
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAPHAEL GALVÃO 

FELIPE SHALDERS 

 

 

 

WORKING PAPER SERIES   Nº  2020-02 
 
 

Department of Economics- FEA/USP 

Rules versus Discretion in 
Central Bank Communication 

http://www.cefage.uevora.pt/pt/eventos/conferencias_em_lingua_portuguesa/cefage_ue_workshops_perspectivas_da_investigacao_em_portugal_11_painel_econometria


DEPARTMENT OF ECONOMICS, FEA-USP 
WORKING PAPER     Nº  2020-02 

 

Rules versus Discretion in Central Bank Communication    

Raphael Galvão (rgalvao@uahurtado.cl) 

Felipe Shalders (fshalders@usp.br)  

 

 

 

 

Abstract: We study Central Bank communication in a coordination environment. We show that 
anything goes when the Central Bank cannot commit to a communication policy: both its most 
and least preferred allocations can be supported in equilibrium, and so can anything in between. 
We find that the ability to commit to a policy does not eliminate multiplicity and, in particular, 
does not necessarily implement the Central Bank's most preferred allocation. Under 
commitment, however, the Central Bank can avoid the least desirable outcomes and assure an 
intermediate payoff. We show that the Central Bank chooses an information structure with only 
two messages that leads to perfect coordination among private agents. 

Keywords:  Central Bank communication, commitment, coordination. 

JEL Codes:  D83, D84, E58,  



Rules versus Discretion in Central Bank
Communication∗

Raphael Galvão

Universidad Alberto Hurtado

rgalvao@uahurtado.cl

Felipe Shalders

FEA-USP

fshalders@usp.br

January, 2020

Abstract

We study Central Bank communication in a coordination environment. We

show that anything goes when the Central Bank cannot commit to a communi-

cation policy: both its most and least preferred allocations can be supported

in equilibrium, and so can anything in between. We find that the ability to

commit to a policy does not eliminate multiplicity and, in particular, does not

necessarily implement the Central Bank’s most preferred allocation. Under

commitment, however, the Central Bank can avoid the least desirable out-

comes and assure an intermediate payoff. We show that the Central Bank

chooses an information structure with only two messages that leads to perfect

coordination among private agents.
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1 Introduction

For the past three decades, Central Bank communication has been recognized
as a powerful instrument to help private agents to take better informed actions.
However, Central Bank’s and agents’ interests are not always aligned. What should
a Central Bank reveal to agents? Should the Central Bank commit to a set of rules
for its communication?

The contribution of this paper is to answer these questions in a formal model of
communication. We build on the model of speculative currency attacks of Morris
and Shin (1998) and introduce a Central Bank that can send credible public signals
about the state of fundamentals of the economy. Commitment is modeled as the
ability of the Central Bank to choose a disclosure rule before observing the state.

We find that commitment plays a very specific role in Central Bank communica-
tion. Our results show that commitment is neither sufficient nor necessary for the
Central Bank to achieve high payoffs, but instead it guarantees a minimum payoff

that could not be assured in its absence.

This result provides a complementary theory for the importance of commitment
for Central Banks. Traditionally, commitment has been argued to enable a player
to achieve its highest payoff. For instance, Kydland and Prescott (1977) argue that
commitment allows the policy maker to achieve a payoff greater than what would
be possible without commitment; in Albanesi et al. (2003), commitment allows
the Central Bank to select its most preferred equilibrium. In contrast, our model
displays multiple equilibria in the game without commitment as well as in the
game with commitment; moreover, the upper bound for the Central Bank’s payoff

is the same in both games. Commitment is beneficial only to the extent that it
increases the lower bound of the set of equilibrium payoffs for the Central Bank.

The distinctive feature of our model is the presence of a continuum of specula-
tors with private information and actions that are strategic complements. Strategic
complementary is one source of multiple equilibria: attacking the currency is more
likely to be profitable when other speculators are attacking. This the self-fulfilling
crises aspect of our model. In the absence of commitment, there is an additional
source of multiplicity. Speculators expect the Central Bank to follow a particular
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disclosure rule and, in equilibrium, the Central Bank conforms to these expecta-
tions. The Central Bank is thus subject to expectation traps. The combination of
self-fulfilling crises and expectation traps leads to an anything goes result: both the
Central Bank’s most and least preferred allocations can be supported in equilib-
rium, and so can anything in between.

Commitment eliminates expectation traps but not self-fulfilling crises. In par-
ticular, even with commitment, the Central Bank is unable to implement its most
preferred allocation without being subject to self-fulfilling crises. We show, how-
ever, that the least desirable allocations - which can be supported in equilibrium
if the expectation trap issue is severe - can be avoided by the Central Bank if it
commits to a particular disclosure rule.

In order to do so, we study the Central Bank’s problem under commitment.
We assume that if, for a given disclosure rule, there are multiple equilibria of the
subgame played by speculators, then the Central Bank only cares about its lowest
equilibrium payoff. This allows us to find a lower bound for the Central Bank’s
payoff.

We show that the Central Bank cannot improve upon an information structure
that sends only two messages. Under the optimal information structure, the public
signal works as an action recommendation: for each message, there is a unique
action that speculators can take in equilibrium (in particular, speculators’ behavior
does not rely on their private information). Thus, speculators perfectly coordinate
their actions and the Central Bank shuts down the possibility of self-fulfilling crises.

Our model is able to rationalize a negative empirical correlation between com-
mitment and Central Bank ”performance”. Indeed, if Central Banks could freely
adopt commitment technologies, only those who perform very poorly would
choose to do so. The expected payoff of those Central Banks would increase,
but, according to our model, it would still be inferior to those of Central Banks that
choose to remain discretionary. We believe that this is of great important in policy
debates and serves as a warning about the interpretation of empirical studies that
make cross-section comparisons of Central Bank performance.1

1 This self-selection mechanism resembles and could possibly justify the results in the empirical
literature on inflation targeting. For example, Ball and Sheridan (2004) argue that rules (i.e., inflation
targeting) were adopted by countries that were initially in a bad equilibrium (i.e., experienced high
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This paper is organized as follows. In the remainder of this section, we review
the literature. In Section 2, we describe the basic model. We solve the model when
the Central Bank cannot commit to a disclosure rule in Section 3. In Section 4, we
introduce commitment to the Central Bank’s problem. We conclude in Section 5.
Omitted proofs are in the Appendix.

Related Literature, Since the 1990’s, communication has become an increasingly
important instrument for Central Banks.2 There has been a movement toward
greater Central Bank transparency, which is not restricted to developed economies,
and this has followed the trend of Central Bank independence (see, for example,
Dincer and Eichengreen (2014)). This phenomenon has lead to an extensive, and
growing, literature on Central Bank communication. Numerous works, mostly
empirical, have tried to analyze the effects of Central Bank communication on
economic outcomes.

As most of the empirical work is performed with a reduced-form empirical
strategy, the mechanism through which Central Bank communication works is
unclear. The empirical findings on the effects of communication on economic
outcomes are at times conflicting and inconclusive.3 Our paper suggests that,
aside from methodological issues, knowing whether the Central Bank can commit
to a disclosure rule is essential in order to understand and estimate the impact of
communication.

This paper is related to the literature on self-fulfilling crises when payoffs are
not common knowledge. The idea that small deviations from common knowledge
can have a large impact on equilibrium outcomes dates back at least to Rubinstein’s
mail game (Rubinstein (1989)), and has gained great attention since Carlsson and
van Damme (1993) and Morris and Shin (1998).

We build on the model of Morris and Shin (1998) to introduce a public signal

inflation before inflation targeting was implemented).
2 Studying exchange rate interventions, Fratzscher (2008) argues that communication can some-

times substitute direct intervention, but direct intervention and the appropriate communication are
complements.

3 For instance, Jansen and De Haan (2007) find that the European Central Bank communication
helps to anchor expectations, but their results are not consistently significant across time. See
Blinder et al. (2008) for many examples in which the empirical literature has reached conflicting
results.
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that generates partial common knowledge. In different settings, the interaction
between public and private signals in coordination games has been studied in
Morris and Shin (2002), Hellwig (2002), Angeletos and Pavan (2007) and Angeletos
et al. (2007).

In particular, our paper contributes to the literature on the role of policy choices
in coordination games, as in Angeletos et al. (2006).Breaking the uniqueness result
in Morris and Shin (1998), Angeletos et al. (2006) point out that policy interventions
without commitment convey information about the fundamentals, allowing agents
to coordinate their actions and leading to multiple equilibria. Our model shares this
feature but, by restricting attention to communication policies, we are able to find
all equilibrium payoffs for the Central Bank and to show how severe expectation
traps can be. Moreover, we show how commitment alleviates - but not completely
eliminates - the threat that posed by multiplicity.

This paper also relates to the literature on Bayesian persuasion, pioneered by
Kamenica and Gentzkow (2011). They study the optimal signal structure from the
perspective of a sender who wants to influence a rational Bayesian receiver to take
the sender’s preferred action. We address this question of information design in the
context of a coordination model in which the sender faces a continuum of privately
informed receivers. In our model, not only the sender faces more than one receiver,
but it is also restricted to sending the same message to all of them. In a similar set-
ting, Goldstein and Huang (2016) characterize the optimal policy for a sender who
is restricted to announcing a threshold state of fundamentals below which the status
quo is abandoned.4 In our model, this is equivalent to restricting the Central Bank
to sending only two signals. In simultaneous and independent work, Inostroza and
Pavan (2019) study Bayesian persuasion in coordination games. They characterize
the optimal information structure from the sender’s perspective and, as we show
in Section 4, find that it coordinates private agents ”on the same course of action.” In
our paper, we analyze the distinction between what the sender can achieve with
and without commitment, while they focus on policy with commitment.

4 They also restrict speculators’ strategies to cutoff rules.
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2 Model

We extend the model of speculative currency attacks of Morris and Shin (1998) by
introducing Central Bank communication. Our model features a Central Bank that
can send strategic public signals about the state of fundamentals before speculators
decide whether to attack the currency peg or not.

2.1 Actions and payoffs

The state of fundamentals is represented by θ, which is uniformly distributed over
[0, 1]. The exchange rate is initially pegged by the Central Bank at e∗, and its value
in the absence of intervention is given by f (θ). We assume that f (·) is continuous
and strictly increasing, with e∗ ≥ f (θ) for all θ. A continuum of speculators of
measure one has to simultaneously decide whether to attack the peg.

A speculator attacks the peg by selling short one unit of the currency at a
cost t > 0. The payoff to a speculator that attacks when the peg is abandoned is
e∗ − f (θ) − t, whereas the payoff when the peg is defended is −t. The payoff of not
attacking is zero. We assume that it is not profitable for speculators to attack if
fundamentals are strong enough (e∗ − f (1) − t < 0).

The Central Bank derives a value v > 0 from maintaining the currency peg.
There is a cost c(α, θ) to defend the peg, where α is the mass of speculators who
attack. The cost c(·, ·) is continuous, strictly increasing in α and strictly decreasing
in θ. Hence, the payoff from defending the peg is v − c(α, θ), and the payoff

from abandoning the peg is zero. We assume that the Central Bank abandons the
peg if sufficiently many speculators attack (c(1, 1) > v), or if the fundamentals are
sufficiently weak (c(0, 0) > v).

Let θ be the solution to v = c(0, θ) and θ be the solution to e∗ − f (θ) − t = 0.
We assume that θ < θ.5 When the state is common knowledge, the parameters θ
and θ define the regions where speculators have a dominant strategy: if θ ∈ [0, θ],
attacking is a dominant strategy; if θ ∈ (θ, 1], not attacking is a dominant strategy.
If θ ∈ (θ, θ], it is only profitable to attack if sufficiently many speculators do so.

5 This condition holds for a large v and a small t.
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Let a(·) denote the critical size of attack that induces the Central Bank to abandon
the peg. We have that for θ ≤ θ, a(θ) = 0, and for θ > θ, a(θ) is the solution to
v = c(a, θ). Note that, given our assumptions on c(·, ·), we have that a(·) is continuous
in θ and strictly increasing if θ > θ.

2.2 Information

Speculators cannot directly observe θ. Each speculator i observes a private signal
xi, where

xi = θ + εi.

The idiosyncratic noise εi is drawn from a distribution with a continuous proba-
bility density function g(·), and cumulative distribution function G(·). Each εi is
independent and identically distributed across speculators, and independent of θ.
We assume that support(g) = [−ε, ε], ε > 0, and, as in Morris and Shin (1998), that
2ε < min{θ, 1 − θ}.

The Central Bank can observe θ and send a public signal y. When the Central
Bank cannot commit to a disclosure rule (Section 3), it observes the realized state
and sends y, an interval such that θ ∈ y. When the Central Bank commits to a
disclosure rule (Section 4), it chooses a partition {yn} of the state space, [0, 1], and
speculators observe the element yn that contains θ.

3 No commitment

This section analyzes the model when the Central Bank cannot commit to a com-
munication policy. We first characterize all possible equilibrium payoffs for the
Central Bank, and then discuss the issues of self-fulfilling crises and expectation
traps.
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3.1 Timing

The game without commitment has three stages. In the first stage, nature draws θ
and the Central Bank observes the realized state. In the second stage, the Central
Bank sends a public signal y. Speculators observe the public signal and their own
private signals and simultaneously decide whether to attack the peg or not. In the
third stage, the Central Bank observes the size of the attack and decides whether
to maintain the peg or to abandon it. The last stage of the game is straightforward,
and the Central Bank abandons the peg if only if the size of the attack is greater
than a(θ).

3.2 Equilibrium

We take the Central Bank’s behavior in the last stage of the game as given and focus
on its communication strategy. A strategy for the Central Bank is a function Y such
that Y(θ) is a closed interval with θ ∈ Y(θ) for all θ, i.e., the range of fundamentals
disclosed by the Central Bank must include the realized state.6 A typical public
signal is denoted by y.

A strategy for a speculator is a function π such that, for every private signal x
and every public signal y, π(x, y) determines the probability of attacking the peg.

In the absence of commitment, the game between Central Bank and speculators
can be interpreted as a signaling game in which θ is the Central Bank’s type. The
equilibrium concept in this section is the Perfect Bayesian Equilibrium (PBE) with
symmetric strategies for the speculators.

Definition 1. The strategy profile (Y, π) is a PBE if

1. for all θ ∈ [0, 1], Y(θ) maximizes the Central Bank’s payoff given π;

2. for every pair of signals (x, y), there exist beliefs φ(·|x, y) about θ such that π(x, y)
maximizes the speculator’s expected payoff given φ and that other speculators are
using π;

6 The restriction to closed interval is made only for simplicity.
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3. for each signal y such that {θ : Y(θ) = y} , ∅, φ(·|x, y) is given by Bayes’ rule,
conditional on x and Y(θ) = y;

4. for each signal y such that {θ : Y(θ) = y} = ∅,

support(φ(·|x, y)) ⊂ [x − ε, x + ε] ∩ y.

The no-commitment assumption is explicit in the first condition of the definition:
the public signal Y(θ) must maximize the Central Bank’s payoff for each realization
of θ. Condition 2 states that following πmust be optimal for each speculator given
posterior beliefs φ and the other speculators’ strategy, π. The last two conditions
impose restrictions on the speculators’ posterior beliefs. Beliefs must follow Bayes’
rule on the path of play (condition 3), and off-path they must be consistent with
private and public signals (condition 4).

In Proposition 1 below, we characterize all possible equilibrium outcomes for
the currency peg. We first argue that, if θ is in one of the dominance regions, [0, θ]
or (θ, 1], then the fate of the peg is uniquely determined by the fundamentals: if
θ ≤ θ, the Central Bank finds it optimal to unilaterally abandon the peg; if θ > θ,
the Central Bank can prevent attacks by simply disclosing θ, and therefore the peg
is maintained in any PBE.

Outside the dominance regions, however, the peg is subject to self-fulfilling
crises: for any subset A of (θ, θ], there is a PBE in which the peg is abandoned
in A and maintained in its complement, (θ, θ] \ A. In order to prove this claim,
we construct an equilibrium in which speculators expect the Central Bank to fully
reveal the state; any deviation is discouraged by pessimistic beliefs and a higher
likelihood of attacks. With common knowledge that θ ∈ (θ, θ], there can either
be a coordinated attack and currency devaluation, or all speculators refrain from
attacking and the peg is maintained.7

Proposition 1 (PBE outcomes). In any PBE, the currency peg is abandoned if θ ≤ θ,
and it is maintained without attacks if θ > θ. Furthermore, for every A ⊂ (θ, θ], there
exits a PBE in which the peg is abandoned in A and maintained in (θ, θ] \ A.

7 There are equilibria in which the Central Bank does not fully disclose the state. In order to
prove our results, characterizing every equilibrium with full disclosure suffices.
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Proof: The first part of the proposition follows directly from the arguments in the
text. For the second part, let A ⊂ (θ, θ] and Ã = [0, θ] ∪ A. In what follows,
we construct an equilibrium in which the public signal reveals the true state and
speculators attack if and only if θ ∈ Ã. The peg is thus abandoned in Ã and
maintained in [0, 1] \ Ã.

Let a generic public signal be denoted by y = [y, y]. Consider beliefs φ given by

φ(θ|x, y) =

 1, if θ = max{x − ε, y}

0, otherwise
, (1)

and a strategy profile (Y, π) given by

Y(θ) ={θ} ∀θ,

π(x, y) =


1, if

 y = y ∈ Ã, or

y < y and max{x − ε, y} ≤ θ

0, otherwise

.

We claim that this strategy profile is a PBE supported by the beliefs described in
(1).

Consider speculator i’s problem. When y = y = θ, given the aggregate strategy
π, it is only profitable for i to attack if y ∈ Ã, which means that π is optimal on the

path of play. Now consider off path signals with y < y. When y > θ, speculator i

knows that θ > θ and attacking is indeed not profitable. If y ≤ θ and xi ≤ θ + ε,

then i believes that θ = max{xi − ε, y} ≤ θ. Speculator i also believes that every

other speculator received a private signal below θ + ε, and that, following π, they
all attack. Hence, attacking is profitable. Finally, when y ≤ θ and xi > θ + ε,

speculator i knows that θ > θ, and it is not profitable to attack. Therefore, π is
optimal for i, given φ and that every other speculator follows π.

Now we show that the Central Bank has no profitable deviation from strategy
Y. Since the peg is not attacked on (θ, 1], there can only be a profitable deviation
if θ ≤ θ. A deviation for the Central Bank at θ is public signal y′ = [y′, y′], such
that y′ < y′, and θ ∈ y′. However, according to π, speculators still attack the peg

10



whenever they observe such a public signal. This proves that there is no profitable
deviation for the Central Bank and that Y is optimal.

Since φ satisfies conditions 3 and 4 of Definition 1, the profile (Y, π) constitutes
a PBE. �

Note that the PBE constructed in the proof of Proposition 1 satisfies the intuitive
criterion of Cho and Kreps (1987). As argued above, only types in [0, θ] could
benefit from a deviation. However, if the speculators know that θ ≤ θ, they
can coordinate on attacking the currency peg and, in this case, a deviation is not
profitable for such a type.

From Proposition 1, we know that, for any m ∈ [θ, θ], we can find an equilibrium
in which the peg is attacked if and only if θ ≤ m. In this case, the Central Bank’s
expected payoff is ∫ 1

m
(v − c(0, θ)) dθ, (2)

which is strictly decreasing in m, for m > θ. The expected payoff in (2) can reach
any value in

V
NC =

[∫ 1

θ

v − c(0, θ)dθ,
∫ 1

θ

v − c(0, θ)dθ
]
,

that is, for any ν ∈ VNC, there is a PBE in which the Central Bank’s expected payoff

is ν. Moreover, the first part of Proposition 1 implies that expected payoffs outside
of VNC are not achievable. Thus we have characterized all possible equilibrium
payoffs for the Central Bank.

Proposition 2 (PBE payoffs). In any PBE, the Central Bank’s expected payoff is an
element of VNC. Conversely, for any ν ∈ VNC, there exists a PBE in which the Central
Bank’s expected payoff is ν.

3.3 Discussion

We have taken a standard model of speculative currency attacks and added to it an
informed Central Bank that cannot commit to a disclosure rule. Our model exhibits
a multiplicity problem that is inherent to games of coordination, an implication of
the strategic complementarity in the speculators’ actions. For a given communica-
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tion policy and beliefs about the fundamentals, there is more than one equilibrium
strategy for speculators. The strategy played in equilibrium is determined by spec-
ulators’ expectations about what others are doing: this is the self-fulfilling nature
of equilibria in coordination games.

The introduction of policy without commitment adds another source of multi-
plicity. The equilibrium is also determined by what speculators expect the policy
to be. The Central Bank is thus subject to expectation traps, as is clear from the
equilibrium constructed in the proof of Proposition 1. Speculators expect the Cen-
tral Bank to fully disclose the state, and any deviation is met with an aggressive
attacking strategy. The Central Bank finds it optimal to conform to speculators’
expectations, and follows a full disclosure policy that opens up the possibility of
self-fulfilling crises.

Proposition 2 shows how severe the issue of expectation traps can be. Both the
speculators’ and the Central Bank’ most preeferred outcomes can be achieved in
equilibrium. In the former, the peg is attacked whenever a coordinated attack is
profitable. In the latter, there are no attacks whenever the Central Bank does not
unilaterally abandon the peg. These two extreme cases determine the bounds for
the Central Bank’s expected payoff in any PBE, and Proposition 2 shows that any
payoff in between is possible in equilibrium.

4 Commitment

In this section, we allow the Central Bank to commit to a disclosure rule before
observing θ. Since expectation traps are no longer an issue, the Central Bank can
design a public signal structure in order to steer speculators’ beliefs in the ”right”
direction. The self-fulfilling aspect of the game, however, persists, and it poses
limits to what the Central Bank can achieve. For example, just as in the previous
section, the Central Bank’s most preferred allocation is an equilibrium outcome,
but that can only be achieved if speculators coordinate on the best equilibrium
strategy for the Central Bank.

Our goal is to show that commitment allows the Central Bank to set a higher
lower bound for its equilibrium payoff. For this purpose, we focus on the worst
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equilibrium for the Central Bank, in which speculators follow the strategy that
minimizes the Central Bank’s payoff (or, equivalently, the strategy that maximizes
their own payoffs).8 Therefore, we are interested in finding a communication
policy that maximizes the Central Bank’s payoff when speculators follow their
most aggressive (subgame perfect) strategy. We find that the optimal disclosure
rule eliminates self-fulfilling crises in equilibrium and that it ensures a lower bound
for the Central Bank’s payoff that could not be guaranteed without commitment.

4.1 Public information

In contrast to the previous section, the Central Bank commits to a disclosure rule
before observing θ. As in the Bayesian persuasion literature, an interpretation of
the disclosure rule is that an independent and credible Central Bank commits to an
information acquisition procedure and to publicly releasing its findings.

The Central Bank can partition the space of fundamentals and announce in
which interval the realization ofθ lies. We denote a partition9 of [0, 1] by Y = {yn}

N
n=1,

where

y1 = [0,m1], y2 = (m1,m2], ..., yn = (mn−1,mn], ..., yN = (mN−1, 1],

for N > 1. When the public signal y = yn is sent, it becomes common knowledge
that θ ∈ yn. When N = 1, we let y1 = [0, 1], which means that the public signal is
uninformative.

Given the assumption that the Central Bank commits to a choice of Y before
learning the true state θ, there is no strategic learning, i.e., the choice of Y does
not change the speculators’ beliefs about what the Central Bank knows. Since the
common prior is uniform, the posterior distribution of θ given a private signal x

8 This equivalence follows from Lemma 2 and Lemma A.1 in Appendix A.3.
9 In this exposition, we restrict the analysis to partitions with a finite number of intervals. Our

results still hold if partitions can have a countable number of intervals.

13



and a public signal y has probability density function φ(θ|x, y), where10

φ(θ|x, yn) =

 g(x−θ)
G(x−mn−1)−G(x−mn) , if θ ∈ yn

0, otherwise
. (3)

4.2 Equilibrium

We solve this game by backward induction. In the last stage, the Central Bank
abandons the peg if and only if the size of the attack is greater than a(θ). As in
the previous section, we take the Central Bank’s strategy in the last stage of the
game as given. In the second stage, speculators observe the public signal and their
own private signals. Anticipating the Central Bank’s behavior in the last stage,
they simultaneously decide whether to attack the currency peg or not. In the first
stage, the Central Bank chooses a partition Y. If there are multiple equilibria in the
second stage of the game, we assume that the Central Bank only cares about its
lowest equilibrium payoff.11

More formally, suppose that the Central Bank chooses a partition Y = {yn}
N
n=0.

Let pn = mn − mn−1 be the probability that θ lies in the interval yn of the partition.
Now consider the subgame that follows the disclosure of y = yn. Denote by Vn

the infimum of the Central Bank’s equilibrium payoffs when y = yn,12 and let
V(Y) =

∑N
n=1 pnVn. The Central Bank’s problem is to choose Y in order to maximize

V(Y).

As before, let π(x, y) be speculators’ selling strategy.13 When all speculators
follow π(·, ·), the size of the attack at θ is given by

s(θ, π) =

∫ θ+ε

θ−ε

π(x, y(θ))g (x − θ) dx,

10 There is a finite number of pairs (x, y) that fully reveal θ: when y = yn and x = mn + ε, we have
P(θ = mn|y = yn, x = mn +ε) = 1; likewise, when y = y1 and x = −ε, thenP(θ = 0|y = y1, x = −ε) = 1.
For all other pairs (x, y), the conditional density of θ is given by (3).

11 When there is no ambiguity, we say equilibrium when we mean the equilibrium of the subgame
that follows the choice of Y.

12 Such infimum always exists as the Central Bank has the option to abandon the peg, so the
equilibrium payoff is bounded below by 0.

13 For simplicity, we omit the dependence of π on the partition choice Y.
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where y(θ) is the public signal sent according to Y. Thus, the event in which the
peg is abandoned is given by

A(π) = {θ : s(θ, π) ≥ a(θ)},

and the expected payoff from attacking the currency given a pair of signals (x, y) is

uy(x, π) =

∫
A(π)

[e∗ − f (θ)]φ(θ|x, y)dθ − t. (4)

In equilibrium, π(x, y) = 1 if uy(x, π) > 0, and π(x, y) = 0 if uy(x, π) < 0.

4.3 Equilibrium properties

Before finding the optimal policy for the Central Bank, we first characterize the
speculators’ most aggressive strategies for any partition choice Y. In Proposition
3, we show that such strategies will take the form of cutoff rules on their private
signals. That is, given a partition Y and a public signal y, speculators attack if and
only if their private signal is below some cutoff k.

Let Xy denote the set of possible private signals when the public signal is y.14

For k ∈ [−ε, 1 + ε], let the indicator function Ik be defined as

Ik(x) =

 1, if x < k
0, if x ≥ k

.

We say that speculators follow a cutoff rule Ik in the subgame that follows the
disclosure of public signal y if π(x, y) = Ik(x) for all x ∈ Xy. In this case, we replace
π(·, y) by Ik(·) when it is clear that we are referring to the strategy conditional on
public signal y.

Suppose that the state is θ and that speculators follow the cutoff rule Ik after
they observe public signal y(θ). In Appendix A.1, we show that there will be a
threshold θk which is the largest value of θ at which the Central Bank finds it
optimal to abandon the peg. We also show that θk is continuous and increasing in

14 I.e., Xy1 = [−ε,m1 + ε] and, for n > 1, Xyn = (mn−1 − ε,mn + ε].
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k, and that k − θk is strictly increasing in k.

Since the currency peg is abandoned if and only if θ ≤ θk, the payoff function
uy(k, Ik) is given by

uy(k, Ik) =

∫ θk

k−ε
[e∗ − f (θ)]φ(θ|k, y)dθ − t, (5)

for all k ∈ Xy.

In order to characterize the speculators’ payoffs when a cutoff strategy is used,
we make the following assumption.

Assumption 1. Let the public signal be y. For any pair of private signals x1 and x2, with
x1 < x2, Φ(θ|x2, y) ≤ Φ(θ|x1, y) for all θ, where Φ(θ|x, y) is the cumulative distribution
function of θ conditional on signals x and y.

This assumption means that the distribution of θ conditional on y and x2 first-
order stochastically dominates the distribution of θ conditional on y and x1. It is
satisfied, for example, if the idiosyncratic noise on [−ε, ε] follows a concave or a
truncated normal distribution. Assumption 1 leads to the following lemma.

Lemma 1. Suppose that Assumption 1 is satisfied. When the aggregate strategy is given
by Ik, the payoff from attacking the currency, uy(x, Ik), is decreasing in the private signal x.

Proof: See Appendix A.2. �

A consequence of Lemma 1 is that if uy(k, Ik) = 0, then following Ik is an equilib-
rium strategy for speculators that observe the public signal y. As the next lemma
shows, characterizing the Central Bank’s payoff will be closely related to the exis-
tence of cutoff strategies for each realization of the public signal.

Lemma 2. For a given public signal y,

i. if uy(k, Ik) < 0 for all k ∈ Xy, then, in any equilibrium, π(x, y) = 0 for all x ∈ Xy;

ii. if uy(k′, Ik′) ≥ 0 for some k′ ∈ Xy, then, in the worst equilibrium for the Central
Bank, speculators use the cutoff rule Ik after observing y, where k = sup{k′ ∈ Xy :
uy(k′, Ik′) ≥ 0}.
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Proof: See Appendix A.3. �

We are now able to characterize the equilibrium strategy that minimizes the
Central Bank’s payoff in the proposition below, which follows directly from Lemma
2.

Proposition 3 (Strategies in the worst equilibrium for the Central Bank). Consider
a partition Y = {mn}

N
n=0. The equilibrium strategy that minimizes the Central Bank’s payoff

is as follows: for all n such that mn ≤ θ, speculators always attack the currency if y = yn;
likewise, for all n such that mn−1 ≥ θ, speculators never attack the currency if y = yn.
Lastly, if n is such that mn−1 < θ < mn, speculators never attack if uyn(k, Ik) < 0 for all
k ∈ Xyn ; otherwise, speculators follow Ikn after observing yn, where kn = sup{k′ ∈ Xyn :
uyn(k′, Ik′) ≥ 0}.

4.4 No loss of generality in two-interval partitions

In this subsection, we show that the Central Bank chooses, without loss of gener-
ality, a partition with two elements. Proposition 3 provides the intuition for this
result. If there are several n such that mn ≤ θ, then the Central Bank can group all
these yn into a single interval without changing its payoff. Likewise, if there are
several n such that mn−1 ≥ θ, the Central Bank can group these yn together. This
implies that we can restrict attention to partitions with at most three intervals.

Consider a partition Y = {[0,m1], (m1,m2], (m2, 1]} with m1 < θ < m2. If there
are no attacks in y2, then the Central Bank can choose Y′ = {[0,m1], (m1, 1]} and
obtain the same payoff. Otherwise, it follows from Proposition 3 that there is a
cutoff k̂ = sup{k ∈ X(m1,m2] : u(m1,m2](k, Ik) ≥ 0} such that, in the worst equilibrium
for the Central Bank, a speculator attacks after observing y2 = (m1,m2] and x ≤ k̂.
This leads to a threshold θk̂ ∈ (m1,m2] such that the Central Bank abandons the peg
if and only if θ ≤ θk̂. Cutoff k̂ and threshold θk̂ are depicted in Figure 1(a). The
curves represent the payoff functions uy(k, Ik), and we can see that uy2(k, Ik) crosses
zero at the cutoff k̂. Now consider the alternative partition Y′ = {[0, θk̂], (θk̂, 1]},
with public signals y′1 and y′2. The payoff functions under partition Y′ are depicted
in Figure 1(b). We can prove that uy′1

(k, Ik) > 0 for all k, therefore speculators attack
the currency after observing y′1, and the peg is abandoned. Moreover, we can
also show that uy′2(k, Ik) < 0 for all k, which implies that speculators refrain from
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Figure 1: Two-signal structure without loss of generality. The curves depict the
payoff function uy(k, Ik).

attacking after observing y′2. Thus, the peg is still abandoned if θ ≤ θk̂, but the
currency is defended at the lowest possible cost for θ > θk̂. Since it is cheaper for
the Central Bank to maintain the peg with Y′, this partition is preferred to Y. This
result is formalized in Proposition 4 below .

In order to prove Proposition 4, we use Lemma A.3 (in Appendix A.4), which is
an application of the law of total expectation. In that lemma, we show that moving
an interval of the partition to the right - that is, increasing the lower bound mn−1

or the upper bound mn - will not increase the payoff u(mn−1,mn](k, Ik). This implies
that u(θk̂,1](k, Ik) < 0 for all k ∈ X(θk̂,1]. By Proposition 3, there are no attacks when
y = (θk̂, 1].

Proposition 4 (No loss of generality in two-interval partitions). For any partition
Y = {yn}

N
n=1, there exists Y′ = {y′n}N

′

n=1 with N′ = 2, such that V(Y′) ≥ V(Y).

Proof: See Appendix A.4.
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4.5 Characterization of the optimal signal structure

Proposition 4 allows us to restrict attention to partitions of two intervals. When
N = 2, the Central Bank’s problem is equivalent to choosing m such that speculators
will learn whether θ ≤ m or θ > m. Given the choice of m, they observe the public
signal y ∈ {yL, yH}, drawn as follows:

y =

 yL, if θ ∈ [0,m]
yH, if θ ∈ (m, 1]

.

From now on, we refer to yL and yH as the low and the high public signals, respec-
tively.

For the sake of exposition, let us consider the benchmark environment where
there is no public signal. As in Morris and Shin (1998), there is a unique equilibrium
where speculators use a cutoff strategy Ik∗ , leading to a threshold θk∗ such that the
peg is abandoned if and only if θ ≤ θk∗ . Following the reasoning that leads to
Proposition 4, consider the choice of m = θk∗ . In the worst equilibrium for the
Central Bank, there is a coordinated attack in [0, θk∗], and speculators refrain from
attacking in (θk∗ , 1]. We can in fact show that this is the unique equilibrium with
partition choice Y = {[0, θk∗], (θk∗ , 1]}.15 Thus, as in the game without a public signal,
the peg is abandoned if and only if θ ≤ θk∗ .

A few observations are in order. First, note that no speculator attacks the
currency when θ > θk∗ , whereas without the public signal some speculators would
still attack the currency for some θ > θk∗ . Thus, the Central Bank is strictly better off

with the introduction of the public signal, since it minimizes the cost of maintaining
the peg. Moreover, speculators are also strictly better off now that no one attacks
when the peg is maintained, and they all attack when the peg is abandoned.

We also claim that choosing m > θk∗ is strictly dominated by m = θk∗ , since a
higher m either increases the region where the peg is abandoned, or it makes it more
costly to defend the peg (or both). This follows from the aforementioned Lemma
A.3, which implies that uyL(k∗, Ik∗) ≥ u[0,1](k∗, Ik∗) = 0. Therefore, speculators will use
a cutoff strategy in yL that will lead to a threshold above θk∗ . Any improvement
over m = θk∗ must be in the direction of reducing m.

15 See Lemma A.4 in Appendix A.5.
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Starting from m = θk∗ , as m decreases, the Central Bank is strictly better off

as long as the equilibrium is still unique: reducing m will increase the range of
fundamentals where the peg is not attacked. However, reducing m also leads
to an increase in uyH (k, Ik), and eventually it will cross 0 from below for some
k ∈ XyH . When this happens, there is an equilibrium with speculators attacking in
yH, making the Central Bank worse off. Thus, the Central Bank wants to reduce m
up to the limit where the equilibrium is still unique. This result is formalized in
Proposition 5.

Before presenting the proposition, we define M as

M = {m ∈ [0, 1] : in any equilibrium, there is no attack if θ ∈ yH = (m, 1]}.

Note that M , ∅ because θ ∈M. We also define m as

m = inf M.

Now we are ready to characterize the optimal partition.

Proposition 5 (Optimal partition). V(Y) ≤ V for any partition Y, where

V = lim
m↓m

V(Ym),

and thus the Central Bank can achieve a payoff arbitrarily close to V.

Proof: See Appendix A.5. �

As argued above, the Central Bank reduces m as long as there are no attacks
in (m, 1]. It turns out that, for a sufficiently small m ∈ M, the equilibrium is also
unique if y = yL, when every speculator attacks the peg.16 Therefore, speculators
perfectly coordinate their actions, attacking if and only if they observe yL.

Note that an equilibrium only exists if m ∈ M. However, the Central Bank can
achieve a payoff arbitrarily close to V and, for m ∈M close enough to m, speculators
always coordinate on the public signal. Thus, in the next subsection, we abstract
from this existence issue and, when referring to the optimal partition, we mean a

16 This follows from Lemma A.4 and Lemma A.5 in the Appendix.
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partition Ym with m close to m.

4.6 Discussion

The main results in this section are Propositions 4 and 5. In Proposition 4, we show
that, despite having access to a broad message space, the Central Bank cannot
improve upon a simple two-message rule. The key to this result is that committing
to such a disclosure rule leads to a unique equilibrium, whereas a more informative
communication strategy generates multiple equilibria, some of which have worse
outcomes for the Central Bank.

In Proposition 5, the optimal partition was found by assuming that the Central
Bank only cares about its lowest equilibrium payoff. Nevertheless, for any m ∈
[θ,m], there is an equilibrium in which speculators do not attack if θ ≥ m. It

follows that any payoff in the interval VC =
[∫ 1

m
v − c(0, θ)dθ,

∫ 1

θ
v − c(0, θ)dθ

]
can

be achieved in equilibrium, and therefore the Central Bank cannot improve upon
the best allocation of the game without commitment. However, any choice of m in
[θ,m] opens up the possibility of self-fulfilling crises and payoffs inVC cannot be
guaranteed. What we show in Proposition 5 is that the Central Bank can guarantee
itself a payoff arbitrarily close to

∫ 1

m
v − c(0, θ)dθ by appropriately shutting down

the possibility of self-fulfilling crises. In contrast, when the Central Bank cannot
commit to a disclosure rule, its payoff can be as low as

∫ 1

θ
v − c(0, θ)dθ.

The public signal under commitment can be interpreted as a recommendation
from the Central Bank to speculators about which action they should take. Indeed,
yL could be interpreted as an ”attack” recommendation, whereas yH means ”do
not attack”. Naturally, in equilibrium, those recommendations are followed by
speculators. Interestingly, speculators ignore their own private signals.

In order to improve beliefs about the fundamentals when y = yH, the Central
Bank commits to acknowledging bad states, i.e., θ ≤ m. By disclosing that fun-
damentals are bad and allowing for a coordinated attack if y = yL, the Central
Bank is able to pool intermediate and good states together, minimizing the cost
of defending the peg in yH. The optimal threshold will be the lowest m such that
expectations about θ are good enough to prevent attacks if y = yH. Reducing m
any further opens up the possibility of self-fulfilling crises, even if the public signal
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is yH.

Even though it is without loss of generality to assume that N = 2, the Central
Bank could be arbitrarily precise when fundamentals are bad. It is only when
fundamentals are “not too bad” that the Central Bank must be vague, since, as
long as yH remains the same, its payoff does not change. This vagueness is used
by the Central Bank to make speculators uncertain about whether the state is
intermediate (θ ∈ (m, θ), where a coordinated attack is profitable) or good (θ ≥ θ,
where attacking is never profitable), thus preventing them from attacking.

Another feature of the equilibrium is its Pareto efficiency. Efficiency is achieved
because the public signal allows for perfect coordination among speculators. In
contrast, the game without public information is not Pareto efficient since there
are θ at which some speculators attack the currency but the Central Bank defends
the peg. The game without commitment admits both efficient and inefficient
equilibria.17

5 Conclusion

In this paper, we study how important for a Central Bank is the ability to commit to a
communication policy. We show that the Central Bank’s most preferred allocation
can be supported in an equilibrium of the game without commitment, but so
are other allocations that yield lower payoffs. We find that commitment is not
enough for the Central Bank to achieve its most preferred allocation, but it can
guarantee an intermediate payoff that may be preferable to what it would get
without commitment. Moreover, we show that the most profitable way for the
Central Bank to guarantee itself a minimum payoff is to commit to a disclosure rule
that eliminates the possibility of self-fulfilling crises.

Our results point out to a novel role for commitment: multiplicity may still
exist, but with commitment the lower bound for the Central Bank’s payoff is higher
than the one without commitment. This distinctive feature of our model has two

17 For instance, the equilibrium constructed in the proof of Proposition 1 is Pareto efficient. On
the other hand, the allocation of the game without a public signal (discussed at the beginning of
Subsection 4.5) is inefficient but can be supported in an equilibrium in which the Central Bank
always sends the uninformative public signal y = [0, 1] (provided that k∗ + ε < θ).
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empirical implications that we discuss below.

First, high performing Central Banks have little incentive to adopt commitment
technologies. Low performing Central Banks, however, have reasons to pursue
commitment and then to follow a disclosure rule as the one characterized in Section
4. An implication of this result is that, empirically, one could observe a negative
correlation between commitment and Central Bank performance: Central Banks
with a good performance absent commitment choose to remain discretionary, while
Central Banks with inferior performance adopt commitment technologies in order
to achieve an intermediate payoff, but still inferior to those of high performing
Central Banks.

Second, we find that commitment is useful because it allows the Central Bank to
adopt a disclosure rule that eliminates self-fulfilling crises. Thus, our model implies
that fundamentals are better predictors of economic outcomes when the Central
Bank commits to a communication policy. This implication is common to models
in which commitment allows the Central Bank to pick one of many equilibria of the
game, effectively removing any multiplicity. In our framework, however, not all
disclosure rules would eliminate multiplicity, even with commitment. Uniqueness
arises with the additional step of the Central Bank choosing the specific disclosure
rule that yields the lower bound for its payoff.

A Appendix

A.1 Derivation of θk

For k ∈ [−ε, 1 + ε], define θk as

θk = sup{θ : s(θ, Ik) ≥ a(θ)}. (6)

θk is the largest value of θ at which that the Central Bank finds it optimal to
abandon the peg when speculators’ aggregate short sales are given by Ik. Since
s(·, Ik) is decreasing and a(·) is increasing, the Central Bank abandons the peg if and
only if θ ≤ θk. Given that a(θ) = 0 for θ ≤ θ, the set on the right hand side of (6) is
never empty and θk is well defined. Moreover, we have that θk ≥ θ for all k.
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Define k̄ as the unique value of k that solves

s(1, Ik) = G (k − 1) = a(1),

that is, k̄ = 1+G−1(a(1)). If speculators follow the cutoff rule Ik̄, the peg is abandoned
for every realization of θ. Since s(θ, Ik) is increasing in k, we have that θk = 1, for
all k ≥ k̄. Then k − θk = k − 1, which is strictly increasing in k.

Now suppose that speculators follow the cutoff rule Ik, with k ≤ θ − ε. In this
case, there are no attacks when θ > θ, which implies that θk = θ. We have that
k − θk = k − θ, which is strictly increasing in k.

Finally, if k ∈ (θ − ε, k̄), then θk is the unique value of θ that solves

s(θ, Ik) = G (k − θ) = a(θ). (7)

Note that θ ≤ θ cannot be a solution to the equation above, since the left hand side
of (7) is strictly positive, while the right hand side equals 0. Thus, θk > θ. For
θ > θ, we have that a(θ) is strictly increasing, thus θk is strictly increasing in k. In
addition, a(θ) ∈ (0, 1) implies that θk ∈ (k− ε, k + ε). In this case, k− θk = G−1(a(θk)),
and since θk is strictly increasing in k, then so is k − θk.

Therefore θk is continuous in k, and that k − θk is strictly increasing in k, for all
k ∈ [−ε, 1 + ε].

A.2 Proof of Lemma 1

Lemma 1. Suppose that Assumption 1 is satisfied. When the aggregate strategy is given
by Ik, the payoff from attacking the currency, uy(x, Ik), is decreasing in the private signal x.

Proof: Suppose that the aggregate strategy is given by Ik. Let I(θ) be an indicator
function that equals 1 if the currency peg is abandoned when the state is θ. Since,
by assumption, speculators follow a cutoff rule, I(θ) is weakly decreasing in θ.18

Define
U(θ) = [ f (θ) − e∗]I(θ),

18
I(θ) = 1, if θ ≤ θk; and I(θ) = 0, if θ > θk.
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which is negative and increasing. Consider a public signal y and a pair of private
signals x1 and x2, with x1 < x2. Then∫ 1

0
U(θ)dΦ(θ|x2, y) ≥

∫ 1

0
U(θ)dΦ(θ|x1, y),

where the inequality comes from Assumption 1 and the fact that U is increasing.
Hence

uy(x1, Ik) = −

∫ 1

0
U(θ)dΦ(θ|x1, y) − t

≥ −

∫ 1

0
U(θ)dΦ(θ|x2, y) − t

= uy(x2, Ik),

which completes the proof. �

A.3 Proof of Lemma 2

Before proving Lemma 2, we need two auxiliary results.

Lemma A.1. For a given public signal y, if π(x, y) ≥ π′(x, y) for all x, then uy(x, π) ≥
uy(x, π′) for all x.

Proof: Suppose that π(x, y) ≥ π′(x, y) for all x. Then

s(θ, π) ≥ s(θ, π′)⇒ A(π) ∩ y ⊇ A(π′) ∩ y⇒ uy(x, π) ≥ uy(x, π′).

�

Lemma A.2. The payoff function uyn(k, Ik) is continuous in k, for all k ∈ Xyn .

Proof: From (5), the payoff function when y = yn is given by

uyn(k, Ik) =

∫ θk

k−ε
[e∗ − f (θ)]φ(θ|k, yn)dθ − t,

25



Since φ(·|k, yn) and the limits of integration are continuous in k (because θk is
continuous), uyn(k, Ik) is continuous in k. �

Now we are ready to prove Lemma 2.

Lemma 2. For a given public signal y,

i. if uy(k, Ik) < 0 for all k ∈ Xy, then, in any equilibrium, π(x, y) = 0 for all x ∈ Xy;

ii. if uy(k′, Ik′) ≥ 0 for some k′ ∈ Xy, then, in the worst equilibrium for the Central
Bank, speculators use the cutoff rule Ik after observing y, where k = sup{k′ ∈ Xy :
uy(k′, Ik′) ≥ 0}.

Proof: i. Suppose that uy(k, Ik) < 0 for all k ∈ Xy. Let π be a equilibrium strategy,
and suppose by way of contradiction that there is x ∈ Xy such that π(x, y) > 0. If
this is true, then the set {x′ ∈ Xy : π(x′, y) > 0} is non-empty and we can define x̄y as

x̄y = sup{x′ ∈ Xy : π(x′, y) > 0}.

Note that x̄y ∈ Xy because Xy is right-closed. Also note that, if π is an equilibrium
strategy, then for any x′ such that π(x′, y) > 0, it has to be true that uy(x′, π) ≥ 0. By
the continuity of uy in the private signal, uy(x̄y, π) ≥ 0. From Lemma A.1,

uy(x̄y, Ix̄y) ≥ uy(x̄y, π) ≥ 0,

which contradicts the assumption that uy(k, Ik) < 0 for all k ∈ Xy.

ii. If uy(k, Ik) > 0, by continuity (Lemma A.2), it has to be true that k is the right
bound of the interval Xy and, by the decreasing property of uy in the private signal
(Lemma 1), Ik is an equilibrium strategy. If uy(k, Ik) = 0, then we know from Lemma 1
that Ik is an equilibrium strategy. Now it is left to show that any equilibrium strategy
π features π(x, y) = 0 for x > k. Assume by way of contradiction that there is an
equilibrium withπ(x, y) > 0 for some x > k. Let x̄y = sup{x′ ∈ Xy : π(x′, y) > 0} ∈ Xy.
By Lemma A.1, uy(x̄y, Ix̄y) ≥ uy(x̄y, π) ≥ 0, which contradicts the assumption that k
is the supremum of the set {k′ ∈ Xy : uy(k′, Ik′) ≥ 0}.
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A.4 Proof of Proposition 4

We first need the following lemma.

Lemma A.3. Suppose that y = yn and that speculators follow Ik, for k ∈ Xyn . The payoff
function uyn(x, Ik) is continuous in both mn−1 and mn. Furthermore, it is decreasing in
mn−1 for k < mn−1 + ε, and constant otherwise; it is also decreasing in mn for k > mn − ε,
and constant otherwise.

Proof: We want to show that uyn is decreasing in both mn−1 and mn. Fix mn−1 and
consider a change from mn to m′n > mn. Recall that, when agents are using a cutoff

strategy,
(
e∗ − f (θ)

)
I(θ) is a decreasing function of θ, where I(·) is the indicator

function that equals 1 if the peg is abandoned. For x > mn − ε, we have

u[mn−1,m′n](x, Ik) + t

= E
[(

e∗ − f (θ)
)
I(θ)|x, θ ∈ [mn−1,m′n]]

]
= E

[(
e∗ − f (θ)

)
I(θ)|x, θ ∈ [mn−1,mn]

]
P(θ ∈ [mn−1,mn]|x, θ ∈ [mn−1,m′n])

+ E
[(

e∗ − f (θ)
)
I(θ)|x, θ ∈ [mn,m′n]

]
P(θ ∈ [mn,m′n]|x, θ ∈ [mn−1,m′n])

< E
[(

e∗ − f (θ)
)
I(θ)|x, θ ∈ [mn−1,mn]

]
P(θ ∈ [mn−1,mn]|x, θ ∈ [mn−1,m′n])

+ E
[(

e∗ − f (θ)
)
I(θ)|x, θ ∈ [mn−1,mn]

]
P(θ ∈ [mn,m′n]|x, θ ∈ [mn−1,m′n])

= E
[(

e∗ − f (θ)
)
I(θ)|x, θ ∈ [mn−1,mn]

]
= u[mn−1,mn](x, Ik) + t,

that is, uyn(x, Ik) is decreasing in mn. For x ≤ mn − ε, we have

P(θ ∈ [mn,m′n]|x, θ ∈ [mn−1,m′n]) = 0,

therefore uyn(x, Ik) is constant in mn. Analogous reasoning shows that uyn(x, Ik) is
decreasing in mn−1, for x < mn−1 + ε, and constant otherwise. Regarding continuity,
note that the payoff function is given by

uyn(x, Ik) =

∫ min{x+ε,mn}

max{x−ε,mn−1}

[
e∗ − f (θ)

]
I(θ)

g (x − θ)
G (x −mn−1) − G (x −mn)

dθ − t,

which is continuous in both mn−1 and mn. �
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Now the proof of Proposition 4.

Proposition 4. For any partition Y = {yn}
N
n=0, there exists Y′ = {y′n}N

′

n=0 with N′ = 2, such
that V(Y′) ≥ V(Y).

Proof: Given Proposition 3, the only non trivial result left to show is that, for any
Y = {[0,m1], (m1,m2], (m2, 1]}, with m1 < θ < m2, there is a Y′ = {[0,m′], (m′, 1]} such
that V(Y′) ≥ V(Y). Under Y, the peg is abandoned on y1, it is not attacked on y3,
and there are two alternative cases for the fate of the peg on y2:

• Case 1: the peg is not attacked for all θ in y2.

We know from Proposition 3 that u(m1,m2](k, Ik) < 0 for all k ∈ X(m1,m2]. Since
m2 > θ, we also know that u(m2,1](k, Ik) < 0 for all k ∈ X(m2,1]. Consider
the alternative partition Y′ = {[0,m1], (m1, 1]}. The peg is still abandoned if
θ ≤ m1. Moreover, from Lemma A.3 in Appendix A.4,

u(m1,1](k, Ik) ≤ u(m1,m2](k, Ik) < 0, for all k ∈ (m1 − ε,m2 + ε],

and
u(m1,1](k, Ik) = u(m2,1](k, Ik) < 0, for all k ∈ (m2 + ε, 1 + ε].

These inequalities imply that u(m1,1](k, Ik) < 0 for k ∈ X(m1,1]. From Proposition
3, under the new partition Y′ the peg is still not attacked if θ > m1. Thus,
V(Y′) = V(Y).

• Case 2: the peg is attacked for some θ in y2.

From Proposition 3, speculators follow a cutoff rule Ik2 after observing y2,
where k2 = sup{k′ ∈ Xy2 : uy2(k′, Ik′) = 0}. Given the speculators’ strategy,
there exists θk2 ∈ (m1,m2] such that the peg is abandoned if and only if
θ ≤ θk2 . Consider partition Y′ = {[0, θk2], (θk2 , 1]}. From Lemma A.3 ,

u(θk2 ,1](k, Ik) ≤ u(m1,m2](k, Ik) < 0, for all k ∈ (k2,m2 + ε],

and
u(θk2 ,1](k, Ik) = u(m2,1](k, Ik) < 0, for all k ∈ (m2 + ε, 1 + ε],

which imply that Ik cannot be an equilibrium strategy if k > k2. From Lemma
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2, the Central Bank maintains the peg if θ > θk2 . By changing the partition
from Y to Y′, the Central Bank no longer has to pay a cost to defend the peg
on (θk2 , θk2 + ε)∩ y2. Thus V(Y′) ≥ V(Y), with strict inequality if θk2 < m2 (i.e.,
if the peg was originally defended for some θ in (m1,m2]). �

A.5 Proof of Proposition 5

Before proving Proposition 5 we need the results in Lemmas A.4 and A.5 below.

Lemma A.4. Consider the game following the disclosure of y = yL. If m ≤ θk∗ , the
equilibrium is unique and the peg is always abandoned. If, in addition, m ≤ θ, then
speculators coordinate on attacking the currency peg .

Proof: Let u(·) denote the payoff function when there is no public signal, or, equiv-
alently, when there is a single public signal y1 = [0, 1] (u(·) ≡ u[0,1](·)). Then

u(k, Ik) =

∫ θk

k−ε
[e∗ − f (θ)]φ(θ|k, [0, 1])dθ − t.

Note that the payoff function is continuous in k. If we can prove that u(k, Ik) is
strictly decreasing in k, then the proof of existence and uniqueness of equilibrium
in the game without a public signal is analogous to the one in Morris and Shin
(1998). For k ∈ (ε, 1 − ε), we have that

u(k, Ik) =

∫ θk

k−ε
[e∗ − f (θ)]g (k − θ) dθ − t =

∫ ε

k−θk

[e∗ − f (k − ε̃)]g(ε̃)dε̃ − t.

Since k − θk is increasing and f (·) is strictly decreasing, we have that u(k, Ik) is
strictly decreasing in k. Thus, as in Morris and Shin (1998), speculators follow
a cutoff strategy Ik∗ , such that u(k∗, Ik∗) = 0, with k∗ ∈ (ε, 1 − ε), and the peg is
abandoned for θ ≤ θk∗ . Since u(k, Ik) > 0 for k ≤ ε, and u(k, Ik) < 0 for k ≥ 1 − ε, it
follows that u(k, Ik) > 0 for k < k∗, and that u(k, Ik) < 0 for k > k∗.

Now we turn to the game with a public signal. Consider an equilibrium strategy
profile π. Let π(x, yL) denote the probability that a speculator attacks the currency
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given a private signal x and a public signal y = yL. Define x as 19

x = inf{x ∈ XyL : π(x, y) < 1}.

Then, from Lemma A.1,
uyL(x, Ix) ≤ uyL(x, π) ≤ 0, (8)

where the last inequality comes from the fact that uy(x, π) ≤ 0 if π(x, y) < 1, and
from the continuity of uy(x, π) in x.

From Lemma A.3, we have that

uyL(k, Ik) ≥ u(k, Ik) > 0, for k < k∗.

Hence, (8) implies that x ≥ k∗, and that π(x, yL) = 1 for every x < k∗. This means
that, in equilibrium, the peg is abandoned for all θ ∈ yL = [0,m] ⊆ [0, θk∗].

After observing y = yL, speculators know that peg is always abandoned in
equilibrium. Thus, a speculator who receives a private signal x attacks the currency
if and only if

E[e∗ − f (θ) − t|x, yL] ≥ 0,

and it follows that the equilibrium is unique. If m ≤ θ, attacking is always profitable
when y = yL, thus speculators coordinate on attacking the currency peg regardless
of their private signals. �

Lemma A.5. m < θ.

Proof: We need to find m < θ such that u(m,1](k, Ik) < 0 for all k. Consider the partition
Yθ and let k̄ solve θk̄ = θ.20 First we prove that there is a bound δ < 0 such that
u(θ,1](k, Ik) ≤ δ for all k ∈ X(θ,1]. Then we use continuity of u(m,1](k, Ik) in m to show
that there is an m below θ that belongs to M.

Let δ = u(θ,1](k̄, I1+ε). Note that δ < 0 because of the definition of θ. We claim that
u(θ,1](k, Ik) ≤ δ for all k ∈ (θ − ε, 1 + ε]. To see this, let k ≤ k̄. If speculators follow Ik,
then the threshold for the Central Bank to abandon the peg is θk ≤ θ, which means

19 If π(x, y) = 1 for all x ∈ XyL , then define x = sup XyL .
20 a(θ) = s(θ, Ik̄), that is, if speculators follow the cutoff rule Ik̄, the Central Bank is indifferent

between defending the currency and abandoning the peg at θ = θ.
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that the Central Bank does not abandon the peg on (θ, 1]. Hence u(θ,1](k, Ik) = −t < δ
for any k ≤ k̄. For k > k̄

u(θ,1](k, Ik) ≤ u(θ,1](k, I1+ε) ≤ u(θ,1](k̄, I1+ε) = δ,

where the first inequality comes from Lemma A.1, and the second inequality comes
from Lemma 1.Therefore, u(θ,1](k, Ik) ≤ δ for all k ∈ X(θ,1], as claimed.

Define l1
m and l2

m as
l1
m = lim

k↓k̄
u(m,1](k, I1+ε),

and
l2
m = lim

k↓θ−ε
u(m,1](k, Ik̄).

Since u(θ,1](k, I1+ε) ≤ δ for all k > k̄, we have that l1
θ
≤ δ. Since u(θ,1](k, Ik̄) ≤ δ for

k ∈ (θ− ε, k̄], we have that l2
θ
≤ δ. From Lemmas A.1 and 1, l1

m ≥ u(m,1](k, Ik) for k > k̄,

and l2
m ≥ u(m,1](k, Ik) for k ∈ (θ− ε, k̄]. Then lm ≡ max{l1

m, l2
m} ≥ u(m,1](k, Ik) for k > θ− ε.

From Lemma A.3, l1
m and l2

m are continuous in m, and so is lm. Hence, there exists
m′ < θ such that lm′ < lθ − δ/2 ≤ δ/2 < 0. This implies that u(m′,1](k, Ik) ≤ δ/2 for
k > θ − ε. In this case, either u(m′,1](k, Ik) < 0 for all k ∈ (m′ − ε, θ − ε], or there exists
k′ = sup{k ∈ (m′ − ε, θ − ε] : u(m′,1](k, Ik) ≥ 0}. From Lemma 2, either there is no
attack on (m′, 1], thus m′ ∈ M, or, in the worst equilibrium for the Central Bank,
speculators follow Ik′ after observing (m′, 1]. In the latter case, the Central Bank
abandons the peg for θ ≤ θk′ ∈ (m′, θ). Consider partition Yθk′ . From Lemma A.3,
u(θk′ ,1](k, Ik) < 0 for all k ∈ X(θk′ ,1], and, from Lemma 2, there is no attack on yH. This
means that θk′ ∈ M. Thus, either θ > m′ ∈ M or θ > θk′ ∈ M, which implies that
m < θ. �

Now we present the proof of Proposition 5

Proposition 5. For every partition Y, V(Y) ≤ V, where

V = lim
m↓m

V(Ym),

and thus the Central Bank can achieve a payoff arbitrarily close to V.

Proof: Consider a partition Y. From Proposition 4, we can assume that Y = Ym =
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{[0,m], (m, 1]}. The proof consists of five steps:

i. if m > m, then m ∈M;

ii. for all m < m, there exists m′ ∈M such that V(Ym′) > V(Ym);

iii. if m > θk∗ , then V(Yθ∗) > V(Ym);

iv. if m ∈ (m, θk∗), then V(Ym) is strictly decreasing in m;

v. V(Ym) ≤ limm↓m V(Ym).

When all the claims above are true, we have that V is well defined, no parti-
tion can yield a payoff higher than V, and the Central Bank can achieve a payoff

arbitrarily close to V by setting m arbitrarily close to m. The proofs are presented
below.

i. If m > m, there exists m′ ∈ M such that m′ < m. From Lemma 2, m′ ∈ M
implies that u(m′,1](k, Ik) < 0 for all k ∈ X(m′,1]. From Lemma A.3, m′ < m implies
that u(m,1](k, Ik) < u(m′,1](k, Ik) < 0 for all k ∈ X(m,1]. Using Lemma 2 again, we
conclude that m ∈M.

ii. Let m < m. From Lemma A.5, we know that m < θ. Then, with partition Ym,
in the worst equilibrium for the Central Bank the peg is abandoned when θ ∈
[0,m]. From Lemma 3, speculators follow a cutoff strategy IkH after observing
yH, where kH = sup{k ∈ XyH : uyH (k, Ik) ≥ 0}. Given the speculators’ strategy,
there exists θkH > m such that the peg is abandoned if and only if θ ≤ θkH .
Following the arguments in the proof Proposition 4 (Case 3), θkH ∈ M and
partition YθkH = {[0, θkH ], (θkH , 1]} is preferred to Ym.

iii. See discussion at the beginning of section 4.5.

iv. Let m ∈ (m, θk∗). From Lemma A.4, m < θk∗ implies that the peg is abandoned
on [0,m]; from part i, m > m implies that m ∈ M, therefore there are no attacks
on (m, 1]. We then have that

V(Ym) =

∫ 1

m
(v − c(0, θ)) dθ,

32



which is strictly decreasing in m, and

lim
m↓m

V(Ym) =

∫ 1

m
(v − c(0, θ)) dθ.

v. If m ∈ M, then V(Ym) = limm↓m V(Ym). If m < M, then Lemma 2 implies that
there exists θk > m such that the peg is abandoned if and only if θ ≤ θk. In this
case, V(Ym) ≤

∫ 1

θk
(v − c(0, θ)) dθ <

∫ 1

m
(v − c(0, θ)) dθ.

�
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