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Abstract

We include elastic labor supply and risk aversion in a standard vertical

innovation model in order to address four main questions. First, under what

conditions will we find workers in the R&D sector of the economy? Second,

under what conditions will these workers actually do any research? Third, can

a simple redistributive policy provide an escape route from the so-called no-

growth trap? And fourth, to what extent is this policy capable of correcting

the inherent ineffi ciencies of the model?
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1 Introduction

A common feature of equilibrium allocations in the R&D-based growth literature is

their suboptimality. The seminal paper of Aghion and Howitt (1992) argues that

the prospect of future research discourages current research, since it threatens to

destroy the rents created by current entrepreneurship. An extreme manifestation of

suboptimality would be given by what they called the no-growth trap: a condition

on the model’s parameters that not only would lead to a number of researchers short

of what a planner would choose, but in fact to zero researchers.

In order to tackle such suboptimality, different policies may be considered. We

will be looking at models that generally do not generate enough research effort (that

is, number of researchers times the number of hours they choose to work). For this

reason, price caps should not help. However, a class of policies than in fact can help

in this scenario, as argued by Sinn (1996) and García-Peñalosa and Wen (2008), is

that of redistributive taxation.

An intrinsic factor to vertical innovation models with occupational choice such

as those mentioned above is the high risk to which researchers are exposed. Em-

pirical evidence supports the commonsense view that entrepreneurs face larger risks

than paid employees. Hamilton (2000) investigates earnings differentials between

self-employment and paid employment and verifies that the cross-sectional standard

deviation of self-employment is substantially higher. Dunne et al. (1988) studies the

US manufacturing industry and observes that 61.5% of all firms exit during the five

years following their first census, while 79.5% of all firms exit within ten years.

According to Mayshar (1977), in most countries private insurance is insuffi cient to
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cover these risks due to incompleteness of the capital market structure, and, therefore,

government intervention can benefit the economy. Sinn (1996) defends the importance

of redistributive taxation as social insurance, not only on the account that it generates

safety but also that it stimulates income-generating risky activities.

García-Peñalosa and Wen (2008) add risk-averse agents to Aghion and Howitt

(1992) and analyze the equilibrium effects of redistributive taxation. They conclude

that redistribution provides insurance to entrepreneurs, diluting their risk, and en-

courages agents to engage in research, therefore stimulating growth.

They also study the effects of redistribution on inequality and welfare. They show

that low tax rates increase inequality relative to laissez-faire, while high tax rates can

simultaneously promote growth and reduce inequality. In terms of welfare, García-

Peñalosa and Wen (2008) suggest that extremely high income tax rates (99.8% in

their numerical exercise) not only maximize but generate near first best welfare.

Meghir and Phillips (2010) examine the relationship between labor supply and

taxation and emphasize the importance, when performing policy analysis, of con-

sidering the incentive effects of taxation —essentially, how hours worked respond to

changes in taxes and transfers.

The present study incorporates elastic labor supply to García-Peñalosa and Wen’s

(2008) model. We will discuss how redistributive taxation may, in some situations,

provide an escape route from the no-growth trap of Aghion and Howitt (1992), and we

will then analyze this policy’s effects on growth, inequality and welfare. We will also

show that large income tax rates do not bring about a higher expected growth rate

of the economy as in García-Peñalosa and Wen (2008), but moderate redistribution
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can encourage entrepreneurship and growth.

Increasing the leisure elasticity parameter reduces the welfare maximizing tax

rate as well as increases the gap between the optimal redistribution and the first-best

welfare levels. Thus, according to our analysis, although redistributive taxation can

help to address the market failures present in Aghion and Howitt’s (1992) Schum-

peterian economy, this is only to a much more limited extent than that suggested by

García-Peñalosa and Wen’s (2008) analysis.

The next section presents the model. In section 3, we define its equilibria and

determine some of its basic characteristics, such as prevailing or not of the R&D

sector and of growth in the economy, as well as discuss the no-growth trap. Section 4

presents analytical and graphical comparative statics analysis, while the fifth section

concludes the paper.

2 The model

2.1 Individuals

The economy is populated by a continuum of size N > 0 of infinitely-lived individuals.

They are split into L ∈ [0, N) unskilled agents, who can only be employed for the

production of the final good Y , and H (= N − L > 0) skilled agents, who choose

between working as researchers or as manufacturers producing intermediate good x.

Researchers, or entrepreneurs, engage in R&D with the intention of making an

innovation and, thus, obtaining a patent and licensing it to the intermediate goods

sector. At any given period t ∈ N (= {0, 1, 2, . . . }), there exist Rt ∈ [0, H] researchers,
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Mt = H − Rt manufacturers, and L unskilled workers. Manufacturers and unskilled

workers earn, respectively, wt and vt for each unit of labor they supply.

All individuals have identical utility functions, that depend on consumption C ∈

R+ and leisure l ∈ [0, 1]. The instantaneous utility at t is given by

U (Ct, lt) = (Ctl
η
t )
α , (1)

where α ∈ (0, 1] is a risk tolerance parameter, and η ∈ [0, 1/α] is the elasticity

of leisure. The framework of García-Peñalosa and Wen (2008) corresponds to the

η = 0 case, while that of Aghion and Howitt (1992) can be obtained by additionally

assuming α = 1.

2.2 Firms

The economy produces a single homogeneous final good Y , to be treated as numeraire,

and a single intermediate good x, priced at p. At any given period t ∈ N, the final

good is produced in a competitive sector according to the Cobb-Douglas technology

Yt = Atx
θ
tO

1−θ
u,t , (2)

where θ ∈ (0, 1), A is the productivity index, and Ou is the amount demanded of

unskilled individuals’ work (which, in equilibrium, must equal (1− lau)L, with lau

standing for average leisure of unskilled individuals). As in García-Peñalosa and Wen

(2008), in order to ensure that wage rates available to skilled individuals dominate

those available to unskilled ones, we shall actually impose on θ a certain lower bound
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larger than 0 —more precisely, we assume (1− θ) /θ2 < L/H.

Each innovation increases the value of the productivity index At by a factor γ > 1,

so that At+1 = γAt if an innovation occurs at t and At+1 = At otherwise.

There is a large number of risk-neutral firms willing to produce intermediate goods.

When an innovation occurs, one of these firms buys the exclusive right to produce

the intermediate good according to the new blueprint, thus becoming a temporary

monopolist until a new innovation takes place. Production of the intermediate good

depends solely on skilled labor, according to the linear technology

xt = Om,t, (3)

where Om is the amount demanded of manufacturers’work (which, in equilibrium,

must equal (1− lam)M , with lam standing for average leisure of manufacturers).

2.3 Research

At any given period t ∈ N, Rt individuals engage in research with the intent of

developing the next innovation (which will define the new production design for in-

termediate goods) and receiving the corresponding dividends. Each researcher makes

a discovery in period t at the Poisson rate λ (1− lr,t), where λ > 0 is an exoge-

nous parameter and lr is the leisure level of the researcher. For ease of exposition,

we shall assume λ < 1 (it is typically calibrated to be in the thousandths or ten-

thousandths). Assuming independence among researchers, the aggregate number of

innovations is a random variable which will also follow a Poisson distribution, with
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parameter λ
(
1− lar,t

)
Rt, where lar stands for the average researchers’ leisure (and(

1− lar,t
)
Rt is the total research effort in the economy). Let ξt denote a realization

of this variable, and χt, the indicator function of the event "at least one innovation

happened at t", that is,

χt =

 1, if ξt > 0

0, if ξt = 0
. (4)

As usual in the literature, we ignore the possibility that two or more researchers

come up with an invention at the same time. Thus, when a discovery is made, a

patent is granted to one researcher (i.e., a unit measure of researchers). The patent

will then be licensed to an intermediary firm, which will start the new production

of intermediate goods and collection of profits thereof in the next period. Thus, the

productivity index at any period t ∈ N is given by

At = A0γ
∑t−1

i=0
χi , (5)

where A0 > 0 is given. We assume complete bargaining power on the R&D sec-

tor, whence, at the very time of invention/licensing (say, t), that period’s successful

researcher receives from its licensee Vt+1, the expected value of his/her innovation.

2.4 Government

Given both the deadweight stemming from monopoly power and the researchers’

uncovered risks, equilibrium will be suboptimal. Among different forms of government
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intervention that could be studied, as mentioned in the introduction, price caps will

not work in this economy, for discouraging R&D.

As in García-Peñalosa and Wen (2008), we shall then investigate how far a simple

redistributive policy can go in terms of promoting growth and welfare. We thus

consider a linear income tax schedule, in which individuals pay a tax rate τ ∈ [0, 1)

on their income and receive a lump-sum transfer B ≥ 0.

We shall impose as an equilibrium constraint that government runs a balanced

budget at every period t ∈ N. That is, total tax revenue should equal the value of an

individual transfer multiplied by the number of agents in the economy:

τYt = BtN. (6)

2.5 Firms’maximization problem

The final goods sector is competitive. At any given period t ∈ N, firms solve

max
xt,Out

Atx
θ
tO

1−θ
u,t − ptxt − vtOu,t. (7)

It may be noted that there is no information asymmetry in the model, whence firms

only pay for hours effectively worked.

By differentiating (7) with respect to xt, one obtains the inverse demand function

for intermediate goods, to be plugged into the monopolistically competitive interme-

8



diate firm’s problem:

maxxt ptxt − wtxt s.t. (8)

pt = Atθx
θ−1
t O1−θu,t . (9)

The profit maximizing production of xt is then

xt =

(
θ2At
wt

) 1
1−θ

Ou,t,

which together with (9) leads to the following expressions for wages and the interme-

diate firm’s profit π:

pt =
wt
θ
, (10)

πt = θ (1− θ)Yt, (11)

(
1− lau,t

)
vtL = (1− θ)Yt, (12)

(
1− lam,t

)
wt (H −Rt) = θ2Yt. (13)

Equations (12) and (13) show that the wage rates vt and wt, as proportions of

total income, are decreasing in the total work effort in their respective sectors, that

is,
(
1− lau,t

)
L and

(
1− lam,t

)
(H −Rt). It may also be noted from equation (13) that

the wage paid to a worker employed in the manufacturing sector, as a proportion of

total income, will be higher the more inflated is the R&D sector, which competes

with it for the same workers.

Assuming there was an innovation at t, the value of its patent, Vt+1, can be
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determined by the asset condition

Vt+1 =
πt+1

r + λ
(
1− lar,t+1

)
Rt+1

, (14)

in which the value of the innovation to the risk-neutral firm is equal to the stream of

profits thereof discounted by the exogenous interest rate r and the risk of losing its

monopoly power, i.e., the rate at which its technology becomes obsolete due to being

replaced by a new discovery.

If we plug (11) and (5) (which implies At+1 = γAt, since χt = 1, i.e., there was

an innovation at t) into (14), we obtain

Vt+1 =
θ (1− θ) γYt

r + λ
(
1− lar,t+1

)
Rt+1

Yt+1/At+1
Yt/At

, (15)

an expression which will prove useful in the following.

2.6 Individuals’maximization problem

In the absence of a savings mechanism, consumers’problems can be stated in a static

form. At each period t ∈ N, unskilled individuals choose (Cu,t, lu,t) ∈ R+ × [0, 1] so

as to maximize U (Cu,t, lu,t) subject to their budget constraint

Cu,t ≤ (1− τ) (1− lu,t) vt +Bt. (16)

This is almost of the standard Cobb-Douglas consumer type, the only difference being

the inclusion of the lu,t ≤ 1 physical constraint. Due to U being strictly increasing in
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its first argument, (16) must hold with equality at the solution, so that it is a trivial

task to find Cu,t once lu,t has been found. The well-known solution for lu,t is

lu,t =
η

η + 1

(1− τ) vt +Bt

(1− τ) vt
.

Since there is no guarantee from the start that the above expression cannot be larger

than 1, the actual solution to the unskilled workers’problem takes the form

lu,t =


η
η+1

(
1 + Bt

(1−τ)vt

)
, if vt >

ηBt
1−τ

1, otherwise
. (17)

In the same fashion, manufacturers choose (Cm,t, lm,t) ∈ R+ × [0, 1] so as to max-

imize U (Cm,t, lm,t) subject to

Cm,t ≤ (1− τ) (1− lm,t)wt +Bt. (18)

This is the same problem as that of unskilled workers, only with a different wage rate.

Thus,

lm,t =


η
η+1

(
1 + Bt

(1−τ)wt

)
, if wt >

ηBt
1−τ

1, otherwise
. (19)

Unskilled workers and manufacturers’ optimal leisure choices are therefore de-

creasing in their post-tax wage rates (1− τ) vt and (1− τ)wt, and increasing in the

transfers Bt they receive. Also, if an individual receives no transfer (i.e., Bt = 0),

his/her leisure choice will be invariant to taxation and equal to η/ (η + 1). This

stems from the income effect of τ exactly offsetting its substitution effect, given the
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Cobb-Douglas utility function in (1).

The reason a skilled individual will never choose to work in the final goods sector

is that he/she would then face the same maximization problem as the one in the

manufacturing sector, only with a lower wage rate. In fact, vt ≥ wt would imply,

through (17) and (19), lu,t ≤ lm,t, whence vt (1− lu,t) ≥ wt (1− lm,t). In equilib-

rium, this would read, through (12) and (13), (1− θ)Yt/L ≥ θ2Yt/ (H −Rt), so that

(1− θ) /θ2 ≥ L/ (H −Rt) ≥ L/H, in opposition to the constraint assumed on θ.1

Researchers, in turn, not knowing whether they will make a discovery or not,

choose (C1,t, C0,t, lr,t) ∈ R2+ × [0, 1] to maximize the expected utility

λ (1− lr,t)U (C1,t, lr,t) + (1− λ (1− lr,t))U (C0,t, lr,t) (20)

subject to

C0,t ≤ Bt (21)

and

C1,t ≤ (1− τ)Vt+1 +Bt. (22)

Due to U being strictly increasing in its first argument and λ < 1 (so that we

know the weight 1− λ (1− lr,t) will be positive), (21) must hold with equality at the

solution. And unless the solution entails taking lr,t = 1 (which is a possibility, as we

will see shortly), (22) must also be active. Substituting these expressions for C1,t and

C0,t into (20), we obtain a function of lr,t only. It is concave, since its second-order

1We are only interested in equilibria with Yt > 0,∀t ∈ N, so that division by Yt is permissible.
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derivative will be

−2λ (((1− τ)Vt+1 +Bt)
α −Bα

t ) ηαlηα−1r,t

+ [λ (1− lr,t) ((1− τ)Vt+1 +Bt)
α + (1− λ (1− lr,t))Bα

t ] ηα (ηα− 1) lηα−2r,t ,

a sum of two nonpositive summands (this is where the constraint η ∈ [0, 1/α] comes

into play). Therefore, this problem’s solution is delivered by its first-order condition,

which entails equating the first-order derivative

−λ (((1− τ)Vt+1 +Bt)
α −Bα

t ) lηαr,t

+ [λ (1− lr,t) ((1− τ)Vt+1 +Bt)
α + (1− λ (1− lr,t))Bα

t ] ηαlηα−1r,t

to zero, or checking its nonnegativity at lr,t = 1 (the lr,t = 0 possibility is excluded

because U satisfies the Inada conditions). Therefore,

lr,t =


ηα
ηα+1

(
1 + 1

λ

Bαt
((1−τ)Vt+1+Bt)α−Bαt

)
, if Vt+1 >

(1+ ηα
λ )

1
α−1

1−τ Bt

1, otherwise
. (23)

We thus see that the researcher will work more at t the higher the value Vt+1

of an innovation, and the lower the transfer level Bt, as expected. Again, leisure is

invariant to taxation when there is no transfer Bt to be received, and in this case

equals ηα/ (ηα + 1).
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3 Equilibrium

An allocation is defined as an equilibrium if firms are maximizing profits, agents are

maximizing their utilities, skilled workers do not want to change their occupational

choice, markets clear and the government runs a balanced budget. Since equilibria

will necessarily be symmetric within each sector of the economy, as seen in subsection

2.6, there is no need for including indices for each firm and individual in the definition

that follows, and the superscript a used in subsection 2.5, denoting averages, may be

dropped.

Accordingly, Ou should equal (1− lu)L in equilibrium, whence (2) becomes

Yt = Atx
θ
t ((1− lu,t)L)1−θ . (24)

Similarly, Om should equal (1− lm) (H −R) in equilibrium, whence (3) becomes

xt = (1− lm,t) (H −Rt) . (25)

Definition 1 (p, v, w, V, τ , B, ξ, χ, A,Cu, Cm, C0, C1, lu, lm, lr, R, x, Y ) ∈ RN++ ×

RN++ × RN++ × R
N\{0}
+ × [0, 1] × RN+ × NN × {0, 1}

N × RN++ × RN+ × RN+ × RN+ × RN+ ×

[0, 1]N × [0, 1]N × [0, 1]N × [0, H]N × RN++ × RN++ is an equilibrium if, for every t ∈ N,

the following expressions hold: (4), (5), (6), (10), (12), (13), (15) (these last three

with the a superscript dropped), (17), (19), (23), (24), (25), plus the four restrictions

(16), (18), (21) and (22) with equality, the arbitrage conditions

Arb1 U (Cm,t, lm,t) < λ (1− lr,t)U (C1,t, lr,t) + (1− λ (1− lr,t))U (C0,t, lr,t) ⇒ Rt =
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H,

Arb2 U (Cm,t, lm,t) > λ (1− lr,t)U (C1,t, lr,t)+(1− λ (1− lr,t))U (C0,t, lr,t)⇒ Rt = 0,

and the market clearing condition

MC LCu,t + (H −Rt)Cm,t +RtC0,t + χt (C1,t − C0,t) = Yt.

Obviously, a laissez-faire equilibrium would correspond to one with τ = 0.

For simplicity, we take V ∈ RN\{0}+ . If, at a specific period t ∈ N, no innovation

has occurred (i.e., ξt = 0), then the value attained by V at t+ 1 (indicating the value

of a nonexistent patent) is immaterial. Without loss of generality, V can be built

according to the rule "Vt+1 = 0 if ξt = 0".

Arbitrage condition Arb1 refers to a scenario in which manufacturing ceases to

exist, which will be proved to be impossible in equilibrium. Arbitrage condition Arb2

refers to a scenario in which research ceases to exist, which is a possible situation and

will also be explored in this work.

The last term in the left-hand side of the market clearing condition accounts for

the uncertainty related to the occurrence of innovations. If there is an innovation at

t, then χt equals one and a measure Rt − 1 of researchers will have a consumption

level of C0,t = Bt, while a unit measure of researchers will be able to consume C1,t =

(1− τ)Vt+1 + Bt. However, if no innovation occurs at t, then all Rt researchers will

only consume C0,t = Bt.

As can be seen in the above definition, we deem economically relevant only equi-

libria with Y > 0. This in itself implies, through (12) and (13),
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Lemma 2 In equilibrium, lu,t < 1, lm,t < 1 and Rt < H, for all t ∈ N.

Given this lemma, in order to compute lu,t in equilibrium, one may plug (6) and

(12) into the first line of (17) to obtain

lu,t =
η

η + 1

(
1 +

τ
N

(1−τ)(1−θ)
(1−lu,t)L

)
,

which can be solved for lu,t:

lu,t = l∗u :=
η

η + 1

(
1 +

τ
N

(η + 1) (1−τ)(1−θ)
L

+ η τ
N

)
. (26)

This is indeed lower than 1 (= (η/ (η + 1)) (1 + 1/ (η + 0))).

Following the same procedure with (13) and (19) instead of (12) and (17) yields

lm,t =
η

η + 1

(
1 +

τ
N

(η + 1) (1−τ)θ
2

H−Rt + η τ
N

)
, (27)

dependent on the equilibrium value of Rt.

By plugging (6) and (15) into the first line of (23), one sees that the potentially

interior value of lr,t will also depend on lr,t+1:

lr,t =
ηα

ηα + 1

1 +
1

λ

(
τ
N

)α(
1−τθ(1−θ)γ

r+λ(1−lr,t+1)Rt+1
Yt+1/At+1
Yt/At

+ τ
N

)α
−
(
τ
N

)α
 . (28)

Henceforth, we will only be interested in stationary equilibria.
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3.1 Stationary equilibrium

Definition 3 A stationary equilibrium is an equilibrium (p, v, w, V, τ , B, ξ, χ, A,

Cu, Cm, C0, C1, lu, lm, lr, R, x, Y ) in which the sequences lm, lr and R are constant.

If R∗ is the number of researchers in a stationary equilibrium, then the leisure

level of manufacturers will be given by (27):

l∗m =
η

η + 1

(
1 +

τ
N

(η + 1) (1−τ)θ
2

H−R∗ + η τ
N

)
. (29)

From (25), we see that x must also be constant in a stationary equilibrium. Thus

(24) says that Y/A is constant in such an equilibrium, and (28) now yields

l∗r =
ηα

ηα + 1

1 +
1

λ

(
τ
N

)α(
(1−τ)θ(1−θ)γ
r+λ(1−l∗r)R∗

+ τ
N

)α
−
(
τ
N

)α
 ,

an implicit expression (the best we can do, due to the α exponent in the denominator)

for an interior l∗r .

Now, since the right-hand side above is a decreasing function of l∗r for l
∗
r ∈ [0, 1],

it can touch the 45◦ line (the graph of the identity function, represented by the l∗r in

the left-hand side above) only once. This crossing will occur at a l∗r < 1 if and only

if the right-hand side assumes a value strictly lower than 1 at l∗r = 1, that is, if and

only if

ηα

ηα + 1

1 +
1

λ

(
τ
N

)α(
(1−τ)θ(1−θ)γ

r
+ τ

N

)α
−
(
τ
N

)α
 < 1.
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If this condition does not hold, then, by tedious algebraic manipulations we arrive at

θ (1− θ) γ
r

≤
(
1 + ηα

λ

) 1
α − 1

1− τ
τ

N
, (30)

which, in a stationary equilibrium, corresponds (through (15) and (6)) to the condition

given in the second line of (23) for the corner solution lr = 1.

Yet another way of writing (30) is

τ ≥ τ̄ :=

1 + r

(
1 + ηα

λ

) 1
α − 1

θ (1− θ) γN

−1 .
Thus, we obtain

l∗r =


ηα
ηα+1

1 + 1
λ

( τN )
α(

(1−τ)θ(1−θ)γ
r+λ(1−l∗r)R∗

+ τ
N

)α
−( τN )

α

 , if τ < τ̄

1, if τ ≥ τ̄

. (31)

It must be noted that τ̄ ∈ (0, 1], and τ̄ < 1 if and only if η > 0.

Thus, given a positive income tax rate τ , if the preference-for-leisure parameter

η is high enough, or if the rate-of-innovations parameter λ is low enough, researchers

do not work at all.

With respect to the risk-tolerance parameter α, it can be seen that τ̄ increases

with it.2 Therefore, ceteris paribus, the "bad" equilibrium in the second line of (31)

2If we let β := η/λ to save a bit on notation, the derivative of (1 + βα)
1
α with respect to α is

(1 + βα)
1
α (1− 1/ (1 + βα)− log (1 + βα)) /α2, which has the same sign as 1 − 1/u − log u, where

u := 1 + βα ≥ 1. This expression is nonpositive, since: (i) at u = 1 it equals zero, and (ii) it is
strictly decreasing in u (its derivative, for u > 1, is 1/u2 − 1/u = (1− u) /u2 < 0). Therefore, τ̄ is
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can only emerge for a suffi ciently low α (i.e., if individuals are suffi ciently risk averse).

However, since the limit of τ̄ for α → 0+ is
(
1 + r

(
eη/τ − 1

)
/ (θ (1− θ) γN)

)−1
, for

income tax rates lower than this expression, a stationary equilibrium with l∗r = 1 is

not a possibility.

A different problem, but with similar economic implications as we shall shortly

see, is that of no one wanting to work in the R&D sector of the economy. This

will necessarily happen in a stationary equilibrium if the utility level in this sector is

lower than that available in the manufacturing sector, according to arbitrage condition

Arb2. In order to be able to carry out this analysis involving comparison of utility

levels in different sectors, we write down the stationary consumption levels in each of

these sectors (plus the final goods one, for completeness).

By simply plugging (12) and (6) into (16); (13) and (6) into (18); (6) into (21);

and (15) and (6) into (22), we obtain

Cu,t =

(
(1− τ) (1− θ)

L
+
τ

N

)
Yt, (32)

Cm,t =

(
(1− τ) θ2

H −R∗ +
τ

N

)
Yt, (33)

C0,t =
τ

N
Yt, (34)

C1,t =

(
(1− τ) θ (1− θ) γ
r + λ (1− l∗r)R∗

+
τ

N

)
Yt. (35)

increasing in α.
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3.2 The research effort

Given a stationary equilibrium with the notation of the previous subsections, we call

(1− l∗r)R∗ the research effort in the economy. This variable is key in determining

growth.

In a stationary equilibrium, for any period t ∈ N, as argued in the previous

subsection, one has Yt+1/At+1 = Yt/At. Therefore, the growth rate of output at

t equals the growth rate of productivity, which we approximate by log (At+1/At).

Obviously, this rate should not be expected to be constant (unless in the equilibrium

in which no innovations ever come about and in the equilibrium in which innovations

happen at each period), since A follows a stochastic process, according to (5).

In a stationary equilibrium, what is necessarily constant in time is the expected

growth rate of productivity. It can be computed by multiplying the Poisson rate at

which innovations occur, λ (1− l∗r)R∗, by log γ (since At+1/At = γ when ξt > 0), and

adding to that the product of 1− λ (1− l∗r)R∗ by log 1 = 0 (since At+1/At = 1 when

ξt = 0):

g = λ (1− l∗r)R∗ ln γ.

If τ ≥ τ̄ , then the research effort (whence also the expected growth rate) will be

null, as shown in the previous subsection. But this might be the case even if τ < τ̄ ,

since R∗ may be zero. All the following analysis is done with the τ < τ̄ assumption

in mind.

Let us initially consider the τ = 0 case. In this case, (31) gives l∗r = ηα/ (ηα + 1).

In order to find R∗, we must compare the utility levels in the manufacturing and R&D
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sectors. Plugging (33) and (29) into (1) yields the following utility level divided by

Y α
t :

Ūm (R∗) =

(
θ2

H −R∗

(
η

η + 1

)η)α
. (36)

Similarly, plugging (34), (35) and the first line of (31) into (20) and dividing by Y α
t

gives

Ūr (R∗) =
λ

ηα + 1

(
θ (1− θ) γ
r + λ

ηα+1
R∗

(
ηα

ηα + 1

)η)α

. (37)

It may be gathered from arbitrage conditions Arb1, Arb2 and Lemma 2 that

either R∗ > 0 and Ūm (R∗) = Ūr (R∗), or R∗ = 0 and Ūm (R∗) ≥ Ūr (R∗). Now,

while Ūm (R∗) is strictly increasing in R∗, Ūr (R∗) is strictly decreasing in that same

variable. This only assures uniqueness of a positive number of researchers R∗ in

stationary equilibrium, not existence. Indeed, it will not exist if, and only if, the

graphs of Ūm and of Ūr do not cross each other. That is, if and only if Ūm (0) ≥ Ūr (0)

or, equivalently,
θr

(1− θ) γH ≥
(

λ

ηα + 1

) 1
α
(

(η + 1)α

ηα + 1

)η
. (38)

When η = 0 and α = 1, this becomes the condition for what Aghion and Howitt

(1992) call a no-growth trap, θr/ ((1− θ) γH) ≥ λ. For this choice of η and α, trap

is a very suitable word, since, as we shall see below, even by putting into effect a

positive income tax rate τ , effort (and hence growth) would remain zero. But if

α < 1 and/or if η > 0, once simple redistributive mechanisms are brought into the

picture, we realize there is hope for escaping this trap. That is, there might exist

τ > 0 (but lower than τ̄) capable of stimulating skilled workers to become researchers

and/or making researchers work harder, and hence bring growth to the economy.

21



Suppose τ > 0. Following the same procedure as before, we obtain

Ūm (R∗) =

((
(1− τ) θ2

H −R∗ +
τ

N

)(
η

η + 1

(
1 +

τ
N

(η + 1) (1−τ)θ
2

H−R∗ + η τ
N

))η)α

, (39)

an expression that reduces to (36) when τ = 0.

When η = 0, this becomes
(
(1− τ) θ2/ (H −R∗) + τ/N

)α
, strictly increasing in

R∗. When η > 0, to ease the analysis of the behavior of this expression with respect

to R∗, we first pass it through the log ◦ (·)
1
α monotonic transformation, thus arriving

at an expression of the form

log

(
a

H −R∗ + b

)
+ η log

(
1 +

b

(η + 1) a
H−R∗ + ηb

)
+ η log

η

η + 1
,

where a := (1− τ) θ2 > 0 and b := τ/N > 0. Its derivative is

1
a

H−R∗ + b

a

(H −R∗)2
− η 1

1 + b
(η+1) a

H−R∗+ηb

b (η + 1)(
(η + 1) a

H−R∗ + ηb
)2 a

(H −R∗)2

=
a

(H −R∗)2

(
1

a
H−R∗ + b

− η 1

(η + 1) a
H−R∗ + ηb+ b

b (η + 1)

(η + 1) a
H−R∗ + ηb

)

=
a

(H −R∗)2

(
1

a
H−R∗ + b

− η 1
a

H−R∗ + b

b

(η + 1) a
H−R∗ + ηb

)

=
a

(H −R∗)2
(

a
H−R∗ + b

) (1− η b

(η + 1) a
H−R∗ + ηb

)

=
a

(H −R∗)2
(

a
H−R∗ + b

) (η + 1) a
H−R∗

(η + 1) a
H−R∗ + ηb

> 0.

Therefore, once again Ūm (R∗) is strictly increasing in R∗.

22



Proceeding as before for the R&D sector, we consider two cases. If η = 0, then

Ūr (R∗) = λ

(
(1− τ) θ (1− θ) γ

r + λR∗
+
τ

N

)α
+ (1− λ)

( τ
N

)α
,

strictly decreasing in R∗, whence R∗ = 0 if and only if Ūm (0) ≥ Ūr (0), i.e.,

(
(1− τ) θ2

H
+
τ

N

)α
≥ λ

(
(1− τ) θ (1− θ) γ

r
+
τ

N

)α
+ (1− λ)

( τ
N

)α
. (40)

In particular, when α = 1, it is straightforward to see that this is equivalent to

θr/ ((1− θ) γH) ≥ λ, the no-growth trap condition in Aghion and Howitt (1992).

We thus confirm the aforementioned impossibility of escaping this trap through a

simple redistributive scheme when η = 0 and α = 1. But if α < 1, then it is possible

that, for some positive τ , (38) holds while (40) does not.

If η > 0, then

Ūr (R∗) =

 λ (1− ` (R∗))
(

(1−τ)θ(1−θ)γ
r+λ(1−`(R∗))R∗ + τ

N

)α
+ (1− λ (1− ` (R∗)))

(
τ
N

)α
 ` (R∗)ηα , (41)

where the function ` is defined as follows.

Let3

l :=
ηα

ηα + 1

1 +
1

λ

(
τ
N

)α(
(1−τ)θ(1−θ)γ

r
+ τ

N

)α
−
(
τ
N

)α


3Since a stationary equilibrium must have R∗ ≥ 0, when τ ∈ (0, τ̄) it is necessarily the case that
l∗r ≥ l, as can be seen from the first line of (31).
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and R : [l, 1)→ R+ be given by4

R (l) =
1

λ (1− l)

1− τ
τ

θ (1− θ) γN(
1 + ηα

λ((ηα+1)l−ηα)

) 1
α − 1

− r

 . (42)

This formula is obtained by solving for R∗ the equation in the first line of (31), so

that, in a stationary equilibrium with τ ∈ (0, τ̄), if l∗r ∈ [l, 1) is the choice of leisure

of researchers, then R∗ = R (l∗r). Since R (l) is the product of two expressions that

are strictly increasing in l and nonnegative (the one outside of the square brackets

because l < 1, and the one inside of the square brackets because l ≥ l), R itself is

strictly increasing, and can be inverted. Let ` : R+ → [l, 1) be the inverse of R.

Thus ` (R∗) = ` (R (l∗r)) = l∗r , and the denominator r+λ (1− ` (R∗))R∗ appearing

in (41) can be rewritten as

r + λ (1− ` (R∗))R∗ = r + λ (1− l∗r)R (l∗r)

=
1− τ
τ

θ (1− θ) γN(
1 + ηα

λ((ηα+1)l∗r−ηα)

) 1
α − 1

=
1− τ
τ

θ (1− θ) γN(
1 + 1

λ( ηα+1ηα
`(R∗)−1)

) 1
α

− 1

,

4The reason why we had to treat the η = 0 case separately is in the very form of R (l).
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where we have used (42). Substituting this back into (41) gives

Ūr (R∗) =

 λ (1− ` (R∗))

((
1 + 1

λ( ηα+1ηα
`(R∗)−1)

) 1
α

τ
N

)α

+ (1− λ (1− ` (R∗)))
(
τ
N

)α
 ` (R∗)ηα

=

 λ (1− ` (R∗))

(
1 + 1

λ( ηα+1ηα
`(R∗)−1)

)
+1− λ (1− ` (R∗))

( τ
N

)α
` (R∗)ηα

=

 λ (1− ` (R∗))

λ
(
ηα+1
ηα

` (R∗)− 1
) + 1

( τ
N

)α
` (R∗)ηα

=

1
ηα
` (R∗)

ηα+1
ηα

` (R∗)− 1

( τ
N

)α
` (R∗)ηα =

` (R∗)ηα

1− ηα
(

1
`(R∗) − 1

) ( τ
N

)α
.

Since the expression lηα/ (1− ηα (1/l − 1)) is strictly decreasing in l (its derivative

equals −ηα (ηα + 1) (1/l − 1) lηα−1/ (1− ηα (1/l − 1))2 < 0) and `, being the inverse

of a strictly increasing function, is strictly increasing as well, Ūr (R∗) is strictly de-

creasing in R∗.

Therefore, as before, R∗ = 0 if and only if Ūm (0) ≥ Ūr (0). Since l = ` (0), one

obtains, after a series of algebraic manipulations,

Ūr (0) =
lηα

1− ηα
(
1
l
− 1
) ( τ

N

)α
=

1

ηα + 1

(
λ

(
(1− τ) θ (1− θ) γ

r
+
τ

N

)α
+ (1− λ)

( τ
N

)α)
(43)

×

 ηα

ηα + 1

1 +
1

λ

(
τ
N

)α(
(1−τ)θ(1−θ)γ

r
+ τ

N

)α
−
(
τ
N

)α
ηα

,
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so that the condition for R∗ = 0 becomes

((
(1− τ) θ2

H
+
τ

N

)(
η

η + 1

(
1 +

τ
N

(η + 1) (1−τ)θ
2

H
+ η τ

N

))η)α

≥ Ūr (0) . (44)

It is a trivial task to check that it so happens that, when η = 0 is plugged in

(44), it becomes equivalent to (40). Also, when τ = 0 is plugged in (44), it becomes

equivalent to (38). We have therefore obtained the following

Proposition 4 If (p, v, w, V, τ , B, ξ, χ, A,Cu, Cm, C0, C1, l
∗
u, l
∗
m, l

∗
r , R

∗, x, Y ) is a sta-

tionary equilibrium of this economy, then the research effort (1− l∗r)R∗ and the ex-

pected growth rate are zero if, and only if, the condition τ ≥ τ̄ or (44) hold.

4 Comparative statics

4.1 Impacts of redistribution on research effort

García-Peñalosa and Wen (2008) discussed two different effects that raising τ can

have on research: the incentive effect, that discourages skilled agents to engage in

research due to the tax charged on the value of the innovation, and the insurance

effect, which partially protects researchers from failures and thus encourages R&D.

They showed that the insurance effect is dominant for all levels of taxation (as long

as λ is small), and showed that even a τ near 100% (τ̄ = 1 in their model) would

generate more research effort (number of researchers, in their model) and expected

growth than laissez-faire. We propose the consideration of a third effect: the impact

of taxation on researchers’choice of leisure.
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Proposition 5 In a stationary equilibrium of this economy with τ < τ̄ and in which

(44) does not hold, l∗r is strictly increasing in τ .

Proof. In the works.

We shall refer to the effect expressed in this proposition as the leisure effect of

taxation: being a normal good, the demand for leisure will rise if transfers are raised.

Thus, in this more egalitarian society, researchers will end up doing less research.

This proposition qualifies the aforementioned result of García-Peñalosa and Wen

(2008) (their Proposition 1(iii)), in that it shows why raising τ indefinitely (or up to

τ̄ , in our model) should not necessarily bring higher expected growth than τ = 0.

As for the net effect of taxation on the number of researchers, as we shall see

shortly, it is ambiguous. In that way, the same will be true of its effect on research

effort.

4.2 Social planner

In order to have a benchmark for welfare comparisons, we briefly consider a social

planner who chooses the number of researchers in the economy and the level of con-

sumption and leisure of each agent so as to maximize a utilitarian welfare function

given by

W =
∞∑
t=0

δtWt,

where δ is the social discount factor and

Wt = LU (Cu,t, lu,t) + (H −Rt)U (Cm,t, lm,t) +RtU (Cr,t, lr,t) . (45)
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Recall that there is no saving mechanism in this economy, whence the resource

constraint

LCu,t + (H −Rt)Cm,t +RtCr,t = Yt (46)

must hold at every period t ∈ N. The technology available at t is informed by the

production function Yt = At ((1− lm,t) (H −Rt))
θ ((1− lu,t)L)1−θ.

Hence, the planner’s problem is essentially static. Define C̄i = Ci,t/Yt for i ∈

{u,m, r}. Then (45) can be rewritten as

Wt =
(
At ((1− lm) (H −R))θ ((1− lu)L)1−θ

)α
×
(
L
(
C̄ul

η
u

)α
+ (H −R)

(
C̄ml

η
m

)α
+R

(
C̄rl

η
r

)α)
.

Except for the productivity index At, all terms above are time invariant. Thus, the

present value of the expected welfare can be written as

W =
∞∑
t=0

δt
t∑

s=0

t!

s! (s− t)! (λ (1− lr)R)s (1− λ (1− lr)R)t−s (γα)sW0

= W0

∞∑
t=0

δt
t∑

s=0

t!

s! (s− t)! (γαλ (1− lr)R)s (1− λ (1− lr)R)t−s

= W0

∞∑
t=0

δt (γαλ (1− lr)R + (1− λ (1− lr)R))t

= W0

∞∑
t=0

δt (1 + (γα − 1)λ (1− lr)R)t =
W0

1− δ (1 + (γα − 1)λ (1− lr)R)

=

(
A0 ((1− lm) (H −R))θ ((1− lu)L)1−θ

)α
1− δ (1 + (γα − 1)λ (1− lr)R)

×
(
L
(
C̄ul

η
u

)α
+ (H −R)

(
C̄ml

η
m

)α
+R

(
C̄rl

η
r

)α)
, (47)
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where we have employed the Binomial Theorem and the formula for an infinite sum

of a geometric progression.

The expression above provides some intuition on the factors that impact welfare.

The numerator of the first term is the initial product, while the denominator can be

understood as a combination of the social discount factor and the rate of innovation

(which determines the expected growth rate, as seen in subsection 3.2). The second

term captures risk exposure and redistributive effects. As in García-Peñalosa and

Wen (2008), research effort has a negative impact on welfare for reducing initial

product, but also has a positive impact for increasing the expected innovation (and

hence growth) rate.

4.3 Inequality

In order to measure inequality in our simulations, we use the Gini coeffi cient. It is

given by

I =
N

2Y

G∑
i=1

G∑
j=1

|Yi − Yj|ninj, (48)

where G is the number of different groups in the population, Yi is the income of group

i and ni is the fraction of the population that belongs to group i.

When an innovation occurs, there are four income groups: the unskilled individ-

uals with income (32), the manufacturers with income (33), the successful innovators

with income (35) and the unsuccessful researchers with income (34). Plugging these
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expressions in (48) yields

I1 =
1− τ
2N

 θ2L− (1− θ) (H −R∗)

+θ (1− θ)
(

γ(N−1)
r+λ(1−l∗r)R∗

− (R∗ − 2)
)

+R∗ − 2

 .

When there is no innovation, however, there is no successful innovator, whence

there are three different income groups and we obtain

I0 =
1− τ
N

(
θ2 (L+R∗)− (1− θ) (H − 2R∗)

)
.

The probability-weighted Gini coeffi cient is, then,

λ (1− l∗r)R∗I1 + (1− λ (1− l∗r)R∗) I0.

4.4 Parameters

We make use of the exact same parameter values as in García-Peñalosa and

Wen (2008) to facilitate comparisons, except for the leisure elasticity, which was

introduced in this model. We use a low value for leisure elasticity (η = 0.05)

and show that, even this small change in parameters, results change signifi-

cantly. The social and private discount rate are identical and one period of

time corresponds to ten years. Table 1 presents the values of these parameters.5

5Here, σ := 1− α.
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    θ=0.25     γ=1.8     r=1.5
    σ=0.1     η=0.05     δ=0.4
    λ=0.0005     H=1500     N=20000

Table 1: Baseline parameters

4.5 Results

Figure 1 presents several stationary-equilibrium variables, for different tax rates. The

horizontal axis of all graphs correspond to the tax rate, in percentage points. Growth

rate and leisure are given in percentage points as well, while welfare and initial output

are defined as deviation rates from their laissez-faire values. Inequality corresponds

to the probability-weighted Gini coeffi cient. Purple curves correspond to García-

Peñalosa and Wen’s (2008) model (with η = 0), while the blue curves correspond to

the present model (with η = 0.05).

García-Peñalosa and Wen (2008) argue that the number of researchers (whence, in

their model, also the growth rate) is always increasing in τ due to the insurance effect,

that encourages skilled individuals to engage in research. This effect still exists in

our model with positive η, but it is no longer dominant for all levels of taxation. The

graph shows that the expected growth rate, and therefore research effort, increases

with taxation up to a certain point, then starts to decrease. At first, the number

of researchers increases, stimulating growth. It eventually collapses, however. For a

high enough income tax rate (approximately 90.6%), (44) holds, whence R∗ = 0.

For low tax rates, income inequality increases relative to laissez-faire, but for

higher tax rates it decreases. Initial output decreases in taxation for low tax rates
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due to skilled individuals shifting to the research sector, and for high tax rates because

of agents’increasing leisure. Although the same goes for the model with η = 0, the

inelastic labor supply smooths the fall of initial output. The welfare maximizing

tax rate is not 99.8% as in García-Peñalosa and Wen (2008), but around 58%. A

more detailed analysis of how leisure elasticity affects welfare is presented in the next

subsection.
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Figure 1: Equilibrium results for different values of the tax rate
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4.6 Optimal tax rate and first-best welfare

We define the government’s optimal tax rate as the welfare maximizing tax rate under

the redistribution policy described in subsection 2.4. The third graph of Figure 1

shows the difference between the optimal tax (the highest point of the blue curve)

and the first-best welfare (the red line). García-Peñalosa and Wen (2008) suggest

that this difference is very small (first-best welfare is 22.67% greater than in laissez-

faire, while their optimal tax rate welfare is 22.63%). However, if we take leisure into

consideration, we see that, as η is increased, the greater is the difference between the

optimal tax rate welfare and the first-best welfare. Figure 2 shows what happens to

this difference as we increase leisure elasticity (η).6

6As with any welfare level comparison, the reader should take Figure 2 with a pinch of salt. The
graph’s purpose is simply to suggest how sensitive the aforementioned result of García-Peñalosa and
Wen (2008) would be to the parameter η.
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Figure 2: Ratio between optimal tax welfare and first-best welfare for different

values of leisure elasticity

4.7 Alternative redistribution policies

If we consider a framework with the possibility of lump-sum taxation and in which the

government can transfer different amounts to each agent according to their sector,

the results above would still stand. The greater the leisure elasticity, the furthest

away from the first best will the economy be. In this new framework, and still with

η = 0.05, optimal redistribution welfare would represent 63% of first-best welfare
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(while in the original model with a linear income tax and equal redistribution, it

reaches 37% of the first-best welfare). That is, although there is a substantial welfare

gain in introducing more complex taxation and transfer schemes, it would still not be

enough in order to approximate the first best.

5 Concluding remarks

We have studied the impacts of redistributive taxation in a Schumpeterian growth

model with risk-averse agents and elastic labor supply. Under an equal redistribution

policy, increasing taxation relative to laissez-faire provides insurance to researchers

who engage in risky income-generating activities, promoting growth and welfare, but

only up to a certain tax rate. For high levels of the tax rate, the negative effects

of taxation on research (namely, the incentive effect and the leisure effect, both dis-

couraging skilled agents to engage in research) dominate the insurance effect, and

excessive tax rates can generate zero research effort and growth. We have also proven

that, as the tax rate converges to 1, the expected growth rate converges to zero, in

contrast to García-Peñalosa and Wen’s (2008) result that the expected growth rate

is greater when τ approaches 100% than it is in laissez-faire equilibrium.

We have found that introducing a leisure elasticity parameter of small magnitude

has a great impact on the optimal tax rate (with a 0.05 parameter, optimal tax rate

shifts from 99.8% to 58%), and that equal redistribution can only generate close to

first-best welfare in a model with inelastic labor supply. We have showed that the

greater the leisure elasticity parameter, the harder it is to achieve first-best welfare

with redistribution policies (which remains true even in an economy with lump-sum
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taxation and differentiation in transfers between agents).

Therefore, alternative policies other than income redistribution may be necessary,

in order to achieve an equilibrium allocation closer to the first best. For instance,

patent protection (for more than one period) and the distribution of bonuses only to

successful innovators are possibilities that may be considered.
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