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Abstract

This paper assesses the impact of time horizon on the relative perfor-
mance of traditional econometric models and machine learning models in
forecasting stock market prices. We employ an extensive daily series of
Brazil IBX50 closing prices between 2012 and 2022 to compare the perfor-
mance of two forecasting models: ARIMA (autoregressive integrated mov-
ing average) and LSTM (long short-term memory) models. Our results sug-
gest that the ARIMA model predicts better data points that are closer to the
training data, as it loses predictive power as the forecast window increases.
We also find that the LSTM model is a more reliable source of prediction
when dealing with longer forecast windows, yielding good results in all the
windows tested in this paper.
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1 Introduction

The use of data science techniques has become increasingly widespread with
the massive growth in available data and the increasingly accessible data pro-
cessing capacity. Scholarly research in the field of financial economics has been
following this new trend, and it has been increasingly incorporating these tech-
niques. The incorporation of these new techniques is intended to complement the
techniques already established in the literature and to address the perceived limi-
tations of traditional econometric techniques.

One of the data science techniques that has gained increasing prominence is
the machine learning (ML) approach. Athey and Imbens (2019) outline various
new techniques in this area, their applications, and their idiosyncrasies. This inter-
esting review article demonstrates how these new techniques can be beneficial for
research in economics by highlighting specific situations where a given technique
can be employed. In particular, ML models outperform traditional econometric
models in terms of out-of-sample predictive power. Goodell et al. (2021) develop
a bibliometric analysis of the use of artificial intelligence and ML techniques em-
ployed in the field of finance. In addition to reviewing the literature, their paper
points to recent trends in the use of these methodologies in finance.

Masini et al. (2023) present an extensive literature review on ML techniques
applied specifically to economic and financial time series. Their paper also com-
pares different techniques aiming at forecasting the realized variance in stock mar-
ket indices. Giannone et al. (2021) analyze a group of different applications in
finance, microeconomics, and macroeconomics to test whether economic models
should be low dimensional, and the evidence presented shows low support for that
assumption. Another interesting use of machine learning techniques is made in Gu
et al. (2020), who explore high-dimensional data to predict stock market returns.
Goulet Coulombe et al. (2022) provide evidence that the ability of ML models to
deal with nonlinearities is very helpful in macroeconomic forecasting. Kotchoni
et al. (2019) explore six classes of models to forecast different series, comparing
the power of the prediction of traditional and ML models.

Newer techniques such as data scraping and sentiment analysis can also be
found in contributions such as that made by Duarte et al. (2021), who utilize
news information for stock price prediction. Meanwhile, Saurabh and Dey (2020)
present a series of ML forecasting models to evaluate the correlation between
stock market prices and market reactions, as captured via tweets related to the
theme. Liu et al. (2023) also use sentiment analysis from tweets, aiming to predict
stock market returns. News sentiment is also explored by Souma et al. (2019).
The authors define news sentiment according to the variation of the one-minute
average of the stock returns right after the release of the news article. Applying
deep learning techniques, they show that the performance of their methodology



depends on the score of the news selected to create the training dataset.

The related literature also includes contributions that compare traditional tech-
niques with ML techniques. Agrawal et al. (2023) present a comparison of Bitcoin
value prediction using an ARIMA model against ML techniques such as deci-
sion trees, long short-term memory, random forests, and support vector machines.
Bezerra and Albuquerque (2019) also compare these two groups of techniques in
terms of the daily returns of the American and Brazilian stock markets. Mean-
while, Araujo and Gaglianone (2023) compare a range of 50 different forecasting
methods for Brazilian inflation and conclude that ML models tend to outperform
more traditional methods (such as the ARIMA model). However, the authors also
conclude that there is not a clearly superior method, the definition of which de-
pends on the data and the metric used to evaluate predictions.

Similarly, Garcia et al. (2017) use high-dimensional models to predict Brazil-
ian inflation. They conclude that this type of model, especially the complete subset
regression, performs very well for different horizons of prediction. In stock market
prediction using ML, Pierdzioch and Risse (2018) test the rational expectations
hypothesis by making predictions on the American stock market using boosted
regression trees and by comparing the results for different windows of analysis.

An element that is usually pointed out by the literature as having an important
impact on the performance of predictive models is the time horizon. Applying ML
techniques for the prediction of the NASDAQ index, Cervell6-Royo and Guijarro
(2020) show that technical indicators have poor predictive power for the next trad-
ing day but that the performance significantly improves when the time horizon is
expanded to forecast the 10-trading-day trend. Moreover, the relative performance
of predictive models is driven by the time horizon under consideration. Compar-
ing the performance of three methods for predicting the direction of financial time
series, Ersan et al. (2020) show that increasing the time window size helps only
for hourly data and up to a certain extent. Kotchoni et al. (2019) show that the
ARMA model is the best at forecasting inflation changes in the short run, while
regularized data-rich model averaging (RDRMA) dominates in the case of longer
horizons. Faust and Wright (2013) perform a horse race among different forecast-
ing models for inflation and find that the best predictive model depends on the
time horizon being considered.

This paper aims to contribute to this burgeoning literature financial time se-
ries forecasting by exploring different prediction scenarios — defined by differ-
ent time horizons — to identify the most suitable technique for each scenario.
We apply two representative models — autoregressive integrated moving average
(ARIMA) and long short-term memory (LSTM) models — to predict the daily
closing prices of the IBX50, the index composed of the 50 most traded stocks
in the Brazilian stock market. The performance of the models is assessed under
different time horizons: 5 days, 15 days, 30 days, and the whole out-of-sample
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series. Our results show that the ARIMA model outperforms the LSTM model
in the 5-day time horizon, but the LSTM model is a better predictive model than
the ARIMA model under longer time horizons. Therefore, we provide robust evi-
dence that the vaunted advantage of ML models over traditional econometric tools
for forecasting tasks depends on the time horizon under consideration.
The remainder of this paper is organized as follows. The dataset and the method-

ological issues involved are described and discussed in Section 2, while the results
are reported and discussed in Section 3. Finally, Section 4 concludes.

2 Data and methodology

The series that are analyzed in this paper consist of the daily closing price of
the IBX50 from December 12, 2013, to December 29, 2022. The IBX50 is the
Brazil 50 index composed of the 50 most traded stocks, and for that reason, it is
highly representative of the Brazilian stock market. The data used in this analysis
were retrieved from Yahoo Finance via its Python API. The data have a total of
2140 observations. To conduct the analysis, approximately 90% of the data were
used for training, and the remaining 10% were used for testing.

The main objective of this paper is to evaluate how two types of representa-
tive methodologies perform under the same circumstances and to understand the
scenarios in which each methodology prevails. To meet our objective, two repre-
sentative methodologies were selected, the first of which is the ARIMA model,
which represents a more traditional approach in finance and economics.! To rep-
resent a methodology in the ML and deep learning group, the long short-term
memory (LSTM) model was chosen because of it performs well in time series
prediction scenarios.

2.1 ARIMA

ARIMA stands for "autoregressive integrated moving average". This family
is a generalization of ARMA models, which were first introduced by Box et al.
(2015). ARIMA models are used in series that have an autoregressive and a mov-
ing average component, but unlike ARMA models, they can work with time series
that are nonstationary by differencing the series as many times as needed to elim-
inate the nonstationarity. The ARIMA process is composed of three parts: the
autoregressive (AR), the integrated (I), and the moving average (MA). The au-
toregressive model is generically represented by AR(p), where p represents the

'Other models, such as ARMA, SARIMA, and SARIMAX models, were considered for this
analysis, but due to the behavior of the series being used, the ARIMA model was ultimately cho-
sen.



order of the autoregressive. In this case, the value of X, is a combination of past
values of p (Peixeiro, 2022):

Xi=C+ 1 Xi 1+ .0 X p + €. (D

Likewise, for the moving average process, the value of M A(q) is a combina-
tion of past information, but this time, not the value itself but the ¢ past errors.
Therefore, this time, X, is represented as follows:

Xt = [1, + 619t—1 + ...Epet_q + €¢, (2)

where g is the mean of the series and 6 quantifies the impact of past errors on
the present value. The integrated part is represented by the letter d, which repre-
sents how many times the series will be differentiated until it becomes stationary.
Therefore, when all three elements are combined, we have a process represented
by ARIM A(p,d, q), where p, d and ¢ denote the autoregressive, the integration,
and the moving average orders of the model, respectively.

22 LSTM

Long Short-Term Memory, developed by Hochreiter and Schmidhuber (1997),
is a type of recurrent neural network (RNN) that processes data in sequence, where
the order of the data matters, similar to a time series. This methodology was cre-
ated to address a problem that RNN models suffer, which is gradient disappear-
ance. RNN models ignore past information that is too far in the sequence.

The LSTM model is composed of three layers, namely, the forget gate, input
gate, and output gate, in that order. The forget layer is the first layer, and it decides
what information from the sequence is retained in the network. Information is then
passed to the input gate, where it is decided which information is important to the
current element of the sequence. Finally, information is passed to the output gate,
where past information processes the current value in the sequence.

2.3 Dataset

In this empirical study, we used the Brazilian stock market to illustrate the
forecasting capacity of these two representative methodologies. Figure 1 shows
the evolution of the closing prices of the IBXS50 in a daily frequency from the end
of 2012 until the last available prices in 2022. The complete series has a total of
2,483 data points. As expected, the series shows some volatility with an upward
trend.

As is usual in this type of empirical study, we divided the dataset into two
parts: the training dataset and the test dataset. The training dataset was used to
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develop both models, using approximately 90% of the original series, thus repre-
senting the first 2,229 points of the series. The test dataset was used to assess the
performance of the models (more details are provided in Section 3). In Figure 1,
the unshaded (shaded) part of the plot corresponds to the training (test) dataset.
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Figure 1: Historical closing price of the IBX50 at a daily frequency: training (un-
shaded) and test (shaded) datasets.

3 Results and discussion

To appropriately evaluate and compare the forecasting capacity of these two
representative methodologies (traditional econometrics and ML), the first step is
to create models that are adequate to the type of series that is being analyzed.
Therefore, the next two subsections explore how the two models were created
using the same training dataset and show the test that was performed to assess the
performance of the predictions of the models. Subsection 3.3 then shows how the
two models that were created in the preceding subsections perform under different
forecasting scenarios.

3.1 ARIMA Model

As noted in Section 2, the ARIMA process is composed of three parameters
(p, d, and q). The first to be defined is the parameter d, which indicates how many
times the series will be differentiated until it becomes stationary. To access this
information, the augmented Dickey—Fuller test was performed to check whether
the series is stationary. The null hypothesis of this test is that a unit root is present
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in the series; that is, the series is nonstationary (Cheung and Lai, 1995). As shown
in Table 1, the original series does not reject the null hypothesis of stationarity,
but the first-order difference has a p value small enough to ensure that it does not
have a unit root. Given that the first-difference series is stationary, we no longer
need to differentiate the series, and we can define parameter d as being equal to
one.

Table 1: Augmented Dickey-Fuller test.

ADF P-value
Level -1.20 0.6735
First Differences -8.33 <0.0001

Having defined the first parameter, we plotted the ACF and PACF to verify
whether there was a clear pattern to identify the p and ¢ parameters, but the result
was not clear. Thus, the strategy chosen was to set different values for the p and
q parameters and to set the d parameter equal to one.? The model with the lowest
AIC (Akaike information criterion) value was selected: the model selected was the
ARIMA(5,1,5) because it had the lowest AIC value; thus, it can be considered
the model with the best fit to the data. Table 2 shows the values for the ten models
with the lowest AIC values.

Table 2: Augmented Dickey-Fuller test with different time lags.

Time lag Statistic ~ P-value

1 0.219209 0.639643
2 0.238613 0.887536
3 0.252818 0.968643
4 0.857370 0.930596
5 1.389218 0.925489
6 1.502233  0.959346
7 2.258313 0.944172
8 2.351062 0.968315
9 2.626203 0.977295
10 3.102355 0.978912

Once the parameters of our ARIMA model were selected, we evaluated whether
the model residuals were stationary. To do so, four plots were made so that we
could visually analyze the behavior of the residuals. Figure 2 shows the four plots

ZWe varied the values of the p and ¢ parameters from O to 5 with step 1. Then, 36 different
models were created.



that were created to check whether the residuals are a stationary process. The top-
left plot shows that the residuals have no trends, while the top-right plot shows
that the distribution of the residuals resembles a normal distribution. The Q-Q
plot shows a straight line for most of the series except for the extreme values and
the last value, while the bottom-right has the ACF plot with no autocorrelation
after time lag 0. In addition to all the plots shown in Figure 2, the residuals passed
the Ljung—Box test, which shows that none of the ten first lags of the residuals
were correlated.
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Figure 2: Residual analysis. From left to right in the first row, we have the residuals
and the histogram of the residuals, while in the second row, we have the Q-Q plot
and the ACF plot.

After we were able to confirm that the model is valid, we measured the fit of
the model with the training data and calculated the mean average percentage error
(MAPE) and root mean square error (RMSE), with the respective values shown in
Table 3.



Table 3: Error metrics for the ARIMA model.

MAPE RMSE
0.0112 202.4418

3.2 LSTM Model

As with most deep learning models, the LSTM model does not require too
many steps and tests to create a model. However, some tuning is needed to ensure
that the model is adequate to the reality of the considered data. The first parameter
to be defined is the size of the sequence, given that the LSTM model evaluates
data as a sequence. Since we are dealing with a daily time series, we chose the
sequence of 7 days as representative of a week.
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Figure 3: Actual and predicted closing prices for the LSTM model.

The result was a model with four layers, one input layer, two bidirectional
LSTM layers, and one output layer, as shown in Figure 3. Note that the difference
between the predicted and actual values is never too large. This behavior is a sign
of a good model since it has a good adjustment without suffering from overfitting.
This conclusion is supported by the calculation of some metrics for the predictions
presented in Table 4.

Table 4: Error metrics for the LSTM model.

MAPE RMSE
0.0898 1043.8081

Now that we have created the two models using the training dataset, we can
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compare how they perform in different forecasting windows. Subsection 3.3 will
show the results of this comparison.

3.3 Comparing forecasts

The forecasts that are being performed for the test dataset use the information
in the training dataset, as we are making individual predictions for different time
horizons. Therefore, if the test dataset ends at point ¢, we will predict from point
t + 1, the start of our test dataset, until we reach the end of our time series at point
T'. Equation 3 illustrates this process, where %, is the predicted value of x in
t + ¢, which is a function of all the observed values of x from time zero until ¢.

Ty = f(ﬂfoa ce ,357&) 3)

To compare the two models, we use different metrics of errors to check whether
one model is superior to the other in more than one metric. In addition, we use
different forecasting windows. First, the models predict the first £ days of the test
dataset, where k = {5, 15,30}. Thus, unlike Kotchoni et al. (2019), we use not
rolling windows but increasing windows. Then, we evaluate how the two mod-
els perform when we use the whole test dataset. By doing so, we can access the
capacity of the considered models to forecast farther into the future. To carry out
this analysis, we employ the RMSE and MAPE as our metrics of the quality of
the forecasting.

As shown in Table 5, the ARIMA model starts with good performance metrics
in the 5-day window, but as the window becomes larger, the results yielded by the
ARIMA model begin to worsen. In fact, for the four windows under consideration,
the 30-day window is the one for which the ARIMA model yields the worst re-
sults. With the ARIMA model, how quickly the RMSE deteriorates is noteworthy:
for the 5-day window, the ARIMA model performs better than the LSTM model.
Regarding the LSTM model, the results have a different behavior: for the MAPE
statistic, the results become slightly worse as the windows grows larger and the
RMSE statistic becomes better, achieving its peak at the 30-day window. In Figure
4, it can be observed that the LSTM model outperforms the ARIMA model under
longer time horizons.



Table 5: Forecasting metrics for different windows

Window Model MAPE RMSE
ARIMA 0.0108  223.24

> days LSTM  0.0401 741.24
15 days ARIMA 0.0367 777.54
LSTM 00167 43881
ARIMA 0.0616 1295.37
30 days

LSTM  0.0141  359.30
ARIMA 0.0527 1191.97
LSTM  0.0251 581.06
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Figure 4: Actual closing prices and predictions for the two models in the test
dataset.

4 Conclusion

The increasing use of ML models in several fields in economics is mainly
explained by their better predictive power compared to that of more traditional
econometric tools. However, the specialized literature on the subject points out
that the time horizon impacts both the absolute and the relative performance of
different predictive models.

Against this backdrop, this paper developed a comparative analysis of the pre-
dictive power of two financial time series forecasting models considering different
time horizons. We chose one model of each type under consideration, namely, a
more traditional model (ARIMA) and a representative ML. model (LSTM), both
of which are suitable for time series analysis.

10



We performed a forecasting exercise using the Brazilian IBX50, an index com-
posed of the 50 most traded stocks in the Brazilian stock market, applying both
models. We considered four different time horizons: the first k observations of the
out-of-sample series, with & = {5, 15,30}, and the whole out-of-sample series.
While the ARIMA model proved to be a better predictive model than the LSTM
model in the 5-day time horizon, the latter outperformed the former under longer
time horizons.

Our results provide further robust corroborating evidence of the strong pre-
dictive power of ML models for time series analysis. However, our results also
show that the predictive performance of a ML model depends on the time horizon
under consideration. In the particular case of financial time series explored in this
paper, the representative ML model (LSTM) outperformed the traditional econo-
metric model (ARIMA) only in the case of larger time windows. These results
highlight the importance of always comparing the predictive power of different
models by performing a rigorous statistical horse race between them. Moreover,
this statistical horse race should include more traditional models and cutting-edge
techniques, with the time horizon involved being a variable to be taken into due
consideration.
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