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A famous quote among professional investors is "Focus on the downside, and the upside will take

care of itself". In this paper, we consider a consumer-investor who follows this advice. Surprisingly,

the consumption-based asset pricing model that emerges from this idea explains the main existing

puzzles found within the asset pricing literature. These include the equity premium and the risk-free

rate puzzles, the countercyclicality of the equity premium and the procyclicality of the risk-free rate.

In the proposed model, the consumer-investor is concerned with the so-called downside risk.This

is done by replacing the standard setting of expected utility optimizing agents with the concept of

quantile utility. Under this framework, the agent summarizes a risky situation using a worst-case

scenario which is a function of his downside risk aversion. The more downside risk averse the agent,

the worse the worst-case scenario he considers. The � quantile of a continuous random variable can

be interpreted as the worst possible outcome that can occur with probability 1� � . Hence, instead of

maximizing the expected value of his utility function, the agent maximizes a given � quantile of it. As

we will see, � de�nes his downside risk aversion: the lower � ; the higher the downside risk aversion.1

This is a novel extension of the static decision-theoretical framework developed by Manski (1988)

and Rostek (2010) for a dynamic asset pricing setting. In a two-period standard economy with one

risky and one risk-free asset, we can derive an arbitrage-free asset pricing model, where both main

characteristics of the canonical expected utility consumption-based approach (Hansen and Singleton

(1982), Mehra and Prescott (1985), hereinafter, the canonical model) are modi�ed. The equity pre-

mium is no longer based on the covariance between the risky return and the consumption growth.

Instead, it is a linear function of the risky return standard deviation. In addition, risk aversion and

elasticity of intertemporal substitution (EIS), which are linked throughout a single parameter in the

canonical model, are automatically disentangled in a simple way.

1One could say that the agent�s objective function is given by the value at risk (VaR) of his utility. However, since

� here is a free parameter de�ning preference towards risk, it is not restricted to being close to zero (as in standard VaR

applications).
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These two endogenous changes are the main drivers of the good empirical results. Since stock

returns historically have a high standard deviation, the price of such a risk, i.e., the level of downside

risk aversion, will not have to be high to match the empirical excess returns. Moreover, the attitude

towards intertemporal substitution is not polluted by risk preferences.

To reproduce (i) the �rst and second moments of the risk-free return, the equity premium, and

the consumption growth, (ii) the low covariance between risky return and consumption growth, (iii)

the countercyclical risk premium, and (iv) the procyclical risk-free rate that we see in data, our model

requires only three parameters related to preferences: a downside risk aversion (�) of about 0:43; an

EIS ( ) of about 0:5 and a time discount factor (�) of less than 1: A downside risk aversion of such a

magnitude is reasonable in that it produces reasonable certainty equivalents for bets on continuously

distributed random variables (stock indexes, for example). By comparing certainty equivalents under

quantile and expected utility maximization, an agent with this level of downside risk aversion is

analogous to an expected utility agent with a relative risk aversion coe¢ cient of 3. According to

Mehra and Prescott (1985) reasonable values for such a parameter would be between 1 and 10. An

EIS of about 0:5 is also an acceptable value. In a recent work using microdata, Engelhardt and Humar

(2009) estimate the EIS to be 0:74, with a 95% con�dence interval that ranges from 0:37 to 1:21. Using

macrodata and separating stockholders from nonstockholders, Vissing-Jorgensen (2002) estimates the

EIS around 0:4 and 0:9 for these respective groups.

To illustrate the main di¤erences between the predictions of our framework and the predictions of

the canonical model, we �rst derive equations in closed-form for the risky return, the risk-free rate,

and the equity premium. These equations come from combining the Euler equations of the quantile

agent with the standard assumption of joint lognormality of returns and consumption growth. In order

to replicate the well-evidenced existence of predictability in future excess returns, we then allow for

time-varying economic uncertainty in the aggregate economy dynamics. From this, a countercyclical

risk premium and a procyclical risk-free rate are produced. Taking the model to data, we �rst perform
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simulation exercises, matching the �rst and second moments of consumption growth, risk-free rate

and excess returns. Then, we estimate the model free of distributional assumptions using a simple

two-step procedure.

Since the quantile agent summarizes a risky situation using a worst-case scenario, our model

considers the fact that people care asymmetrically about good and bad outcomes. Therefore, it

belongs to the class of models related to asymmetric preferences, such as Epstein and Zin (1990,

2001), Bekaert, Hodrick and Marshall (1997), Barberis, Huang and Santos (2001), Routledge and Zin

(2010), and Feunou, Jahan-Parvar and Tédongap (2011).

The good empirical results from, for instance, Barberis, Huang and Santos (2001) and Routledge

and Zin (2010), indicate that consideration of asymmetric preferences over good and bad outcomes

is a promising path for theories on choices and, in particular, for a well-accepted resolution of the

asset pricing puzzles. Nevertheless, such models have a large number of preference-related parameters,

which is crucial for their success, and this is a delicate issue.2

First, it is not easy to translate the models into a comprehensive view of the whole process. Sec-

ond, it is hard to assign precisely the corresponding importance of each parameter to the obtained

results. Finally, and perhaps most problematic, matching data by augmenting the parametric dimen-

sion is subject to the standard over-�tting critique. According to this critique, the larger number of

parameters may simply describe better the noise in the data, rather than the underlying economic

relationships. In other words, these models could be providing spurious data-�tting.3

2Barberis, Huang and Santos´s (2001) model has six parameters related to preference. Routledge and Zin´s (2010)

has �ve.
3This tense relationship between the augmentation of the expected utility framework with additional parameters

and the over-�tting critique is raised, for instance, by Zin (2002). Based on that article, Watcher (2002) claims that

"behavioral models leave room for multiple degrees of freedom in the utility function. Taken to an extreme, this approach

could reduce structural modeling to a tautological, data-�tting exercise" and "I believe that parsimony lies at the root

of what Zin refers to as reasonableness. A parsimonious model is a model in which the number of phenomena to be

explained is much greater than the number of free parameters."
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The present paper helps to clarify such issues. The developed model is quite parsimonious, requir-

ing only three preference-related parameters: the time discount factor; the EIS; and the downside risk

aversion. At the same time, it solves the main asset pricing puzzles addressed by Barberis, Huang

and Santos (2001) and Routledge and Zin (2010). Given that, this study makes two important contri-

butions to the literature. Given its ability to explain the �nancial puzzles parsimoniously, it (i) o¤ers

a simpler view regarding the relationship between asymmetric preferences and �nancial data, and

(ii) provides evidence that the good empirical results obtained by the studies employing asymmetric

preferences are not due to over-�tting.

The rest of this work is organized as follows. Section I presents the quantile utility agent in its

general form and derives some basic results of asset pricing under quantile maximization. Section II

solves the model under lognormality and simulates from it. Section III discusses how to estimate the

model free of distributional assumptions and presents the results. Section IV concludes.

1 Quantile Utility Maximization and Asset Pricing

In this section, we �rst present the elements of the quantile utility model, following Manski (1988)

and Rostek (2010). Then, we apply this theoretical-decision framework to asset pricing.

1.1 Quantile utility maximization elements

A general choice theory for quantile maximizing agents was developed recently. Rostek (2010) is

the �rst study to axiomatize the quantile utility agent. Notwithstanding, the quantile maximization

model for decision making under uncertainty was �rst proposed 23 years ago by Manski (1988).

The main idea is simple. An agent, when facing a situation where he has to choose among uncertain

alternatives, picks the one that maximizes some given quantile of the utility distribution instead of its

mean, as in the expected utility model. In this framework, the agent cares about the worst outcome
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that can happen with a given probability. For instance, the given quantile can be the median of the

utility distribution, or the 0.25 quantile. In the case of the 0.25 quantile for example, when evaluating

an uncertain situation, he looks at the worst outcome that can occur with 75 percent probability (i.e.,

the chance of the realized scenario being better than the scenario he considers is 75 percent).

The quantile of concern is an intuitive measure of pessimism. If agent A looks at the worst that

may happen in 90 percent of the situations, i.e., quantile 0.10, and agent B looks at the worst that

may happen in 60 percent of the situations, i.e., quantile 0.40, we would naturally classify agent B as

more optimistic than agent A : agent A picks a more conservative scenario to summarize the lottery.

Figure 1 illustrates this for a lottery that follows a normal distribution. As we shall see below, the

quantile of concern de�nes also the agent�s downside risk preference. Hence, downside risk preference

is closely related to our standard notion of optimism-pessimism.

Figure 1. The quantile utility agent�s reasoning.

In a more formal way, let S be a set of states of the world s 2 S; and X be an arbitrary set

of payo¤s x; y 2 X :Then, the agent has to choose among simple acts h : S ! X ; which map from

states to payo¤s. Let A be the set of all such acts, and E = 2S be the set of all events. De�ne �

to be a probability measure on E; and u a utility function over payo¤s u : X ! R: For each act, �
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induces a probability distribution over payo¤s, referred to as a lottery. Given that, let G;H denote

the random variables (payo¤s) induced by the acts g; h 2 A, respectively. Finally, de�ne FG and FH

as the lotteries induced by the acts g and h, i.e., the cumulative distribution functions of G and H,

respectively.

A decision maker is de�ned as a � -quantile maximizer if there exists a unique � 2 [0; 1] ; a proba-

bility measure � on E; and a utility function u, such that for all g; h 2 A;

g � h, Q� (u (G)) > Q� (u (H)) ;

where Q� (�) represents the � -th quantile of a random variable.

As always, we can think in terms of the lotteries, that is,

FG � FH , Q� (u (G)) � Q� (u (H)) :

Downside risk aversion

For the standard expected utility agent, we may understand risk preferences using the following

logic. First we de�ne riskiness. We say that the lottery FH is riskier than the lottery FG if FG

second-order stochastic dominates4 (SSD) FH (see Rothschild and Stiglitz (1970)). Then, we de�ne

� to be the class of all pairs of lotteries that SSD one another, i.e., � = f(FG; FH) : FG SSD FHg:

It is natural to classify agent A as more risk averse than agent B if for all pairs of distributions in

�; whenever B prefers a distribution which SSD the other, so does A: Finally, we show that this will

be the case if and only if the utility function of agent A is "more concave" than the utility function

4FG SSD FH if and only if

Z x

�1
[FH (t)� FG (t)] dt � 0, for any x 2 X :
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of agent B, i.e., uA (x) = h (uB (x)) ; where h (�) is an increasing concave function. Given that, we

conclude that risk-aversion is described by the concavity of the utility function.

Manski (1988) and Rostek (2010) follow the same logic to attach the quantile maximizer�s attitude

toward risk to the quantile he maximizes. The central point is that riskiness is characterized in a

di¤erent way, the so-called downside risk: FH involves more downside risk than FG if FG crosses FH

from below. We say that lottery FG crosses lottery FH from below if there exists x; y 2 X ; such that

FG (y) � FH (y) for all y < x and FG (y) � FH (y) for all y > x. That is, downside risk is related to

the probability of bad outcomes.5

Just as above, considering the class of all pairs of lotteries with the single-crossing property,

� = f(FG; FH) : FG crosses FH from belowg; we say that individual A is more downside risk averse

than individual B if, for all pairs of distributions in �; whenever B prefers a distribution which crosses

the other from below, so does A: Given that, we can show that agent A is more downside risk averse

than agent B if and only if �A < �B ; and then � can be de�ned as the downside risk aversion parameter

in the decision model: the lower � ; the more downside risk averse the agent.

Equivariance of quantiles to monotonic transformations and its implications

But what role does the concavity of the utility function play under this framework? Because of

the property of equivariance of quantiles to monotonic transformations, the answer to this question is

"none", at least for static decision problems.

A key aspect of the quantile utility model is that static decisions are invariant to any strictly

increasing transformation of the utility function. If m : R ! R is a strictly increasing function, and

X is a random variable; then6

5 If FG and FH have the same mean, and FH has more downside risk than FG; then FH has also more (second-order

stochastic dominance) risk than FG: However, under di¤erent means, this is not true.
6The intution under this result is that a strictly increasing transformation of the random variables doesn�t change

the order of the values of their support.
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Q� (m (X)) = m (Q� (X)) : (1)

Hence, for lotteries FG and FH ;

FG � FH , Q� (u (G)) � Q� (u (H))

, u�1 (Q� (u (G))) � u�1 (Q� (u (H)))

, Q� (G) � Q� (H) ;

where the second line follows from the fact that u is a strictly increasing function.

Given that, for static problems, the agent�s decision does not depend on u. Manski (1988) and

Rostek (2010) refer to this as a robustness property: the choice is una¤ected by misspeci�cation of

the utility function.

However, the utility function is relevant in intertemporal choices. When the utility function has

more than one argument, it is not possible to use the equivariance property to get rid of u. In

particular, under time-separability, the concavity of the utility function de�nes the preference towards

intertemporal substitution as usual: This is going to play an important role in the asset pricing model,

allowing the downside risk aversion and the EIS to be disentangled. This idea is not in Manski (1988)

or in Rostek (2010) and, to the best of our knowledge, is explored for the �rst time in the present

study.

1.2 Asset pricing

We now apply the quantile maximization decision theory to the standard intertemporal problem of

a consumer-investor agent. First, we de�ne the consumption-investment problem and solve for the
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Euler equations that the agent must respect in equilibrium. Then we discuss the Law of One Price

and the no-arbitrage condition under this framework.

Consider a two-period economy with two assets, one risky and one risk-free. De�ne the value of

the risky asset at t + 1 to be Xt+1 = Pt+1 +Dt+1; where Pt+1 is the price of the asset at t + 1 and

Dt+1 is the value of some cash �ow the investor received between t and t+ 1 (in the case of a stock,

D is the dividend). De�ne Xf
t+1 to be the value of the risk-free asset at t + 1 and P

f
t its price at t:

Let Ct be the agent�s consumption at t; � and �
f be the quantity of the risky and risk-free assets he

buys at t respectively, and Wt be his initial wealth. Then, under time-separability, he solves:

Max
�;�f2R2

Q�t (u (Ct) + �u (Ct+1)) (2)

s:t: Ct =Wt � Pt� � P ft �f

Ct+1 = Xt+1� +X
f
t+1�

f

where � is the time discount factor, u is the utility function, Q�t (x) is the �
th quantile of the conditional

distribution of the random variable x (conditional on the information set available at time t):

This agent derives utility only from consumption, as usual, and cares about the worst outcome (in

terms of the utility for both periods) that may occur with probability (1� �) : In other words, this

agent follows the famous advice "Focus on the downside, and the upside will take care of itself". As

discussed in sub-section I.A, the higher his level of downside risk aversion, the lower � .

A key feature of problem (2) is that downside risk aversion and elasticity of intertemporal substitu-

tion (EIS) are automatically disentangled. This is a direct consequence of the quantile�s equivariance

for monotonic transformations. Note that, according to equation (1), we have

Q�t (u (Ct) + �u (Ct+1)) (3)

= u (Ct) + �u (Q
�
t (Ct+1)) ;
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since u is a strictly increasing function.

Hence, all uncertainty in problem (2) is resolved by parameter � , since Q�t (Ct+1) is deterministic

at t: The only role played by u is to discount consumption across time: depending on the concavity of

u; the agent will combine present consumption, Ct; and the certainty equivalent of future consumption

(which, for the quantile maximizer, is equal to Q�t (Ct+1)): In other words, the concavity of u will

only de�ne the EIS, denoted by  : Specializing u (c) = c1�
�1
1�
 ; we have  = 1


 .
7 Note that such an

assumption for the functional form of u imposes no restriction on risk preference: it simply restricts

the EIS to being constant.

The EIS parameter,  = 1

 ; de�nes the degree of substitutability-complementarity between con-

sumption today, Ct; and the certainty equivalent of consumption tomorrow, Q�t (Ct+1) : For  ! 0;

Ct and Q�t (Ct+1) become perfect complements, and we have the agent�s objective function given by

U (Ct; Q
�
t (Ct+1)) = min fCt; Q�t (Ct+1)g :

At the other extreme, for  ! 1; Ct and Q�t (Ct+1) become perfect substitutes, i.e., the agent

maximizes

U (Ct; Q
�
t (Ct+1)) = Ct + �Q

�
t (Ct+1) :

For the intermediate case of  = 1; we end up with the Cobb-Douglas

U (Ct; Q
�
t (Ct+1)) = Ct (Q

�
t (Ct+1))

�
:

7De�ning U (Ct; Q�t (Ct+1)) =
C
1�

t �1
1�
 + �

(Q�t (Ct+1))
1�
�1

1�


we have that

 � �
@U

@Q�t (Ct+1)
= @U
@Ct

Q�t (Ct+1) =Ct

d (Q�t (Ct+1) =Ct)

d

�
@U

@Q�t (Ct+1)
= @U
@Ct

� =
1



:

11



With respect to the time discount factor �; its role is to determine the marginal rate of substitu-

tion between Ct and Q�t (Ct+1). Therefore,  de�nes the degree of substitutability-complementarity

between Ct and Q�t (Ct+1) ; and � parameterizes such a relation.
8

As one may have already noticed, the equivalence stated in equation (3) only holds for a two-period

setting, where there is only one random variable, namely, the consumption level in period t + 1: In

a three-period model, for instance, one would not be able to interchange the quantile and the utility

functions as in (3), since the quantile function is not a linear operator when applied to more than

one random variable. This would imply that, in principle, risk and intertemporal preferences would

not be automatically disentangled for the quantile agent in a multi-period setting. Because of that,

solving the model, as we do next, would be an onerous task.

Since the assumption that the investor lives only for two-periods is very strong, our model is

mostly suggestive. However, it is helpful in that it provides guidelines concerning the �rst-order e¤ect

of downside risk. Note that the separability of time and risk preferences would continue to hold in

a multi-period framework if we modeled the resolution of the uncertainty through a scenario-based

reasoning. In this case, the agent would evaluate sequences of worst-case scenarios. Hence, his initial

objective function would be

u (Ct) + �u (Q
�
t (Ct+1)) + �

2u (Q�t (Ct+2)) + :::;

and time and risk preferences would be naturally disentangled. Another possible way to consider an

in�nite horizon setting would be to model an economy with overlapping generations of quantile agents

living for two periods. Such variants of the model are worth exploring and should be object of future

research. In this paper, however, we stick with the simple two-period version to keep things clear.

What are the implications of the quantile maximization asset pricing model? With the following

proposition, proved in the appendix, we initiate this analysis.

8On the empirical side, we will see that both parameters are also separately identi�ed by our estimation method.
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Proposition 1 Suppose a consumer-investor solves problem (2) and u (c) = c1�
�1
1�
 . Then, the Euler

equations are given by

Pt = �

�
Q�t

�
Ct+1
Ct

���

Q�t (Xt+1) (4)

P ft = �

�
Q�t

�
Ct+1
Ct

���

Xf
t+1 (5)

The �rst step is to understand whether equations (4) and (5) respect the Law of One Price and the

no-arbitrage condition. Then, we solve the model under the standard assumption of joint lognormality

for returns and consumption growth, deriving closed-forms for the risky return, the risk-free rate and

the equity premium in equilibrium.

Since we ignore transaction costs, any candidate for an equilibrium pricing system has to respect

the Law of One Price: prices should be linear. That is, denoting �t =
�
�t; �

f
t

�
to be a portfolio formed

at t; with price given by P�t , the pricing system has to imply P�t = �tPt + �ft P
f
t : Otherwise, Pt and

P ft cannot be equilibrium prices because of arbitrage opportunities among the individual assets and

the portfolio. Equations (4) and (5) respect this condition. De�ning �t = �
�
Q�t

�
Ct+1
Ct

���

; we have

P�t = �tQ
�
t

�
�tXt+1 + �

f
tX

f
t+1

�
= �t

�
Q�t (�tXt+1) + �

f
tX

f
t+1

�
= �tQ

�
t (�tXt+1) + �t�

f
tX

f
t+1

= �tQ
�
t (�tXt+1) + �tQ

�
t

�
�ftX

f
t+1

�
= �tPt + �

f
t P

f
t ;

where the second line follows from the quantile equivariance. Note that for a degenerate random

variable x, Q� (x) = x for any � 2 [0; 1], and this implies Q�t
�
Xf
t+1

�
= Xf

t+1:

As is well-known, a linear pricing system does not completely rule out arbitrage opportunities.

Hence, we need to impose two mild conditions to end up with an arbitrage-free model.
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Proposition 2 Suppose that (i) the risky asset payo¤ Xt+1 is a continuous random variable and (ii)

� 2 (0; 1) : Then, the pricing model given by equation (4) rules out arbitrage opportunities.

Both conditions of Proposition 2 (proved in the appendix) are reasonable. The continuity of the

risky asset payo¤ comes for free for stock prices. The second condition, more subtle, rules out two

well known agents in decision theory, the so-called MaxMin and MaxMax. The MaxMin agent (� = 0)

summarizes a lottery by looking at the very worst case scenario that may take place (that is, the worst

case scenario that may occur with probability 1). On the other hand, the MaxMax (� = 1) summarizes

a lottery by looking at the very best case scenario that may take place (or, in other words, the worst

case scenario that may occur with probability 0). Since both agents represent extreme behaviors (the

extremely pessimistic and the extremely optimistic), excluding them is not a restrictive assumption.

In the next section, we solve the model under the standard assumption of joint lognormality for

returns and consumption growth, deriving closed-forms for the risky return, the risk-free rate and the

equity premium in equilibrium.

2 Dynamics, Model Solution, and Simulation

We solve the model with both constant and �uctuating economic uncertainty. Although the solution

under constant economic uncertainty is enough to match both the risk-free rate and the risk premium

under reasonable levels for the preference-related parameters, it does not generate a time-varying

risk premium. To improve the model in this direction, we allow stochastic volatility in the economy

dynamics. The model is then simulated under this richer environment.

2.1 Dynamics 1: constant economic uncertainty

Assume
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gt+1 = �c + �t+1; �t+1 � iid N (0; �c) (6)

rt+1 = �r + ut+1; ut+1 � iid N
�
0; �2r

�
where gt+1 = log (Ct+1=Ct) ; rt+1 = log (Xt+1=Pt) and Cov

�
�t+1; ut+1

�
= �cr:

Under this framework, the closed-forms for the risky return, the risk-free rate and the equity

premium are given by the following proposition.

Proposition 3 If returns and consumption growth are jointly lognormally distributed, following (6),

and the pricing system is given by equations (4) and (5), then

rt+1 = � log (�) + 
�c +��1 (�) (
�c � �r) + ut+1 (7)

rft+1 = � log (�) + 
�c + 
�c��1 (�) (8)

Et

�
rt+1 � rft+1

�
= ��r��1 (�) (9)

where rft+1 refers to the risk-free asset return and �
�1 is the inverse of the cumulative distribution

function of a standard normal random variable.

To gain intuition on equations (8) and (9), it is useful to compare them to the analogous equations

from the canonical expected utility model. As �rst derived by Hansen and Singleton (1983), it is

well-known that under expected utility maximization and lognormality of returns and consumption

growth we have

rft+1 = � log (�) + 
�c �
1

2

2�2c ; (10)

and

Et

�
rt+1 � rft+1

�
= �1

2
�2r + 
�cr: (11)
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We �rst focus on the predictions for the risk-free return. First, in both models, the risk-free

rate is linear in expected consumption growth with the slope equal to the inverse of the elasticity of

intertemporal substitution. The lower the EIS (i.e., the higher the desire for consumption smoothing

across time), the higher the risk-free rate. This e¤ect is increasing in the expected consumption

growth, meaning that the agent will be less willing to save if he expects tomorrow�s consumption to

be higher.

Second, also common to both models, the higher the rate at which the agent discounts future

utility (the lower �); the higher the risk-free rate he requires in order to save.

Third, and this is a �rst novelty of the quantile approach, a higher variability of consumption

growth may have either positive or negative e¤ects on the level of the risk-free rate under the quantile

model. If � > 0:5, a high standard deviation of consumption growth generates a high risk-free rate. If

� < 0:5; a high standard deviation of consumption growth generates a low risk-free rate. The intuition

for this is clear: if the agent is optimistic (� > 0:5), a higher variability is interpreted by him as a

higher chance of getting a high level of consumption tomorrow and hence, he becomes less willing to

save (higher risk-free rate). In the case of pessimism (� < 0:5), a higher variability is interpreted as

a higher chance of getting a low level of consumption tomorrow, which leads the agent to save more

(lower risk-free rate). The strength of this e¤ect, as expected, is increasing in the desire of smoothing

consumption across time (
).

The separation of intertemporal and risk preferences under the quantile model becomes evident

when we compare the third terms of equations (8) and (10). In equation (10), we have 
2; where one


 stands for the risk aversion and the other 
 is the inverse of the EIS. In equation (8), we have the

product between the inverse of the EIS and a function of the downside risk aversion.

We now turn to the equity premium equation (9). The risk premium does not depend on the

covariance between consumption and stock returns as in the canonical model but, instead, on the
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standard deviation of the stock return.9 A higher standard deviation may require either a higher or

a lower expected return, depending again on whether � is greater or less than 0:5. The intuition is

the same as above: under optimism (� > 0:5); a high variability is interpreted as a high chance of

getting good returns which, therefore, increases prices (decreasing expected returns). Under pessimism

(� < 0:5) a high variability means a high chance of getting bad returns which causes prices to decrease

(increasing expected returns).

These di¤erences imply a better performance of the quantile model when taken to data. Because

risk and time preferences are now disentangled we have degrees of freedom to �t both the risk-free

rate and the equity premium (just as in Epstein and Zin (1989)). Moreover, the source of risk has now

changed. Under expected utility, the covariance between consumption and risky return is the source

of risk. This is empirically low, generating the necessity of a high risk aversion to match the equity

premium. However, under quantile utility, risk is determined by the standard deviation of the risky

return. This value is high in data and, therefore, we attenuate the role of the downside risk aversion.

Yearly US data on consumption and returns ranging from 1889 to 2009 can be found on Professor

Robert Shiller�s website.10 The risky and risk-free returns are from the S&P 500 and 1-year treasury

bill, respectively. The series for per capita consumption are based on the NIPA and NBER series of

consumption.

According to this data set, the average real stock log return has exceeded the average treasury bills

log return in about 5 percent per year in the post-war period. Stock log return has had a standard

deviation about 17 percent per year, and the covariance between stock log return and per capita log

consumption growth has been about 0.2 percent. Inserting these values into equation (11) and solving

9The variance term that shows up in equation (11) is simply a Jensen�s inequality adjustment (since the expression

is about log returns). All that matters for the di¤erence between the risky and the risk-free returns is the covariance

term.
10http://www.econ.yale.edu/~shiller/data.htm, as in November 2010.
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for 
; we have 
 = 32: Hence, in order to �t these patterns of the data, the canonical model requires

a risk aversion coe¢ cient that is too high (equity premium puzzle).

But let us suppose one is willing to accept 
 = 32: Then we run into the risk-free rate puzzle. The

per capita log consumption growth series has presented annual mean and standard deviation of about

2.1 and 2.2 percent, respectively. The risk-free log return has been about 1.4 percent. Calibrating

equation (10) with these values and solving for the time discount factor (�), we have an absurd

� = 1:59 (it is unreasonable to assume that people prefer later utility).

Doing the same exercise using the quantile model equations, we �rst impose the left hand side of

(9) to be 5 percent and the standard deviation of the risky log return to be 17 percent. Solving for � ;

we have � = 0:38: So, in order to �t the equity premium, the agent has to care about the worst that

may happen with probability 62 percent. At a �rst glance, this does not seem to be a high degree of

pessimism. We soon will return to this point.

To compute the time discount factor (�) necessary to �t the observable risk-free rate we should

calibrate equation (8) with empirically acceptable values for the EIS. In a recent work using microdata,

Engelhardt and Humar (2009) estimate the EIS to be 0:74, with a 95% con�dence interval ranging

from 0:37 to 1:21. By di¤erentiating between stockholders and nonstockholders and using macrodata,

Vissing-Jorgensen (2002) estimates the EIS to be around 0:4 and 0:9; respectively. Given that, we use


 = 1:5 (i.e., EIS equal to 0:67).11

Calibrating equation (8) with rft+1 = 1%; �c = 1:9%; � = 0:38, �c = 0:021 and 
 = 1:5; and

solving for �; we have � = 1:007; which is much better than 1:59. By increasing rft+1 to 2%, we have

� = 0:997; a qualitatively acceptable value (2% is reasonable number for the average risk-free rate as

well).

11All of these estimates are obtained under the expected utility framework. Even though the EIS has nothing to

do with risk, one could conjecture that if the true model is related to quantile maximization, such estimates might be

biased, which would complicate the calibration of 
 under the quantile model: However, the forthcoming estimates for

the EIS that I obtain under the quantile model are around these values as well.
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2.2 Dynamics 2: stochastic economic uncertainty

A limitation of the quantile model presented so far is that it does not generate a time-varying equity

premium (or a time-varying risk-free rate). Because of that, the model cannot theoretically explain

two well documented empirical facts: the existence of excess returns predictability and countercyclical

risk premia.12 Since a signi�cant part of the current literature on consumption-based asset pricing

addresses matching time variation in expected returns, it is important to improve the quantile model

in this direction.

One possible way of doing that is to incorporate �uctuating economic uncertainty into the model.

Bansal and Yaron (2004) provide empirical evidence that justi�es such a modi�cation. Bansal, Khatch-

atrian and Yaron (2002) extensively document that a time-varying consumption volatility holds up

quite well across di¤erent samples and economies. Therefore, we now assume the following dynamics

for the real economy:

gt+1 = �c + �t�t+1 (12)

rt+1 = �r;t + '�tut+1 (13)

�2t+1 = �+ �
�
�2t � �

�
+ �vvt+1 (14)

where �t+1; vt+1 and ut+1 are now standard gaussian random variables and Cov
�
�t+1; ut+1

�
= �cr:

The stochastic volatility �uctuates around �; and � represents how quickly it gets pulled toward

its mean. The evidence in Bansal and Yaron (2004) and Bansal, Khatchatrian and Yaron (2002)

are of slow-moving �uctuations in economic uncertainty, implying a � close to one. The conditional

variances of consumption growth and return are now given by �2t and '
2�2t ; respectively, and the

conditional covariance between consumption growth and return is now '�2t�cr:

12See Fama and French (1989), Ludvigson and Ng (2007) and Cooper and Priestley (2009), for instance, on the

countercyclicality of the risk premium.
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Solving for �r;t; the next proposition shows that returns and risk premium are now time-variant.

Proposition 4 Under the dynamics de�ned in equations (12), (13) and (14) and the Euler equations

(4) and (5) we have:

rt+1 = � ln� + 
�c + (
 � ')�t��1 (�) + '�tut+1 (15)

rft+1 = � ln� + 
�c + 
�t��1 (�) (16)

Et

�
rt+1 � rft+1

�
= �'�t��1 (�) (17)

If � < 0:5 (the pessimistic agent, as discussed in the previous subsection), periods with higher

economic uncertainty are periods with higher demand for saving, and hence, lower risk-free rate.

This e¤ect is increasing in the desire for consumption smoothing 
; the inverse of the EIS. Moreover,

more economic uncertainty raises the risk premium, and this e¤ect is increasing in ' - the parameter

that links economic uncertainty to return uncertainty. Therefore, the time-variation goes in the

(theoretically-) intuitive direction.

As Bansal and Yaron (2004) claim, consumption and market volatilities are high during recessions.

Given that, the risk premium in equation (17) is countercyclical.13 In addition, equation (16) implies

a procyclical risk-free rate, in line with data as well.

Simulation

We now simulate from this model to better visualize its asset pricing implications. We simulate

�rst the economic uncertainty from equation (14) and then feed equations (12), (15) and (16) with

this series. As in Campbell and Cochrane (1999), Barberis, Huang and Santos (2001), Bansal and

Yaron (2004), Bansal, Kiku and Yaron (2009) and many others, we assume that the decision interval

of the agent is monthly but the targeted data to match are annual. Therefore, we simulate at the

monthly frequency and aggregate to annual data.
13The counter-cyclical feature of the risk premium in the long-run risk model of Bansal and Yaron (2004) also comes

from the presence of the stochastic volatility in the risk-premium equation.
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The stochastic volatility structure added to the model is identical to the one considered in Bansal

and Yaron (2004) and Bansal, Kiku and Yaron (2009), and we calibrate parameters (�; �; �v) with

the same values of this last paper.14 With respect to (�c; �cr) ; they are set in accordance the sample

mean of the consumption growth and the sample covariance between consumption growth and risky

return, respectively.

Given such values, we choose the free parameters ('; �; � ; 
) seeking to match the �rst and second

moments of the risk-free rate and excess return, and the second moment of consumption growth.

Table 1 summarizes the parameters�optimal choices.

parameters for monthly simulation value
α (mean of economic uncertainty) 0.00722

σv (standard deviation of log economic uncertainty) 0.28 x 10­5

ρ (log economic uncertainty persistence) 0.999
μc (mean consumption log growth) 0.0018
σcr (covariance between η and u) 0.5
ϕ (adjustment of the log return standard deviation) 5.5
β (discount factor) 0.9998
EIS (inverse of γ) 0.6
τ (downside risk aversion) 0.45

Table 1. Con�guration of the model parameters.

The preference-related parameters (�; � ; 
) are close to those from the previous sub-section. The

time discount factor (�) is slightly below one, the EIS of 0:6 implies 
 = 1:66, and the downside risk

aversion is now even smaller with � = 0:45:15

Table 2 presents the impacts on the simulated moments of varying both the risk aversion and EIS.

14Equation (14) produces a small number (about 5%) of negative values for �2t ; as in Bansal and Yaron (2004)

and Bansal, Kiku and Yaron (2009). Following them, I replace these negative values with the smallest positive value

generated for �2t : Obviously, one could model log(�
2
t ) to get rid of this technical problem (but, in this case, it wouldn�t

be possible to follow their calibration).

15 Importantly, the quantile model does not need an EIS greater than one to produce good empirical results. This

is relevant when compared to Bansal and Yaron (2004). For them, it is crucial for the good results to employ an EIS

greater than one, more precisely, equal to 1.5 (and this value is not empirically reasonable, as discussed before.)
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The other parameters are kept �xed in accordance with Table 1.

τ EIS E(r­rf) σ(r) E(rf) σ(rf) E(g) σ(g) cov(g,r)
0.41 0.1 10.0 15.8 3.5 11.2 2.1 2.7 0.2
0.41 0.6 10.0 15.6 0.8 1.9 2.1 2.7 0.2
0.41 1.1 10.0 15.9 0.5 1.0 2.1 2.7 0.2
0.45 0.1 5.5 15.3 11.7 6.2 2.1 2.7 0.2
0.45 0.6 5.5 15.3 2.1 1.1 2.1 2.7 0.2
0.45 1.1 5.5 15.3 1.2 0.6 2.1 2.7 0.2
0.49 0.1 1.0 15.0 19.8 1.2 2.1 2.7 0.2
0.49 0.6 1.0 15.0 3.5 0.2 2.1 2.7 0.2
0.49 1.1 1.0 15.0 2.0 0.1 2.1 2.7 0.2

4.8 16.8 1.4 1.7 2.1 2.2 0.2
(1.5) (1.8) (0.5) (0.3) (0.3) (0.5) (0.0)

other parameters values: following Table 1

data
s.e.

Table 2. Varying EIS and downside risk aversion (in %).

From Table 2 we see three e¤ects: (i) higher values of downside risk aversion (i.e., lower values of

�) increase the mean excess return; (ii) lower values for EIS increase the mean risk-risk free return

and its volatility; and, (iii) decreasing � also impacts the mean and standard deviation of the risk-free

rate, decreasing the former and increasing the latter.

The theoretical reasons for the e¤ects related to the �rst moments are the same as those under

constant economic uncertainty. A higher downside risk aversion implies a higher price for the risk, and

therefore, a higher risk premium, justifying e¤ect (i). A higher complementarity between consumption

at t and the certainty equivalent of consumption at t+1 implies a higher desire to smooth consumption

in time, and therefore, a higher risk-free rate to justify savings from t to t + 1, which explains e¤ect

(ii). Finally, a higher downside risk aversion leads to more savings from period t to period t+ 1 for a

given level of economic uncertainty at t; lowering the risk-free rate and justifying (iii):

With respect to the e¤ects related to the second moment of the risk-free rate, the theoretical

explanations are the following. The e¤ect in (ii) comes from the natural fact that the volatility of

the risk-free rate is a function of the volatility of the economic uncertainty which is decreasing in the

EIS (see equation (16)). This makes theoretical sense, since savings should respond more to economic

uncertainty, the more the agent cares about smoothing consumption. The reasoning supporting the
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e¤ect in (iii) follows the same line: the more downside risk averse the agent, the more savings should

respond to economic uncertainty.

We therefore conclude that the quantile asset pricing model�s predictions are theoretically solid. In

addition, when calibrated with empirically reasonable parameters and � = 0:45; the model is able to

reproduce important patterns of �nancial and macroeconomic data. At this point, a natural question

is: how reasonable is � = 0:45?

2.3 What is a reasonable value for � ?

Is � = 0:45 more reasonable than 
 = 32 (the value obtained in sub-section 2.1 for the risk aversion

under expected utility and lognormality) in terms of the implied attitude towards risk? Or, what is a

reasonable range for �?

One way to evaluate � is to compare the certainty equivalent implicit in a quantile model to the one

implicit in a power utility model for risky situations with payo¤s following continuous distributions,

in accordance with Proposition 2.

Using certainty equivalents of simple bets to relate parameters from di¤erent models of behavior

towards risk is a standard procedure in this literature. For instance, Epstein and Zin (1990) use such

a strategy to compare the risk aversion levels in Yaari preferences with the risk aversion levels in the

expected utility preferences (see their Tables 1 and 2). Bonomo and Garcia (1993), Epstein and Zin

(2001), Routledge and Zin (2010), among others, do the same.

A simple and natural risky situation to use is the following. Suppose the agent wants to invest

$1000 and the investment return follows the same distribution considered in (6). Therefore,

ln (Xt+1) � N
�
�r + ln (1000) ; �

2
r

�
;

where, as usual, Xt+1 is the value of the investment at t+ 1.
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For a one-year investment, the sample estimates for �r and �
2
r are about 0.08 and 0.03 respectively.

The initial investment value is immaterial for the forthcoming conclusions.

We can �rst ask: what are the certainty equivalents for a quantile agent with � = 0:45 and for an

expected power utility agent with 
 = 35 for this uncertain outcome Xt+1?

For an expected utility agent with power utility, the certainty equivalent of a lottery with payo¤

x is given by

CEEU =
�
E
�
x1�


�� 1
1�
 :

For a � -quantile utility agent, the value of a lottery with payo¤ x is equal to Q� [u (x)] : So,

the certainty equivalent of such a lottery is the solution of u (CEQU ) = Q� [u (x)]. By quantile

equivariance,

CEQU = Q� (x) :

Figure 2 presents the histogram of the uncertain investment value at t + 1, which has mean and

standard deviation around $1103 and $212, respectively. The vertical dashed lines are the certainty

equivalents for the power utility agent with 
 = 35 and for the quantile agent with � = 0:45 (they are

around $643 and $1057, respectively).
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Figure 2. Histogram of uncertain payo¤ and certainty equivalents for 
 = 35 and � = 0:45:

A casual review of this �gure suggests that the certainty equivalent of a power utility agent with


 = 35 is too small compared to what one would expect as reasonable. On the other hand, for a

quantile agent with � = 0:45; his certainty equivalent looks much better. However, it is already well-

known in the literature that 
 = 35 generates extreme outcomes in an expected utility setting. So,

one can argue that basically any alternative utility speci�cation is going to behave more reasonably.

Considering that, perhaps a clearer, more illustrative way to proceed would be to ask: which value

of 
 would give the certainty equivalent obtained with � = 0:45? The answer is 
 = 2:5: In other

words, in terms of certainty equivalents, a quantile utility agent with � = 0:45 would be analogous to

an expected utility agent with 
 = 2:5; a value which is commonly referred to as reasonable in the

literature.

Pursuing this idea further, we can relate many values of � to many values of 
 in terms of producing

the same certainty equivalent for the bet de�ned above. Figure 3 presents this relationship.
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Figure 3. Values of � and 
 that produce the same certainty equivalent in the bet de�ned above.

Mehra and Prescott (1985) argue that acceptable values for 
 would be between 1 and 10. Hence,

for the risky situation considered, the analogous interval for � would be [0:22; 0:48] :

2.4 Comparing results

So far we have compared our results only to those from the canonical model. This was done to

illustrate the new features of the present approach with respect to the predictions for the risk-free

rate and the equity premium.

In this sub-section we brie�y compare the results obtained to those of Epstein and Zin (1989) and

Weil (1989) (three parameters), Bonomo and Garcia (1993) (four parameters) and Routledge and Zin

(2010) (�ve parameters), and Barberis, Huang and Santos (2001) (six parameters).

By using recursive preferences, Epstein and Zin (1989) and Weil (1989) disentangle risk aversion

and EIS and still have the time discount rate - the same parameters we have here. By doing so,

they are able to �t both the equity premium and the risk-free rate. However, the extremely high risk

aversion remains crucial. As Table 1 in Weil (1989) shows, in order to match the average of risk-free

and excess returns, risk aversion and EIS have to be set at 45 and 0:1, respectively. If risk aversion
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is decreased to 1, the premium is as low as 0.45 percent, while the mean risk-free rate reaches 25

percent. Furthermore, nothing is said about second moments.

With one extra parameter compared to our model (the one that regulates the disappointment

aversion), the model in Bonomo and Garcia (1993) under a joint random walk for consumption and

dividend growth rates16 produces an average equity premium on the order of 2.5 percent with standard

deviation about 12.8 percent. The risk-free rate averages about 4.5 percent. This is the best they are

able to get using what they consider reasonable values for their parameters.

By adding one more parameter to the disappointment aversion model, Routledge and Zin (2010)

are able to generate good results with this framework. By means of a countercyclical risk aversion

(produced by an endogenous variation in the probability of disappointment), they produce a large

equity premium (about 6 percent) and a risk-free rate with low volatility and mean. However, they

still have di¢ culty with �tting the risky return volatility and maintaining the 6 percent equity premium

at the same time.

Barberis, Huang and Santos (2001) assume a functional form for preferences based on prospect

theory, which has 6 parameters. Their model succeeds in explaining the �rst and second moments of

the risk-free rate, the equity premium and the consumption growth, and produces a time-varying risk

premium (that comes from the impact of the agent�s past portfolio result on his sensitivity for future

losses).

3 Model Estimation

The previous section presented the quantile utility asset pricing model under the assumption of joint

conditional lognormality of asset returns and consumption growth. This was useful for building

intuition with respect to the model. However, it is well-known that the lognormality assumption is

16Comparable to the dynamics I use here.
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not consistent with all the properties of historical stock returns. For example, stock log returns show

weak evidence of skewness and strong evidence of excess kurtosis, at least for short horizons. Hence,

it is important to understand how the model performs if we relax the lognormality assumption.

Let the vector �0 = (�0; �0;  0) represent the populational values for the downside risk aver-

sion, the time discount factor and the EIS, respectively. De�ne Yt+1 =
�
Ct+1
Ct

; Rt+1; R
f
t+1

�
and let

Y � fYt : 
 �! R+ � R; t = 1; :::; Tg be a stochastic process de�ned on a complete probability space

(
;F ; P ) ; where F � fFt : t = 1; :::; Tg and Ft � � fYs : s � tg.

From Proposition 1, the risky and risk-free returns in equilibrium should respect the following two

equations

�0

�
Q�0

�
Ct+1
Ct

jFt
���1= 0

Q�0 (Rt+1jFt) = 1 (18)

�0

�
Q�0

�
Ct+1
Ct

jFt
���1= 0

Rft+1 = 1: (19)

where we now use the EIS parameter  0 instead of its inverse 
0.

By dividing equation (18) with equation (19) we get

Q�0 (Rt+1jFt) = Rft+1: (20)

Rearranging equation (19), we have

Q�0
�
Ct+1
Ct

jFt
�
=
�
�0R

f
t+1

� 0
: (21)

A two-step estimation procedure

The parameter vector �0 can be consistently estimated in a very simple manner, using a two-

step procedure. This discussion builds intuition into the model and provides a rapid technology for
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estimating, for instance, the EIS (the estimation of the EIS under Epstein and Zin (1989) preferences,

the alternative technology of disentangling risk and time preferences, is much more involving).

In a �rst step, we estimate �0. Equation (20) implies

E
h
�0 � 1

h
Rt+1 < Rft+1

ii
= 0:

Hence, a consistent estimator of �0 is

e� = 1

T

TX
t=1

1
h
Rt+1 < Rft+1

i
; (22)

which is the relative number of observations in the sample such that Rt+1 < Rft+1: From standard

arguments, its asymptotic distribution is given by

p
T (e� � �0) d! N (0; �0 (1� �0)) :

The intuition of equation (22) is clear. A risk-free rate of return which is frequently above the

risky rate is only justi�able if the agent has a high � ; that is, a low level of downside risk aversion. In

this case, given the high optimism of the agent, he still invests in the risky asset in equilibrium.

Given e� , we can now estimate (�0;  0) by a standard linear quantile regression. This is the case
since, by the equivariance property of quantiles, equation (21) implies

Q�0 (gt+1jFt) = �0 +  0r
f
t+1; (23)

where gt+1 = log (Ct+1=Ct), r
f
t+1 = log

�
Rft+1

�
and �0 =  0 log (�0) :

The only drawback of using e� instead of �0 in equation (23) is the usual problem with standard

errors of the second step. As is well-known, they have to be corrected because of the noise produced in

the �rst-step estimation. However, in practice, this implies no additional computational cost for our

two-step procedure. In standard quantile regressions, the coe¢ cients�asymptotic variance contains the
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unknown conditional distribution of the error term. Because of that it is common to compute standard

errors by bootstrap. Hence, to address the two-step estimation issue, it is natural to incorporate the

�rst step in the bootstrap procedure.17

From
�b�; b � one consistently computes b� = exp�b�=b � : The standard error of b� should be com-

puted from the bootstrapped covariance matrix of
�b�; b � by the delta method. Accordingly,

p
T
�b� � �0� d! N

�
0; exp

�
2
�0
 0

��
1

 20
�2� +

�20
 40
�2 � 2

�0

 30
�� 

��
;

where �2� is the asymptotic variance of b�; �2 is the asymptotic variance of b ; and �� is the asymptotic
covariance between both estimators.

Estimation results

We apply the estimation procedure described above to a monthly data set. Such data frequency is

used to maintain the assumption that the decision interval of the agent is monthly, as in the simulation

exercise. Per capita consumption is the sum of personal consumption expenditures on services (PCES,

St. Louis Fed) and personal consumption expenditures on nondurable goods (PCEND, St. Louis Fed),

divided by the total population (POP, St. Louis Fed). The risky return is the S&P 500 return including

dividend payments, and the risk-free return is the 1-month risk-free rate series from Professor Fama

located in the CRSP data base. All series are de�ated by the consumer price index for all urban

consumers (CPIAUCSL, St. Louis Fed). Since both consumption series start in January 1959 in the

St. Louis Fed data base, the data set ranges from January 1959 to December 2009.

The estimated time discount factor is 1:001; with standard error equal to 0:001 and, therefore, it is

not possible to reject the hypothesis �0 < 1. The estimate of the elasticity of intertemporal substitu-

tion is 0:39, with standard error 0:05: Hence, it is signi�cantly di¤erent from zero: The downside risk

aversion is 0:43; with standard error equal to 0:02; being signi�cantly di¤erent from 0:5: Such results

17That is, from S bootstrapped samples one estimates S pairs
�b�; b � and computes their empirical variance matrix.
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are qualitatively the same as those obtained under simulation (the time discount factor used in the

simulation exercise was 0:9998; the EIS was 0:6 and the downside risk aversion was 0:45):

4 Conclusion

We considered a framework where a single agent makes his decision about consumption-investment

looking at worst-case scenarios, which depend on his degree of pessimism. This agent can be motivated

by a well-known quote among professional investors: "Focus on the downside, and the upside will take

care of itself".

Using the quantile utility maximizer agent of Manski (1988) and Rostek (2010), we attached the

agent�s degree of pessimism to a well de�ned parameter. As a consequence, we disentangled attitude

towards risk and attitude towards intertemporal substitution in a novel way.

Two important results emerged. First, with only 3 preference-related parameters, the model

was able to reproduce the historical averages and volatilities of the excess return, risk-free rare and

consumption growth, the low covariance between stock return and consumption growth, the counter-

cyclicality of the risk premium, and the procyclicality of the risk-free rate. Second, it was possible to

estimate the EIS from an Euler equation in which such a parameter was separably identi�ed. Related

to the second result, a novel and simple two-step estimation procedure for the EIS was proposed.

The developed model was restricted to a single risky asset and a risk-free security. This was enough

to address the proposed questions. From the present discussion, it is not clear how one could extend

the model to allow for n > 1 risky assets in order to study the cross-section of the returns. This is an

interesting topic for future research.

A pure quantile maximizer agent is probably not a good representation for general behavior towards

risk. Given that, the present model should be understood as a stylized and parsimonious study within

the class of models that use asymmetric preferences over good and bad outcomes (as in prospect
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theory and disappointment aversion). As such, this study makes two important contribution to the

literature. Given its ability to explain the �nancial puzzles parsimoniously, it (i) o¤ers a simpler

view regarding the relationship between asymmetric preferences and �nancial data, and (ii) provides

evidence that the good empirical results obtained by the studies employing asymmetric preferences

are not due to over-�tting.
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Appendix

Proof of Proposition 1:

Substituting the restrictions into the object function, the problem is given by

Max
�2R

Q�t

�
u
�
Wt � Pt� � P ft �f

�
+ �u

�
Xt+1� +X

f
t+1�

f
��

By the quantile equivariance, this is equivalent to

Max
�2R

u
�
Wt � Pt� � P ft �f

�
+ �u

�
�Q�t (Xt+1) +X

f
t+1�

f
�

and the �rst order conditions are

� : u0 (Ct)Pt = �u0 (Q�t (Ct+1))Q
�
t (Xt+1)

�f : u0 (Ct)P
f
t = �u0 (Q�t (Ct+1))X

f
t+1

which implies

Pt = �
u0 (Q�t (Ct+1))

u0 (Ct)
Q�t (Xt+1)

P ft = �
u0 (Q�t (Ct+1))

u0 (Ct)
Xf
t+1

Specializing u (c) = c1�
�1
1�
 ;

Pt = �

�
Q�t

�
Ct+1
Ct

���

Q�t (Xt+1)

P ft = �

�
Q�t

�
Ct+1
Ct

���

Xf
t+1

CQFD. �

Proof of Proposition 2:

The risky asset and risk-free asset prices are given, respectively, by

Pt = �tQ
�
t (Xt+1) (24)

P ft = �tX
f
t+1
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where �t � �
�
Q�t

�
Ct+1
Ct

���

:

An arbitrage opportunity occurs if and only if it is possible to construct �t =
�
�t; �

f
t

�
such that

�tPt + �
f
t P

f
t = 0 (25)

�tXt+1 + �
f
tX

f
t+1 � 0

with the second equation holding as an inequality for at least one point in the support of Xt+1:

Substituting 24 into the �rst equation of 25,

�t�tQ
�
t (Xt+1) + �

f
t �tX

f
t+1 = 0

) �ftX
f
t+1 = ��tQ�t (Xt+1)

which, into the second equation of 25 gives the necessary and su¢ cient condition for arbitrage,

�t (Xt+1 �Q�t (Xt+1)) � 0

with inequality for at least one point in the support of Xt+1:

Therefore, all we need to rule out arbitrage is to impose

Q�t (Xt+1) 2 (min fsupp (Xt+1)g ;max fsupp (Xt+1)g)

If Xt+1 is a continuous random variable, this is implied by imposing � 2 (0; 1) ; CQFD. �

Proof of Proposition 3:

First, note that if ln (x) � N
�
�; �2

�
then Q� (x) = exp

�
�+ ���1 (�)

�
: This holds since

FX (x) = �

�
lnx� �

�

�
) F�1X (�) = exp

�
�+ ���1 (�)

�
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According to 6,

log (Ct+1=Ct) jt � N
�
�c; �

2
c

�
log (Rt+1) jt � N

�
�r; �

2
r

�
Therefore,

Q�t (Ct+1=Ct) = exp
�
�c + �c�

�1 (�)
�

(26)

Q�t (Rt+1) = exp
�
�r + �r�

�1 (�)
�

Dividing both sides of 4 and 5 by Pt; and using the quantile equivariance property,

1 = �

�
Q�t

�
Ct+1
Ct

���

Q�t (Rt+1) (27)

1 = �

�
Q�t

�
Ct+1
Ct

���

Rft+1 (28)

where Rt+1 =
Xt+1

Pt
:

Substituting 26 into 27 and taking logs from both sides,

log (�)� 
�c � 
�c��1 (�) + �r + �r��1 (�) = 0

Hence, since Et (rt+1) = �r;

Et (rt+1) = � log (�) + 
�c +��1 (�) (
�c � �r)

For the risk-free rate, using 28 and 26 in the same way,

rft+1 = � log (�) + 
�c +��1 (�) 
�c

Therefore,

Et

�
rt+1 � rft+1

�
= ��r��1 (�)
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CQFD. �

Proof of Proposition 4:

As in the proof of Proposition 3, we use the fact that if ln (x) � N
�
�; �2

�
then Q� (x) =

exp
�
�+ ���1 (�)

�
: Given that,

Q�t (Ct+1=Ct) = exp
�
�c + �t�

�1 (�)
�

(29)

Q�t (Rt+1) = exp
�
�r + '�t�

�1 (�)
�

Hence, using 27,

ln� � 
�c � 
�t��1 (�) + �r + '�t��1 (�) = 0

and, since Et (rt+1) = �r; we have

Et (rt+1) = � ln� + 
�c + (
 � ')�t��1 (�)

For the risk-free rate, using 28 and the conditional quantile for consumption growth,

rft+1 = � ln� + 
�c + 
�t��1 (�)

Therefore,

Et

�
rt+1 � rft+1

�
= �'�t��1 (�)

CQFD. �

Proof of Proposition 5:

E

��
�0 � 1

�
Ct+1=Ct <

�
�0R

f
t+1

� 0��
ZtjFt

�
=

�
�0 � E

�
1

�
Ct+1=Ct <

�
�0R

f
t+1

� 0�
jFt
��

Zt

= (�0 � Pr ("c;t+1 < 0jFt))Zt

= 0; since Q�0 ("c;t+1jFt) = 0:
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Using the same steps, we also get

E
h�
�0 � 1

h
Rt+1 < Rft+1

i�
ZtjFt

i
= 0:

CQFD. �
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