =

(c1(θ1))
1/2

(F e(θ))1/2
. (22)

Finally, adding (21) and (22), and using the fact that
∑n

i=1 v
′
i(F

e(θ); θi) = 1 (because F e(θ)
is the efficient provision), we get that ΦQF (c(θ)) = F (θ) = F e(θ). Thus, it follows that the
contributions specified in (20) do indeed satisfy the first order conditions of an equilibrium,
and that this equilibrium is efficient, as we wanted to show.

Proof. (Proposition 3.5) If γ = 1/2, then for all i ∈ N we have that v′i(F ; θi) = βi(θi)F
−1/2.

For every i ∈ N , let us define ci(θi) by

ci(θi) =
(
E
[
v′i(F

e(θ); θi) · (F e(θ))1/2
∣∣∣ θi])2 , (23)

which is well-defined since F e(θ) exists and is unique. These contributions satisfy the first
order conditions of the individual problem. Let us show that F (θ) = Φ(c(θ)) = F e(θ).
Substituting v′i(F ; θi) in (23) we get

(ci(θi))
1/2 = E

[
βi(θi) · (F e(θ))−1/2 · (F e(θ))1/2

∣∣∣ θi]
= βi(θi),

therefore, we have

v′i(F
e(θ); θi) =

(ci(θi))
1/2

(F e(θ))1/2
.
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So, adding this expression for all i,

n∑
i=1

v′i(F
e(θ); θi) =

∑n
i=1(ci(θi))

1/2

(F e(θ))1/2
.

Hence, since F e(θ) is efficient, we have that the left-hand side of the above equation is equal to

one. We then have that F (θ) =
(∑n

i=1(ci(θi))
1/2
)2

= F e(θ), and the equilibrium c is efficient.
To prove the converse, suppose that QF is efficient and γ 6= 1/2. By hypothesis, we know

that there exists some j ∈ N and types θkj , θ
`
j ∈ Θj such that βj(θ

k
j ) 6= βj(θ

`
j). Without

loss of generality, let βj(θ
k
j ) > βj(θ

`
j). Now, let θ ∈ Θ be the state of the world such that

βi(θi) ≥ βi(θi), for all i ∈ N and all θi ∈ Θi. Let c∗ be the efficient equilibrium. Then, the
first order condition for the individual i in the types profile θ imply that

(c∗i (θi))
1/2 = βi(θi) · E

[
(F e(θ))1/2−γ

∣∣∣ θi] . (24)

Let us suppose that γ > 1/2 (the case γ < 1/2 is analogous). First, efficiency implies that,
for any θ ∈ Θ,

∑n
i=1 v

′
i(F

e(θ); θi) =
∑n

i=1 βi(θi) · (F e(θ))−γ = 1. Then, as βi(θi) ≥ βi(θi) for
all i and all θi, it follows that

∑n
i=1 v

′
i(F

e(θ); θi) =
∑n

i=1 βi(θi) · (F e(θ))−γ ≥ 1, for all θ ∈ Θ.
From strict monotonicity of v′i(·; θi), we have that F e(θ) ≥ F e(θ), for all θ ∈ Θ, in particular,
F e(θ) > F e(θ`j , θ−j). Thus, as 1/2 − γ < 0, it follows that (F e(θ))1/2−γ ≤ (F e(θ))1/2−γ for

all θ ∈ Θ and, in particular, (F e(θ))1/2−γ < (F e(θ`j , θ−j))
1/2−γ . Since Pr

(
θ`j

∣∣∣ θi) > 0 for all

i 6= j, we then have

E
[
F e(θ))1/2−γ

∣∣∣ θi] ≥ (F e(θ))1/2−γ (25)

for all i ∈ N , with strict inequality when i 6= j. By (24) and (25) we have that

(c∗i (θi))
1/2 ≥ βi(θi) · (F e(θ))1/2−γ (26)

for all i ∈ N , with strict inequality when i 6= j. Adding (26) across all i ∈ N yields

n∑
i=1

(c∗i (θi))
1/2 = (F e(θ))1/2 >

n∑
i=1

βi(θi) · (F e(θ))1/2−γ . (27)

Dividing both sides of the inequality in (27) by (F e(θ))1/2, we get

1 >

n∑
i=1

βi(θi) · (F e(θ))−γ =

n∑
i=1

v′i(F
e(θ); θi), (28)

which is a contradiction to the definition of efficient provision. This completes the proof.
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