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Some recent theoretical papers show that margin requirements can a¤ect

asset prices. Such results are important, for example, to understand the uncon-

ventional polices implemented by the Fed during the �nancial crisis of 2007-2010.

However, empirical evidence remains scarce. The present article contributes to

�lling this gap. It shows that (i) an aggregate margin factor predicts future ex-

cess returns of the S&P 500, and that (ii) stocks with higher exposures to the

ted spread pay on average higher risk-adjusted returns. Both �ndings are in
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1 Introduction

Some recent theoretical works show that margin requirements should impact asset

prices in times of binding capital constraints (Brunnermeier and Pedersen 2009, Gromb

and Vayanos 2010, Geanakoplos 2010, and Garleanu and Pedersen 2011, for example).

The central mechanism of these models is a decrease in the demand of high-margin

assets during periods when leveraged investors (investors who buy assets on margin)

become capital constrained.

Garleanu and Pedersen (2011) discuss a striking implication of this fact: two assets

with identical cash �ows may not always have the same price. Such violations of the

Law of One Price will occur when both (i) the margin requirements of the assets are

di¤erent and (ii) the investors who buy assets on margin are capital constrained.

In the language of �nance, this means that the risk premium of an asset is given by

two components. The �rst is the usual product between risk factor(s) and loading(s).

The second is what Garleanu and Pedersen (2011) call the "margin factor", a product

between the margin requirement of the asset and a measure of how binding the capital

constraint in the economy is.

The importance of this theoretical result goes beyond the pure understanding of

asset prices. Some authors, such as Geanakoplos (2010) and Ashcraft, Garleanu, and

Pedersen (2011), have been using these models to analyze the unconventional policies

implemented by the Fed during the 2007-2010 �nancial crisis, when the size and com-
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position of the Fed�s balance sheet changed dramatically. In January 2007, the Fed

carried basically US Treasury bills. In the following three years, however, a variety

of assets was included into the balance sheet in signi�cant amounts. As Geanakoplos

(2010) argues, the negative e¤ect of margins on prices, together with the fact that

these elements feed back on each other, could justify such a radical change in the Fed�s

policy.

In spite of the relevance of this discussion, there is still very little empirical evidence

supporting the relation between margin requirements and asset prices. The theoretical

papers mentioned above provide isolated examples for individual assets. For instance,

Garleanu and Pedersen (2011) use the spread between corporate bonds and credit

default swaps, and the covered interest rate parity to validate their model empirically.

Ashcraft, Garleanu, and Pedersen (2011), in turn, show that when the Fed o¤ered

margins for some securities during the last �nancial crisis (through the Term Auction

Facility - TAF - and the Term Securities Lending Facility - TSLF), the required rates

of return on such securities decreased.

These are interesting empirical illustrations. However, if a margin factor does exist,

this has economy-wide implications which should be tested. As we discuss below, in

the time-series of aggregate returns, an aggregate margin factor (related to the margin

requirement on the market portfolio) should be able to forecast future excess returns

of the market portfolio. Moreover, in the cross-section of returns, stocks with higher

exposures to the measure of capital constraint in the economy should pay higher average
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returns. This paper tests both implications and �nds favorable empirical support for

them.

We �rst construct an empirical counterpart of an aggregate margin factor and

determine whether it can predict future returns of the S&P 500 index. Relying on

the theory of Garleanu and Pedersen (2011), the aggregate margin factor is computed

by the product of the margin requirement for the S&P 500 future index and the ted

spread (which is a usual measure of how binding the capital contraint in the interbank

market is). According to the results, during periods of binding capital constraint (high

ted spread), a 1% increase in the margin requirement for the future contract of the

S&P 500 raises its expected excess return by at least 1.8% per year. Complementarily,

during periods when the S&P 500 margin is high, a 1% increase in the ted spread raises

the expected excess return by at least 2.7% per year. These e¤ects are controlled for

other standard predictors of future returns such as earnings-price ratio, dividend-price

ratio, dividend yield, market volatility, in�ation and the relative bill rate.

Then, to test whether stocks with high exposures to the ted spread (controlled for

other risk factors) pay higher average returns, we construct portfolios on the basis of

such exposures (constant and time-varying), and estimate their alphas. Under all spec-

i�cations, the portfolio with higher exposed stocks has a higher alpha. For instance,

considering the portfolios sorted by time-varying loadings, the annualized alphas from

the model including the 3 Fama-French factors equal 5.8% (for the high-exposure port-

folio) and 2.3% (for the low-exposure portfolio). Hence, a strategy of going short on
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the low-exposure portfolio and long on the high-exposure one generates a risk-adjusted

excess return of 3.5% per year on average.

The rest of the paper is organized as follows. Section 2 provides a simple theoretical

model that motivates the empirical work. Section 3 presents the empirical analysis.

Section 4 concludes.

2 The Theoretical Model

In this section we present a theoretical model, based on Garleanu and Pedersen (2011),

to motivate our empirical work. We summarize their model and refer the reader to their

paper for a more detailed analysis, including how to solve for the general equilibrium.

The economy has two types of agents n 2 fa; bg. Agent a is the risk-averse type

and b is the brave one, with a smaller risk aversion, equal to one. Both agents have

CRRA preferences and maximize

Et

Z T

t

�
e��(s�t)

C1�

n

s

1� 
n

�
ds: (1)

There are several risky assets in the economy. The price of risky asset i follows a

Geometric Brownian Motion process

dP it = �itP
i
t dt+ P it�

i
tdw:

In addition to the risky assets, there are two riskless money-market assets, both in

zero net supply. While one asset represents borrowing and lending against collateral

5



at the interest rate rct ; the other one is about uncollateralized loans with interest rate

rut .

The �rst type is available to all agents in the economy. For example, when one

investor takes a long position in a risky asset she can borrow in the collateralized loan

market. To do so she must make some collateral available to her broker. The amount

of required collateral is determined by the haircut applied by the broker. The haircut is

the margin requirement, denoted by mi
t; and determines how much of her own capital

she must use to make the initial investment. Similarly, if she takes a short position, she

must also deposit collateral as margin with her broker or at some exchange. In both

cases, the margin is computed as a fraction of the total position: if the agent invests a

fraction �it of her wealth Wt in the risk asset i, she must deposit mi
tj�itjWt as margin.

Note again that she must deposit a positive margin whether she is long or short in the

asset. Finally, the margin deposits are remunerated at rct .

The uncollateralized loan market is a standard one. It is riskless as is the collater-

alized loan. However, only type b agent can contract uncollateralized loans. Therefore,

as we see below, when this agent is capital constrained, the two interest rates are

di¤erent.

At every instant, each consumer chooses how much to consume (Ct), as well as the

fraction of her wealth she wants to invest in the risky assets and in the uncollateralized

loan market (�ut ). Any residual wealth is invested in the collateralized loan market.
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The evolution of wealth is then given by

dWt =

"
Wt

 
rct + �ut (r

u
t � rct ) +

X
i

�it
�
�it � rct

�!
� Ct

#
dt+Wt

X
i

�it�
i
tdwt: (2)

Consumers take as given all prices and maximize (1) subject to (2) and, because of

the margin requirements, to X
i

mi
tj�itj+ �ut � 1; (3)

as well.

The Hamilton-Jacobi-Bellman equation for the type b consumer is then given by

Max
�it;�

u
t

(
rct + �ut (r

u
t � rct ) +

X
i

�it
�
�it � rct

�
� 1
2

X
i;j

�it�
j
t�
i
t�
j
t

)
;

subject to (3).

In the case agent b is long in the risky asset i; the solution to this problem yields

two conditions,

rut � rct =  t; (4)

Et

�
dP it
P it

�
� rct = 
b�i;C

b

t +mi
t t; (5)

where  t is the shadow price of capital (i.e., the Lagrangian Multiplier associated with

(3)), and �i;C
b

t � covt

�
dCbt
Cbt
;
dP it
P it

�
.

A similar problem is solved by the type a agent. The only di¤erence is that she

cannot chose �ut . If we assume that her capital constraint is never biding, the solution

to her portfolio choice problem is given by
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Et

�
dP it
P it

�
� rct = 
a�i;C

a

t : (6)

Then, by aggregating the Euler equations (Equations 5 and 6) across types a and

b, we end up with the equation for the risk premium of risky asset i,

Et

�
dP it
P it

�
� rct = 
t�

i;C
t + xtm

i
t t; (7)

where


�1t � 1


a
Cat
Ct
+
1


b
Cbt
Ct

(8)

and

xt �
Cbt

b

�
Cat

a
+
Cbt

b

��1
: (9)

Equation (7) is the main result of Garleanu and Pedersen�s (2011) model. It states

that the expected excess return of any risky asset is composed of two terms. The �rst

term is the standard risk premium in the CAPM literature: the product of the price

of risk, which is given by an average of the risk aversion of the di¤erent agents in the

economy, and the covariance between aggregate consumption and the return on the

asset. The second term, called margin factor, is the novelty. Because some investors

might be capital constrained and cannot deposit additional margins, they require an

additional premium to hold the asset in equilibrium.

The margin factor is a combination of three variables. First,  t is the shadow cost

of buying on margin, and measures how binding the capital constraint is. According
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to Equation (4), it is given by the di¤erence of two interest rates rut � rct . The second

variable (mi
t) is the asset�s margin requirement itself. The last variable (xt) gives the

importance of the constrained investor in the economy (that is, it de�nes the weight of

the Euler equation of agent b in the aggregate Euler equation). Hence, it determines

the relevance of the margin factor in the aggregate economy. It is usually called the

"risk-bearing capacity" of agent b. Even though the consumption share of the agent

b can be small, xt can still be large because it takes into account the di¤erence in the

risk aversion levels of types a and b.

3 Testable Implications of the Model

Equation (7) has economy-wide implications for the time-series and the cross-section

of expected returns, both of which are investigated in this section.

3.1 Time-series Testable Implications

Equation (7) is trivially related to the return on the market portfolio. Suppose that

there are S risky assets in the economy. Then, by aggregating (7) across assets i =

1; :::; S; we have

Et

�
dPt
Pt

�
� rct = 
t�

C
t + xt tmt; (10)

where
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Et

�
dPt
Pt

�
� rct �

SX
i=1

�
Et

�
dP it
P it

�
� rct

�
is the expected excess return of the market portfolio,

�Ct �
SX
i=1

�i;Ct

is the covariance between aggregate consumption and the market portfolio return, and

mt �
1

S

SX
i=1

mi
t

is the margin required to buy (on margin) the market portfolio, which is given by the

average of the individual margin requirements.

There are three (related) testable direct consequences of Equation (10). First, (a)

during periods of binding capital constraint (when  t is su¢ ciently high), the margin

requirement on the market portfolio (mt) should forecast future returns. Second, (b)

during periods of �nancial distress (when mt is su¢ ciently high), the measure of the

relevance of the capital constraint ( t) should forecast future returns. Finally, (c) the

e¤ect of an increase in  t on future returns should depend on mt and vice-versa.

It is natural to test implications (a), (b), and (c) by estimating the regression

rt+h � rct+h = �0 + �1mt + �2 t + �3xtmt t + z0t�4 + et+h; (11)

where rt+h and rct+h are the h-month ahead risky (S&P 500) and collateralized risk-free
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returns respectively, et+h is an error term with zero conditional mean, and zt is a k� 1

vector with other standard predictors of future returns.

3.1.1 Key Variables

A main issue in the estimation of Equation (11) is data availability. First, as Geanako-

plos (2010) points out, historical measures of margins are very hard to obtain. Second,

it may not be immediately clear which variable should be used to represent  t: Third,

data on xt, related to the ratio of the aggregate consumption due to the brave investor,

is also not readily available.

With respect to the �rst issue, the Chicago Mercantile Exchange (CME) provides

data on the margin requirements for the S&P 500 future contract. If the brave agent

can interchangeably trade spot and future contracts, and the spot and future markets

are good substitutes, margin requirements in future and spot markets should be tightly,

if not perfectly, related. Hence, under this assumption, we can use the CME margin

requirements to construct mt. Based on that, we compute the daily ratio between the

initial margin requirements on S&P 500 futures for members of the CME (available

from April 1982) and the value of the underlying S&P 500 index multiplied by the

size of the contract. This is the usual way of computing margins. Then we use the

end-of-month mt.1

With respect to  t, the shadow price of capital, Equation (4) indicates that in

1Using the beginning-of-month series gives qualitatively the same results.
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equilibrium,  t has to be equal to the spread between the uncollateralized and the

collateralized risk-free rates. In other words, it is a measure of how binding the capital

constraint is. The well-known ted spread is given by the di¤erence between the interest

rates on interbank loans (Libor) and U.S. treasury bills and, because of that, it is a

widely observed indicator of credit conditions in the interbank market. Hence, it is a

natural choice to represent  t. The ted spread is computed as the di¤erence between

the 3-month Libor rate and the 3-month treasury bill rate. For the Libor rate we

use the Eurodollar 3-month deposit rate in the London market. Following the same

convention as for margins, we use the end-of-month ted spread.

Regarding xt; the problem of disaggregating consumption among di¤erent groups

of individuals is not new in the asset pricing literature. Since Mankiw and Zeldes

(1989), many papers have been trying to come up with measures for the consumption

of stockholders as a way to address the equity premium puzzle. Because stockholders�

consumption presents higher covariance with returns, such studies are able to gener-

ate more reasonable risk aversion levels. Ait-Sahalia, Parker, and Yogo (2004), for

example, employ data on the consumption of luxury goods as a proxy for stockholder�s

consumption. More recently, Malloy, Moskowitz, and Vissing-Jørgensen (2009) use

microlevel household consumption data to approximate this series.

We use the data of Malloy, Moskowitz, and Vissing-Jørgensen (2009), which is

publicly available, to construct a proxy for xt. By doing that, we are assuming that the

ratio between the consumption of leveraged and nonleveraged agents vary closely with
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the ratio between the consumption of stockholders and nonstockholders. From Malloy,

Moskowitz and Vissing-Jørgensen�s (2009) consumption growth rates, we compute xt

in accordance to equation (9). We impose 
B = 1, 
A = 10; and x0 = 27%; which are

the values employed by Garleanu and Pedersen (2011) in their analysis of the model�s

predictions.2 However, as we present below, the computed xt is almost constant in time

(relative to mt and  t). Hence, the presence of xt in the regressions will be immaterial

to the results.

3.1.2 Descriptive Statistics

Our �nal data set consists of monthly observations for mt and  t from April 1982

to July 2011, and for xt from April 1982 to November 2004 (the consumption data

of Malloy, Moskowitz and Vissing-Jørgensen (2009) ends in November 2004). The

beginning of the sample (April 1982) is in accordance with the beginning of the CME

margin requirements. Table I presents the descriptive statistics for mt;  t and xt:

[Table I about here]

The sample correlation between mt and  t is only 14%. However, as Figure 1

illustrates, around periods of �nancial distress both series usually increase (although

2We tested a number of alternative values for such parameters and the results su¤er no qualitative

change at all.
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mt has a longer memory, i.e., it moves slower). Figure 1 also indicates that most part

of the variation in the aggregate margin factor mt txt comes from the variables mt

and  t; given that xt is relatively constant.

[Figure 1 about here]

3.1.3 Time-series Regressions

We want to estimate Equation (11). However, our proxy for xt is only available until

2004. Fortunately xt can be excluded from our model with no harm, given that its

contribution to the variation in xtmt t is extremely small (as Figure 1 illustrates).

To quantify this fact, we can compare the standard deviations of log (xtmt t) and

log (mt t).
3 While the log of xtmt t has a standard error of 0.835, the standard error

is 0.834 for the log of mt t. To con�rm the irrelevance of xt; we estimated Equation

(11), restricted to 1982-2004, with and without xt: Unreported results show that the

parameters estimates are qualitatively the same under both speci�cations.

Given that, the model we estimate to test implications (a), (b), and (c) de�ned

above is

rt+h � rct+h = �0 + �1mt + �2 t + �3mt t + z0t�4 + et+h: (12)

3Comparing the standard deviations without taking logs would be misleading since xt is always

below 1 and this would depress the variance of xtmt t per se.
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We include in zt some prominent variables explored in the predictability literature,

one at a time. These are the earnings-price ratio, the dividend-price ratio, the dividend

yield, the market volatility, in�ation and the relative bill rate. These variables are

de�ned and computed as follows.

The earnings-price ration (e-p) is the log of earnings (12-month moving sum of

earnings on the S&P 500 index) minus the log of prices (S&P 500 index). The dividend-

price ratio (d-p) is the di¤erence between the log of dividends (12-month moving sums

of dividends paid on the S&P 500 index) and the log of prices. The dividend yield

(d-y) is the di¤erence between the log of dividends and the log of 12-month lagged

prices. The market volatility (vol) is the monthly average of squared daily returns

on the S&P 500. In�ation (inf) is the CPI in�ation. The relative bill rate (rrel) is

di¤erence between the 3-month treasury bill return and its 12-month moving average.

Data on earnings, dividends and returns are from Robert Shiller�s website4. In�ation

and t-bill returns are taken from the Federal Reserve Bank of St. Louis dataset.

Table II presents the estimation results of Equation (12) for 12-, 18-, 24-, and 48-

month ahead excess returns respectively.5 The table is divided into 4 blocks, one for

each horizon. Each block reports the coe¢ cients of the margin requirements (�1), of

the ted spread (�2), and of the product between the margin and the ted spread (�3);

4http://www.econ.yale.edu/~shiller/data.htm, as in March 2012.
5Equation (12) was estimated using annualized returns in %. The margin and the ted spread (also

annualized) were expressed in % as well.
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along with their standard errors, column by column. Moreover, each block is divided

into seven rows. In the �rst row, no control is added to the regression. Then, from

the second to the seventh row, the results are controlled individually for the indicated

variables. The coe¢ cients related to the control variables are not reported. The last

two columns (7 and 8) of the table present the marginal e¤ects of the ted spread and

of the margin requirement on future returns, respectively, �2 + �3m and �1 + �3 .

[Table II about here]

According to Table II, the predictability results appear at about the 24-month

horizon. This is justi�ed by the behavior of mt t; as illustrated in Figure 2. The

series spikes around periods of �nancial distress and, once it spikes, it takes from 1.5

to 2 years to return to its low level. This characteristic, compatible with the idea

of relatively brief periods of binding capital constraint and �nancial distress, is what

produces higher returns about 24 months after a spike in mt t (prices decrease when

mt t spikes, and return about 24 months later). Note that, according to Table II, the

predictability power becomes weak at the 48-month horizon. This indicates that the

predictability at the 24-month horizon is not an arti�cial result given by the well-known

combination of overlapping returns with persistent regressors (if this were the case, the

predictability power would increase with the horizon).

Our main goal in the time-series analysis is to estimate the marginal e¤ects ofmt and

 t on future returns, conditional on high levels ofmt and  t (as Equation (10) indicates,
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when eithermt or  t are low the margin factor loses importance). Accordingly, columns

7 and 8 of Table II report the partial derivatives of Equation (12) with respect to the

margin and the ted spread evaluated at  = 2:5% and m = 10%: The average values

for these variables are 0:7% and 4:7%; respectively, and the maximum values are 5:1%

and 13:5% (see Table I). Therefore,  = 2:5% represents periods when the capital

constraint is restrictive. In turn, m = 10% represents periods when margins are high.

The computations, using the 24-month horizon estimates in Table II, indicate that,

departing from  = 2:5% and m = 10%; an additional 1% in the margin requirement

(ted spread) should depress stock prices by 2.3% (6.9%) on average per year. These are

the average marginal e¤ects across speci�cations (across the rows in the third block).

The lowest marginal e¤ect of margin is 1.8% (when controlled for inf or rrel) and the

lowest marginal e¤ect of the ted spread is 2.7% (when controlled for d-p).

These results are strictly favorable to the time-series implications (a), (b), and

(c) de�ned above. First, as the marginal e¤ect estimates indicate, both mt and  t

positively forecast future returns, conditional on high levels of mt and  t (implications

a and b). Second, as the signi�cance of the product mt t con�rms, the e¤ect of one

variable does depend on the level of the other (implication c).

In the next sub-section, we investigate the cross-sectional implication of the model.
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3.2 Cross-sectional Testable Implications

The most direct way of testing the cross-sectional implication of Equation (7) would

be by comparing the relation between risk-adjusted returns and margin requirements

across di¤erent assets (if the model is correct, assets with higher margin requirements

should pay higher risk-adjusted returns in periods of capital contraint). Unfortunately,

given the di¢ culty in obtaining data on margin requirements for individual stocks,

tests of this kind are restricted to isolated and individualized examples such as the

ones in Garleanu and Pedersen (2011).

However, it is still possible to promote an interesting evaluation of Equation (7)

using cross-sectional data on the stock market, even with no data on individual margin

requirements. This can be done by splitting the cross-sectional implication of Equation

(7) into two complementary parts. First, the model predicts that stocks with higher

exposure to  t (controlled for other risk factors) should pay higher returns on average.

Second, it says that a stock�s exposure to  t is determined by its margin requirement.

Both parts are necessary conditions for the model to be valid. Together, they are su¢ -

cient. Given that information on individual stock margin requirements is not publicly

available, we are not able to empirically address the second prediction. Nevertheless,

we can test the �rst one.

Accordingly, in this sub-section, we investigate whether stocks with higher exposure

to  t (controlled for other risk factors) pay higher returns on average. As we will see, we
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�nd strong favorable evidence in this direction. Since this is only a necessary condition

for the model to be valid, our favorable results do not provide a conclusive cross-

sectional test for the model (empirical results that are in line to a necessary condition

cannot be conclusive). However, the theoretical relation between the exposure to  t

and average returns, when controlled for other risk factors, is not a trivial one (i.e.,

it is not directly predicted by any other theory). Moreover, such a relation has never

been documented empirically to the best of our knowledge. Given that, we see the

following results as relevant empirical evidence in favor of Garleanu and Pedersen�s

(2011) model.

It is important to mention that using individual stock data to test the model in the

cross-section makes sense only if margin requirements vary across stocks. By analyzing

private data from a large hedge fund, Ang, Gorovyy and Inwegen (2011) report that

this is indeed the case. According to their Table 1, margin requirements do vary widely

across securities, ranging from 5% to 50%.

3.2.1 Constructing Portfolios using Constant Margin-betas

We call the exposure of an asset return to  t the "margin-beta". We �rst assume

a constant margin-beta, given by �i: Using the reasoning of the model, this initial

restriction makes sense if individual margin requirements do not vary much over time

(we later relax this assumption).
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We construct portfolios on the basis of stocks�margin-betas: Controlling for other

risk factors, in December of each year we estimate a pre-ranking �i for every NYSE,

AMEX and NASDAQ stock with share code 10 and 11 in the CRSP (Center for Re-

search in Security Prices of the University of Chicago) database, using �ve years of

prior monthly returns.6 That is, in each December, for each security, we estimate

rei;t = �0F;iFt + �i t + et; (13)

where rei;t is the excess return of security i and the vector Ft contains a constant, the

3 Fama-French factors, and a momentum factor (all these factors are from Kenneth

French web-site7).

We then form ten equally weighted portfolios based on �i and compute their returns

for the next twelve months. We repeat this process for each year from 1987 to 2009.

The result is monthly returns on ten portfolios sorted on margin-betas from January

1988 to December 2010.

Figure 3 reports the relation between the post-ranking margin-betas of the ten

portfolios and their average returns. The post-ranking betas are obtained by estimating

regression (13) over the whole sample period (January 1988 to December 2010).

6Stocks that do not have information for the last 5 years are not included in the portfolios for the

following year. The average number of remaining stocks (permno) in each December is 3180 (ranging

from 2507 to 3461).
7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, as in March 2012.
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[Figure 3 about here]

The y-axis of Figure 3 presents the portfolios�annualized average returns. There is

a positive relation between margin-betas and average returns.8 This is a �rst favorable

empirical evidence of the validity of the model. However, returns on the y-axis are not

controlled for other risk-factors.

To investigate whether the margin-beta is priced in the presence of other risk factors,

we compute the portfolios alphas for the ten portfolios. The CAPM alpha is computed

with respect to risk factor related to the market excess return (MKT) and the 3-factor

alpha with respect to all three Fama-French factors (MKT, SMB, HML). That is,

rei;t = �i;CAPM + �i;MKTMKTt + e1;t;

rei;t = �i;3F + �i;MKTMKTt + �i;SMBSMBt + �i;HMLHMLt + e2;t:

Table III presents the alphas and their t-statistics. We multiply the alphas by 12

to interpret them in terms of annualized returns. Portfolio number 1 has the stocks

with low margin-betas and portfolio number 10 has the stocks with high margin-betas.

Therefore, if the margin-beta risk is priced, the premium for this risk should be positive,

in that alphas should increase with portfolio number.

[Table III about here]

8The relation has a p-value equal to 0.012.
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The evidence in Table III favors the pricing of the constant margin-beta. Both

the CAPM and the 3-factor alphas of the tenth portfolio are considerably higher than

those of the �rst portfolio. A "10 minus 1" spread, which goes long on portfolio 10

and short on portfolio 1 would have a CAPM alpha of 2.6% and a 3-factor alpha of

2.8% (these are simply the di¤erences between the alphas from portfolios 10 and 1).

In other words, the strategy of shorting portfolio 1 and longing portfolio 10 provides a

risk-adjusted excess return of 2.8% per year on average. We test the hypothesis that

all ten alphas are jointly equal to zero, using the test of Gibbons, Ross, and Shanken

(1989). For all three models, the hypothesis is rejected at a 1% signi�cance level.

3.2.2 Constructing Portfolios using Time-varying Margin-betas

We now relax the assumption of a constant exposure to the ted spread: To do that,

the margin-beta is assumed to be given by

�i;t = �0;i + �1;imt; (14)

where mt is the margin requirement for the market portfolio used in the previous

sub-section.

This approach to incorporating time-variation in betas was �rst proposed by Shanken

(1990) and has been used frequently (see, for instance, Pastor and Stambaugh 2003).

It is helpful whenever the researcher has a good idea on what may be causing the

time-variation on the factor exposure. This seems to be the case here, given that a
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stock�s exposure to  t should be determined by its margin requirement. Based on that,

Equation (14) does possess some appeal ex ante. First, the constant will be capturing

the stable component of the individual margin as before. Second, the margin require-

ment on the market portfolio will account for a common time-variation in individual

margins given by, for example, an aggregate tail risk. Note that the loading on the

aggregate margin (�1;i) can vary across stocks.

In each December, for each security, we then estimate

rei;t = �0F;iFt +
�
�0;i + �1;imt

�
 t + et; (15)

and form ten equally weighted portfolios based on the predicted margin-betas, that is,

b�0;i + b�1;imDec; (16)

wheremDec is the aggregate margin requirement in the respective December. As before,

we then compute the portfolios�returns for the next twelve months and repeat this

process for each year from 1987 to 2010. The result is monthly returns on ten portfolios,

now sorted by time-varying margin-betas.

By estimating regression (15) over the whole sample period we can then compute

the post-ranking average time-varying margin-betas as

1

T

TX
t=1

�b�0;i + b�1;imt

�
:
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Figure 4 presents a signi�cant positive relation between the post-ranking average

time-varying margin-betas of the portfolios and their average returns.9 Such a relation

is stronger under time-varying than under constant betas.

[Figure 4 about here]

The better �t of time-varying betas is con�rmed by the analysis of the alphas.

Table IV presents strong results in favor of the theoretical model. The alphas of the

three "10 minus 1" spreads are now even higher: the CAPM alpha is now 3.4% and

the 3-factor alpha is 3.5% and the test of Gibbons, Ross, and Shanken (1989) rejects

the null hypothesis of all alphas equal to zero at a 1% signi�cance level.

[Table IV about here]

4 Conclusion

This study provides favorable evidence for the existence of an aggregate margin factor

in the economy. Based on the theory of Garleanu and Pedersen (2011), we de�ne four

testable implications of the existence of such a factor. Three of them are related to

the predictability of future returns on the market portfolio. The forth is about the

cross-section of stock returns.
9The relation has a p-value equal to 0.0001.
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According to our time-series results, (i) during periods of binding capital constraint

in the interbank market (periods of high ted spread), the margin requirement on the

S&P 500 future contract can predict returns on the S&P 500, (ii) during periods of

high margin requirement on the S&P 500 future contract, the measure of the relevance

of the capital constraint (the ted spread) can predict returns on the S&P 500, and (iii)

the e¤ect of an increase in the ted spread on future returns does depend on the margin

requirement, and vice-versa. In turn, according to our cross-sectional analysis, stocks

with higher exposures to the ted spread, controlled for the exposures to other standard

risk factors, pay higher risk-adjusted returns on average. All these results are in line

with Garleanu and Pedersen�s (2011) theory.

The importance of the existence of a margin factor goes beyond the pure under-

standing of asset prices. For instance, some authors, such as Geanakoplos (2010) and

Ashcraft, Garleanu, and Pedersen (2011), have been using this argument to justify the

unconventional policies implemented by the Fed during the 2007-2010 �nancial crisis

(when the size and composition of the Fed�s balance sheet changed dramatically).
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Figures

Figure 1: The three components of the aggregate margin factor.
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Figure 2: The product of the margin requirement for the S&P 500 future contract

and the ted spread.
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The figure reports the relation between the post­ranking exposures to the ted spread of the
ten portfolios and the portfolios average returns. We call the exposure of an asset return to
the ted spread by margin­beta. The portfolios are constructed on the basis of stocks' margin­
betas. Controlling for other risk factors (Fama­French 3 factors and momentum), in
December of each year we estimate a pre­ranking margin­beta for every NYSE, AMEX and
NASDAQ stock with share code 10 and 11 in the CRSP database, using five years of prior
monthly returns. We then form ten equally weighted portfolios based on the margin­betas
and compute their returns for the next twelve months. We repeat this process for each year
from 1987 to 2009. The result is monthly returns on ten portfolios sorted on margin­betas
from January 1988 to December 2010. Stocks that do not have information for the last 5 years
are not included in the portfolios for the following year.

.1
4

.1
6

.1
8

.2
P

or
tfo

lio
 a

ve
ra

ge
 r

et
ur

n

0 .5 1 1.5
Portfolio margin­beta (exposure to the ted spread)

Figure 3: Cross-sectional analysis of portfolios average returns vs. portfolios

margin-betas.
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The figure reports the relation between the average of the post­ranking time­varying
exposures to the ted spread of the ten portfolios and the portfolios average returns. We call
the exposure of an asset return to the ted spread by margin­beta. The portfolios are
constructed on the basis of stocks' time­varying margin­betas. Controlling for other risk
factors (Fama­French 3 factors and momentum), in December of each year we estimate a pre­
ranking time­varying margin­beta for every NYSE, AMEX and NASDAQ stock with share code 10
and 11 in the CRSP database, using five years of prior monthly returns. Time­varying margin­
betas are given by equation 13. The stocks are sorted into ten equally weighted portfolios by
first estimating equation 14 and then computing the stocks margin­betas in each December
according to equation 15. We then compute the portfolios returns for the next twelve
months. We repeat this process for each year from 1987 to 2009. The result is monthly returns
on ten portfolios sorted on time­varying margin­betas from January 1988 to December 2010.
Stocks that do not have information for the last 5 years are not included in the portfolios for
the following year.
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Figure 4: Cross-sectional analysis of portfolios average returns vs. portfolios

time-varying margin-betas.
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Tables

Table I: Descriptive statistics of the variables in the aggregate margin factor.
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δ1 σ(δ1) δ2 σ(δ2) δ3 σ(δ3) δ1+δ3ψ δ2+δ3m
(1) (2) (3) (4) (5) (6) (7) (8)

no control ­1.529 (1.872) ­6.190 (10.23) 1.185 (1.137)
e­p ­0.248 (1.967) ­10.07 (10.25) 1.104 (1.173)
d­p ­0.643 (1.688) ­12.13 (9.786) 1.194 (1.108)
d­y 0.0350 (1.639) ­11.06 (10.19) 1.225 (1.165)
vol ­1.622 (1.863) ­7.964 (10.02) 1.652 (1.231)
inf ­1.345 (1.862) ­4.537 (9.553) 0.895 (1.069)
rrel ­1.362 (1.789) ­5.126 (9.910) 1.106 (1.124)

no control ­2.100 (1.938) ­9.112 (7.177) 1.622* (0.952) 2.1% 7.1%
e­p ­1.153 (1.932) ­12.18 (7.523) 1.579 (0.991) 2.8% 3.6%
d­p ­1.134 (1.773) ­14.54** (6.850) 1.574* (0.917) 2.8% 1.2%
d­y ­0.330 (1.848) ­13.07* (7.208) 1.515 (0.966)
vol ­2.200 (1.925) ­10.86 (7.272) 2.081* (1.113) 3.0% 10.0%
inf ­2.030 (1.954) ­8.546 (7.052) 1.521 (0.955)
rrel ­1.972 (1.920) ­8.371 (7.111) 1.561* (0.945) 1.9% 7.2%

no control ­2.804 (1.952) ­9.500* (5.365) 1.835** (0.866) 1.8% 8.9%
e­p ­1.927 (1.913) ­14.68** (5.690) 1.978** (0.898) 3.0% 5.1%
d­p ­1.617 (1.964) ­13.93*** (5.110) 1.660* (0.876) 2.5% 2.7%
d­y ­0.855 (2.168) ­12.31** (5.548) 1.574* (0.937) 3.1% 3.4%
vol ­2.845 (1.944) ­10.32* (5.715) 2.052** (1.014) 2.3% 10.2%
inf ­2.819 (1.955) ­9.600* (5.447) 1.853** (0.890) 1.8% 8.9%
rrel ­2.823 (1.992) ­9.604* (5.329) 1.844** (0.875) 1.8% 8.8%

no control ­3.454** (1.564) ­5.381 (4.907) 1.461* (0.819) 0.2% 9.2%
e­p ­2.642 (1.731) ­9.384 (6.191) 1.405 (0.901)
d­p ­1.869 (1.758) ­9.577** (4.782) 1.054 (0.858)
d­y ­1.460 (1.992) ­7.298 (5.382) 0.880 (0.974)
vol ­3.446** (1.547) ­5.486 (5.197) 1.488 (0.937)
inf ­3.465** (1.576) ­5.538 (5.019) 1.475* (0.834) 0.2% 9.2%
rrel ­3.653** (1.571) ­6.484 (4.432) 1.610** (0.775) 0.4% 9.6%

marginal effectsestimated parameters from equation (11)

Notes: Blocks 1 to 4 report results from monthly predictive regressions of S&P 500 excess returns
over 12­, 18­, 24­ and 48­month horizons, respectively, for the period between April 1982 to June
2011 (equation 11). Each block reports the coefficients and standard errors of the S&P 500 futures
margin requirements (columns 1 and 2), of the ted spread (columns 3 and 4), and of the product
between the margin and the ted spread (columns 5 and 6). Rows of each block report the
estimates described above from regressions controlled for the following variables, respectively:
earnings­price ratio (e­p), dividend­price ratio (d­p), dividend yield (d­y), monthly average of
the daily squared returns of the S&P 500 (vol), CPI inflation (inf) and relative bill rate (rrel). Such
variables are computed according to Goyal and Welch (2008) (rrel is in accordance to Lettau and
Ludvigson 2001). Columns 7 and 8 report the marginal effects of a 1% increase in the margin
(fixing the ted spread at 2.5%) and of a 1% increase in the ted spread (fixing the margin at 10%)
on future returns. Standard errors are computed by Newey­West with lag length equal to the
horizon. Significance levels are indicated as follows: * p < .10;  ** p < .05;  *** p < .01.
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Table II: Predictive regressions (equation 12)
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1 2 3 4 5 6 7 8 9 10
CAPM alpha 4.5% 5.2% 5.4% 6.0% 4.6% 4.2% 4.6% 7.0% 6.0% 7.1%

(1.25) (2.30) (2.63) (3.19) (2.53) (2.01) (2.17) (2.78) (1.94) (1.54)

3­factor alpha 2.1% 2.5% 2.7% 3.4% 2.3% 1.4% 2.0% 4.3% 3.5% 5.0%
(0.95) (1.95) (2.50) (2.80) (1.99) (1.12) (1.55) (2.83) (1.70) (1.58)

Portfolios

The table reports the alphas of ten portfolios formed according to their exposures to the ted spread. We call the exposure of
an asset return to the ted spread the margin­beta. The portfolios are constructed on the basis of stocks' margin­betas.
Controlling for other risk factors (Fama­French 3 factors and momentum), in December of each year we estimate a pre­ranking
margin­beta for every NYSE, AMEX and NASDAQ stock with share code 10 and 11 in the CRSP database, using five years of prior
monthly returns. We then form ten equally weighted portfolios based on the margin­betas and compute their returns for the
next twelve months. We repeat this process for each year from 1987 to 2009. The result is monthly returns on ten portfolios
sorted on margin­betas from January 1988 to December 2010. Stocks that do not have information for the last 5 years are not
included in the portfolios for the following year. The ten portfolios' post­ranking alphas, in percent per year, are estimated as
intercepts from the regressions of excess portfolio post­ranking returns on excess market returns (CAPM alpha) and on the
Fama­French factor returns (3­factor alpha). The t­statistics are in parentheses.

Table III: Alphas of ten portfolios formed according to the stocks�margin-betas (i.e.,

their exposures to the ted spread).
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1 2 3 4 5 6 7 8 9 10
CAPM alpha 4.6% 5.5% 5.2% 4.3% 4.8% 5.4% 4.5% 5.6% 6.6% 8.0%

(1.28) (2.35) (2.49) (2.30) (2.70) (2.82) (2.07) (2.28) (2.12) (1.77)

3­factor alpha 2.3% 2.7% 2.6% 1.7% 2.6% 2.9% 1.8% 2.9% 4.2% 5.8%
(1.09) (2.05) (2.09) (1.68) (2.50) (2.48) (1.33) (1.90) (2.05) (1.75)

Portfolios

The table reports the alphas of ten portfolios formed according to their time­varying exposures to the ted spread. We call
the exposure of an asset return to the ted spread the margin­beta. The portfolios are constructed on the basis of stocks
time­varying margin­betas. Controlling for other risk factors (Fama­French 3 factors and momentum), in December of each
ye ar we estimate a pre­ranking time­varying margin­beta for every NYSE, AMEX and NASDAQ stock with share code 10 and
11 in the CRSP database, using five years of prior monthly returns. Time­varying margin­betas are given by equation 13. The
stocks are sorted into ten equally weighted portfolios by first estimating equation 14 and then computing the stocks
margin­betas in each December according to equation 15. We then compute the portfolios' returns for the next twelve
months. We repeat this process for each year from 1987 to 2009. The result is monthly returns on ten portfolios sorted on
time­varying margin­betas from January 1988 to December 2010. Stocks that do not have information for the last 5 years are
not included in the portfolios for the following year. The ten portfolios post­ranking alphas, in percent per year, are
estimated as intercepts from the regressions of the excess portfolios post­ranking returns on excess market returns (CAPM
alpha) and on the Fama­French factor returns (3­factor alpha). The t­statistics are in parentheses.

Table IV: Alphas of ten portfolios formed according to the stocks´ time-varying

margin-beta (i.e., the stocks´ time-varying exposures to the ted spread).
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