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Abstract

Despite widely prescribed by economists, a congestion tax is seldom used in practice. Why? This paper
combines a structural econometric model with a simulation algorithm to estimate an optimal congestion tax and
investigate its political acceptance. Results for Sao Paulo show the tax to be 2 USD per trip. Policy simulations
indicate that (i) commuters that switch to the public transportation bears the largest share of the tax burden
and (ii) revenue recycling is essential for the policy to be accepted. Skepticism about the use of tax revenues is
the likely cause for the low use of the congestion tax.
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1 Introduction

People in large cities talk and think about traffic congestion; they change schedules, search information about traffic
conditions, listen to radio stations broadcasting road conditions, use apps such as Waze and Google Maps among
many other things. As a response, cities invest large sums in urban transportation infrastructure: a larger subway
network, new wider roads, bridges, tunnels and so on. Nonetheless, traffic is getting worse in most cities.

A well known fact in economics of transportation is that a congestion tax is the main prescription for addressing
this problem. Congestion pricing is far from being a novel idea; indeed, as Lindsey [2006] points out, even Adam
Smith has written several pages on toll pricing. However, the discussion took its current form only from the second
half of the 20th century, facing the question of what would be the optimal charge for a monopolist road operator.
Authors such as Vickrey [1948], Walters [1961] and Downs [1962], discussed what would be the relevant toll prices
to reduce congestion externalities.
∗We are thankful to comments from Ciro Biderman, Danilo Igliori, Leonardo Basso, Juan Pablo Monteiro, and several participants

on EARIE Annual Conference, ITEA Conference, Fundacao Getulio Vargas, Insper, State University of Rio de Janeiro and University
of Sao Paulo.
†University of Sao Paulo. Email: claudiolucinda@usp.br
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A second and somewhat surprising fact is that urban tolls are mostly used in developed countries, such as
England, Sweden or Singapore, but not at all in poor or developing countries, where traffic externalities might
be even more pressing. Both facts naturally lead to the question: why isn’t a congestion toll policy more widely
used? Instead, several cities adopted quantity restriction mechanisms, such as license plate restrictions, which are
clearly sub-optimal.1 We believe that the answer to this question is a political economy mechanism which hinders
developing countries’ ability of taking advantage of this tool, besides all operational aspects of selecting the optimal
congestion tax.

This puzzle can be addressed by taking an empirical approach to the problem; but to the best of our knowledge
no paper has already done that. We aim to fill this gap by proposing a structural econometric model of driving
decisions including driving generated externalities to estimate the relevant demand parameters, also taking into
account the dynamic aspects of mode choice in a day with multiple trips. Then we compute a pigouvian congestion
charge for Sao Paulo, Brazil, taking into account both heterogeneity in the value of time and commuters income, as
well as differences on congestion levels on distinct parts of the city. From this value, we simulate alternative policies
differing about how the revenues from the congestion tax are recycled, whether by a lump sum transfer or a bus
subsidy, and do a welfare analysis to understand the impact of such policies, and their political acceptability.

Main Findings. Our econometric results imply own price elasticities that nearly match previous studies such as
Batarce and Ivaldi [2014]. They also imply an optimal linear congestion tax of 6.25 BRL, or 2 USD, per car trip in
downtown Sao Paulo.

The tax’s welfare impact shows that the group which switches to public transportation is the one that carries
most of the tax’s burden. This finding differs from the theoretical results of De Borger and Proost [2012], which
says remaining drivers are the most affected group. It is also in line with the stylized fact that the middle class
would be the most affected by this type of policy.

The reason is commuters’ heterogeneity in value of money and value of time. Remaining drivers tend to be the
wealthiest part of the population, which have the lowest marginal utility of money and therefore are less affected
by the tax. They also have the highest value of time, benefiting more from the decrease in travel time.

The political economy analysis also shows revenue recycling as a major feature when implementing a congestion
tax. Simulations show that it increases the political acceptability of the tax, specially if it is targeted to the
citizens most harmed by the policy (mostly new bus users). Also, there is a substantial difference in terms of traffic
reduction between the lump sum rebate and the bus subsidy: the bus subsidy reduces car usage substantially more
than a lump sum transfer would. Such increases could even reach a level in which the expected shifts in public
transportation demand would require substantial capacity investments.

The scenario without revenue recycling mimics the situation in which the tax structure as well the governance
of public transportation is as such that revenues from the congestion tax cannot be funneled to individuals, either
as a lump sum transfer or as a reduction in bus fares. The majority rejection of the urban toll in the situation with
no revenue recycling helps explain why this is not adopted in developing countries, where the cost of public funds

1Sao Paulo, Beijing, Santiago, Mexico City, and Bogota, among many others, all adopted similar variations of license plate restrictions.

2



is higher than in developed countries.2

Contribution and Related Literature. This paper relates to different branches of the congestion charge litera-
ture. Closest to this paper is the literature that analyze political economy aspects of congestion pricing. De Borger
and Proost [2012] set up a theoretical model to analyze the acceptance of a congestion pricing. They show who
the policy winners and losers are under different scenarios, and the important role of revenue recycling. Armelius
and Hultkrantz [2006] simulate the welfare effect of an urban toll on Stockholm city and show the importance of
improving public transportation to increase the policy’s acceptance. Eliasson and Mattsson [2006] analyze the claim
the resistance to implement congestion pricing in Stockholm is due to the policy regressive nature. The authors
show that, on the contrary, the policy is in fact progressive, but it depends on the redistribution of the revenue
collected.

More generally, this paper relates to the broad literature which analyzes the question of why some optimal
policies are not adopted in practice. An important paper is Grossman and Helpman [1994], which analyzes why
free trade is not widely adopted, despite being prescribed by the economic theory as welfare maximizing.

A related issue is the fact that congestion is endogenous to the policy implemented; that is, policy changes will
feed back into driving decisions and they will lead to different congestion levels. Batarce and Ivaldi [2014] estimate
a structural demand model for travel decisions including the network congestion. In the present paper, we also take
into account the effects of endogenous congestion by simulating traffic across routes. They simulate an optimal bus
fare (welfare maximizing), while we estimate in our paper an optimal - also welfare maximizing - congestion charge.

Parry and Bento [2001] calibrate a model to compute the optimal tax. But to the best of our knowledge, our
paper is the first to estimate an optimal congestion tax using microdata. As the results show, including heterogeneity
in travellers preferences through microdata is what enable us to identify winners and losers of the policy.

In an earlier work, Lucinda et al. [2017], compare the welfare impact of a license plate restriction with that of
a congestion tax. However, the congestion tax was not optimal. Instead, it was set to induce the same level of
congestion as the license plate restriction.

Following this line of argument, papers such as Small [1983], Layard [1977] and Safirova et al. [2004] investigate
the distributional effects of toll prices and whether they are regressive. If so, this effect could be a reason for the
low acceptance of congestion charges and toll prices worldwide.

Our paper analyzes a situation where the revenue from the congestion tax is used to subsidize bus fare. Basso
and Silva [2014] consider the situation where both policies coexist. Their results show a substitutability between
the tax on cars and subsidy on transit in terms of welfare. Our results show that int terms of political acceptability
both policies are complimentary.

This paper also relates to the econometrics of discrete choice literature that incorporate dynamics on the deci-
sions. Train [2003] provides a clear explanation of a logit with dependent decisions over time. Adamowicz [1994]
and Erdem [1996] also pose some models in which there is some persistence in individual decisions. Here, we take

2In this context, for cost of public funds we mean that for each monetary unit raised by the tax, only a fraction of it returns to the
population.
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into account the fact a prior driving trip for an individual could influence the probability of driving in subsequent
decisions.

2 Optimal Congestion Charge – Conceptual Framework

Our conceptual framework to define the optimal congestion charge is composed of four parts: a travel mode demand
system in which individuals choose their transportation mode, a model of traffic that aggregates individual trip
choices into route traffic, an externality equation relating traffic to travel time and an algorithm that uses these
three pieces just to compute the optimal tax.3 This section develops each of these models and the algorithm.

2.1 Travel Mode Choice Model

We use the mixed logit model (see Train [2009] for a full discussion of this class of models). The mixed logit
approach is used here because it can provide more flexible substitution patterns than both the multinomial logit
and the nested logit – for instance, used by Molnar and Mesheim [2010]. The starting point is a population
of I potentially heterogeneous individuals, with an individual denoted i. Each individual has to decide which
transportation mode to take to work. From the choice set defined above, it is assumed the respondents must choose
a single alternative from a subset of the discrete choice set J = {Bus, Rail, Driving, Motorcycle, Taxi, Other}. Not
all alternatives might be available to all individuals, though. Depending on infrastructure availability, some of them
might not be available.

For each j ∈ J alternative, individual i derives utility Uij . Assuming that individual’s behavior is utility-
maximizing, choices can be represented by a binary variable defined as:

yi =

1 if Uij > Uij′∀j′ 6= j

0 otherwise
(1)

Individual choices depend on many factors affecting their utility from each alternative. Assuming utility can be
decomposed into two parts, one can write Uij as:

Uij = βizij + εij (2)

In which zij is a set of observed variables relating to alternative j for individual i which might depend on individual
specific variables xi as well as alternative specific variables wj such that it can be expressed as zij = z(xi, wj) for
some function z. It is assumed here the function z is the identity, which makes zij = [xi : wj ]. βij is a corresponding
vector of coefficients for the observed variables, and εij captures the impact of all unobserved factors that affect
the individual’s choice. When εij follows an extreme-value distribution, we say that it belongs to the Generalized
Extreme Value (GEV) family of models [Fisher and Tippett, 1928, Gnedenko, 1943].

3We are assuming here the only externality is the congestion externality; thus, we are abstracting from pollution, traffic accidents
and other externalities from car usage.
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We assume the coefficients have some sort of heterogeneity – in our case related unobserved characteristics - and
are given by βi = β + σvi. In which σ is a vector capturing heterogeneity in (possibly some of) the β parameters,
and vi is an additional random perturbation.

Adapting the previous notation, the utility for consumer n of choosing alternative i as follows:

Uij = βzij + σvizij + εij

Still assuming a GEV distribution for the εij term, the choice probability for alternative j could be derived for
individual i:

Pij =

∫
exp[βzni + σvizij ]∑J
l=1 exp[βzil + σvizil]

dP (v) (3)

This formula is somewhat different from its MNL analogue because of the integral required to account for the
random nature of the vn terms. Depending on the assumed distribution, which is denoted by P (v) in the previous
formula, the integral for the choice probability could be computed numerically (by some sort of quadrature method),
or by simulation. In the present paper the relevant integrals – assuming a standard normal distribution for the
v terms – are estimated by simulation, using 50 Halton draws. These simulated choice probabilities are used to
estimate the βni and σ parameters by Maximum Likelihood.

Closed forms can also be derived for the Equivalent Variation, which will be used to compute the effects of
counter-factual measures, such as the urban road tax discussed here. The consumer surplus is approximated by the
so-called logsum measure [Small and Rosen, 1981]:

E(CS) =

∫ ln
[∑J

l=1 exp[βilzil + σvlzil]
]

α
dP (v) + C (4)

In which α represents the marginal effect of the cost variable on the non-random part of utility, and C is an
integration constant which will be ignored throughout the analysis. The next stop is aggregate individual choices
into traffic flows in a given route. As usual in discrete choice models, an important economic quantity is the ratio
of marginal (dis)utility of time to the marginal (dis)utility of trip costs, which will be denoted as Value of Time
(V OTi):

V OTij =
∂Uij/∂tj
∂Uij/∂Cj

(5)

In which tj represents the trip time for mode j and Cj trip costs for mode j

2.2 Route Traffic Model

There are Ik travelers who travel on route k ∈ K, from origin Ok to destination Dk. As in the previous part of
the conceptual framework, the individual has a choice set composed of J mutually exclusive alternatives. The set
of travelers choosing mode j on route k is the sum of yij defined as in equation (1), but only for those individuals
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who choose route k:
Djk =

∑
i∈Ik

yij (6)

and total citywide demand for mode j is

Dj =
∑
k

Djk. (7)

The next step is to embed these results into a model of citywide traffic, which is a problem similar to the
“assignment problem” in the transportation literature. Our goal is to have an equilibrium model where individual
mode choice affects travel time. In equilibrium, no citizen wants to change her transportation mode. Perhaps the
trickiest part of this model is to link individual choices to aggregated traffic and travel time. There are many ways
to do it. The key distinction among them is the level of network detail used. See de Dios Ortuzar et al. [1994] for
a full discussion of these methods.

At one extreme, you have no network at all, only one aggregated equation relating the total volume of cars to
travel time, like in Anderson [2014]. He uses the BUREAU OF PUBLIC ROADS [1964] equation that relates flow
in a route to travel time. At the other end, there is a full specification of the network coupled with a geo-referenced
map. In this case, the number of cars assigned to a specific route generates traffic. In these models, drivers are
assumed to be rational and to minimize trip (generalized) costs. In between those two extremes, there are more
stylized models of the network. The most common type is a network specified by nodes and links. The nodes are
usually the centroid of a region, and links are the connections of this region to the others. These models can vary
in the details of the links it uses, such as capacity, speed and so on.

In this paper, we use a version of this stylized model of city traffic network. Following the Origin Destination
geographic division of Sao Paulo Metro area, we build an adjacency matrix for city zones, with a 1 on the (a, b)

entry if zones a and b have a connecting border to each other, and 0 otherwise. Then we apply Dijkstra [1959]
algorithm to find the shortest path (that crosses the smallest number of zones) between any regions a and b. This
will be the assumed path of each commuter, and the traffic in a given zone is the sum of people that passes through
that zone. The route traffic is defined similarly, as the sum of traffic of all zones this route crosses. Let ∆n ⊂ K be
the set of all routes whose shortest path (according to Dijkstra algorithm) crosses region n. Total traffic on region
n is

trffn =
∑
k∈∆n

Djk (8)

and total traffic on route k is the sum of all trffn for all n in the shortest path between origin Ok and destination
Dk, which will be denoted as Nk:

Tk =
∑
n∈Nk

trffn (9)

6



Equations 6, 7, 8 and 9 define the mapping from individual choices to route traffic: Tk = Φ (y), where y is the
vector of individual choices.

2.3 Externality Model

Traffic on a given route also has some external effects. The external effects considered here are related to congestion,
reflected on increased trip times. Trip time for a traveler on route k using mode j, represented by tjk, depends on
traffic and distance.

tjk = tj (T.k, distk) (10)

This equation captures the negative externality generated by car users. We assume that only bus and car trip times
are affect by traffic, and we consider only the negative externality of car users for congestion pricing. Since traffic
and travel times are dependent on trip costs, the imposition of a congestion charge must take into account these
effects.

2.4 Optimal Congestion Charge Algorithm

Given the feedback mechanism implied by our conceptual framework, under which changes in mode choice imply
changes in travel times through the traffic model and the externality equation, we propose an iterative algorithm
for finding the effects of a change in costs for any travel mode. Given a tax (or any change in trip costs) p, a traffic
equilibrium is a fixed point of the system composed by equations 6, 8, 9 and 10. Let the pre-tax travel time be
denoted as t0. The iteration, written in pseudocode, is as follows:

Algorithm 1 Equilibrium Mode Choices
Require: p 6= 0 and ε > 0
1: tol > ε
2: i = 1
3: maxit = 100
4: while tol > ε, i < maxit do
5: D0

jk = f(p, t0jk) using equations 1 and 6
6: trff0

n = g(D0
jk) for car mode, using equation 8 for each zone

7: T 0
k =

∑
n∈Nk

trff0
n as in equation 9

8: t1jk = tj(T
0
k , distk) as in equation 10

9: D1
jk = f(p, t1jk) using 1 and 6

10: tol→ ‖D1
jk −D0

jk‖
11: t0jk → t1jk
12: i→ i+ 1
13: end while

The resulting choices after the recursion comes to an end are the equilibrium mode choices. The next step is
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to use this iterative algorithm to find an optimal congestion charge. The algorithm employs an inner while loop
similar to the one in Algorithm 1, with an addition returning the value of time – which will be the source for the
marginal external effect of congestion (as in Parry [2009]). The linear optimal congestion charge is one that makes
the marginal social cost of traveling equal the marginal social benefit, regardless of any differences in the externality
levels created by any specific trip. It is also presented in pseudocode as Algorithm 2.

Algorithm 2 Optimal Linear Congestion Charge
Require: ε > 0, ε2 > 0
1: p0

2: tol2 > ε2
3: i2 = 1
4: maxit2 = 100
5: while tol2 > ε2, i2 < maxit2 do
6: tol > ε
7: n = 1
8: maxit = 100
9: while tol > ε, n < maxit do

10: D0
jk = f(p, t0jk) using equations 1 and 6

11: trff0
n = g(D0

jk) for car mode, using equation 8 for each zone
12: T 0

k =
∑

n∈Nk
trff0

n as in equation 9
13: t1jk = tj(T

0
k , distk) as in equation 10

14: D1
jk = f(p, t1jk) using 1 and 6

15: tol→ ‖D1
jk −D0

jk‖
16: t0jk → t1jk
17: n→ n+ 1
18: end while
19: V OTij =

∂Uij/∂tj
∂Uij/∂Cj

as in equation 5

20: EXTi = V OTij × ∂tj
∂Tk

, with the last derivative from equation 10
21: EXT =

∑
iEXTi

22: p1 = EXT − ((EXT/p0)− 1)
23: tol2 = ‖p0 − p1‖
24: p0 → p1

25: i2 → i2 + 1
26: end while

The results of Algorithm 2 can also be presented graphically as in figure 1. In this figure, the simulation results
of an optimal congestion charge for the morning peak are presented, as well as the marginal social benefit, marginal
social cost and marginal private cost curves.
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Figure 1: Equilibrium with Optimal Congestion Charge - morning peak
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In the next section, the dataset used will be presented.

3 Data and Analysis

3.1 Dataset

The main source of transportation statistics to be used will be the Origin-Destination (OD) survey carried out
by the Sao Paulo Subway Company. This survey has 169,625 observations, with information about trips made in
2007 in the region composed by 38 municipalities besides Sao Paulo city, depicted in Figure 2, an area known as
Metropolitan region of Sao Paulo marked in yellow (38 municipalities) and in orange (Sao Paulo city).

In this survey, detailed information on the origin, destination, mode choice and attributes (both individual and
chosen transportation mode) were recorded. The survey was carried out by a team of 370 researchers, visiting
54,700 households, with approximately 30,000 of those considered valid after the vetting process of the raw data.
The Survey uses a stratified sampling technique, with error margins below 5%.
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Figure 2: Sao Paulo Metro Area

Source: OD Survey, Sao Paulo (2007).

The survey has a wide range of individual information, such as income, car and home ownership, household
size and other characteristics which could influence the decision of whether or not to take the trip and what
transportation mode to use. The survey also has trip information as departure and arrival time, latitude and
longitude for departure and arrival, mode of transportation, reason of the trip – leisure or work – and so on.

The survey classifies many different types of transportation modes. For simplicity, we reduced the choice set to
the following set of alternatives:

• Bus: trips that respondents answered as their main mode choice either municipal, inter municipal or hired
buses

• Rail: trips that respondents answered as main mode choice as subway or rail.

• Driving: trips that respondents answered as main mode choice as driving

• Motorcycle: trips that respondents answered as main mode choice as motorcycle

• Taxi: trips that respondents answered as main mode choice as taxi

• Other: other main mode choices - usually shared ride, walking or bicycle.

Another relevant issue for our dataset is respondents are followed during the day. That is, several trips in the
dataset refer to trips made by the same individual in different moments of the day. From a raw total of 91,405
unique individuals, only 27,814 have only one trip recorded, reflecting the sometimes complex travel arrangements
of individuals in Sao Paulo. Especially with respect to car usage, this will pose some challenges for the econometric
analysis, since trip decisions in cases such as these are not to be independent, as to be seen below.
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3.2 Travel time and cost matrices

Another important part of the database preparation is computing time and cost of options that were available
but not chosen by the decision maker. Some alternatives had costs that could be determined the same way as costs
for trips actually made – such as bus, subway and rail trips. For the other alternatives, the costs and duration for
the other choices were estimated from a regression model using the observed choices for each mode. The dependent
variable was the logarithm of trip cost or trip duration, and the independent variables were as such:

• Dummy Variables for Departure Hour

• Dummy Variables for Arrival Time

• Dummy Variables for Trip Motivation

• Distance in kilometers

The latter variable was estimated as the Euclidean Distance between the geographical coordinates of the OD zones
(according to the survey’s division in 460 zones). The estimated coefficients were used to estimate expected trip
time and cost for alternatives not chosen45, as in Lucinda et al. [2017].

Not all modes were available to all respondents, though. This problem was more pronounced for rail and subway
modes, given the lack of infrastructure for all zones. This problem was addressed by restricting the availability
of rail and subway choices for only those zones which had some respondents choosing these modes. The dataset
which will be used in the following econometric analysis has the following descriptive statistics for the individual
and household characteristics:

Table 1: Descriptive Statistics
Individual Specific Variables. N=34162 Individuals

Mean Std. Deviation
Income (Monthly) in 1000BRL 2.7289 2.3942
Age 36.1454 12.7818
Not Student 0.8728 0.3332
Female 0.4282 0.4948

Household Variables. N=20820 Households
Mean Std. Deviation

Number of HH Members 3.7743 1.8525
Number of cars 0.7117 0.7732

The results of table 1 indicate the average age of respondent is 36 years old, 87.3% of them are not currently
studying and 42% female. The average household size is 3.74 members and the average number of cars is 0.71 per

4The maximum predicted time was trimmed at 300 minutes and the maximum predicted cost also in 300 BRL.
5Results available upon request.
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household. As for the trip specific variables, the descriptive statistics across the transportation modes are in Table
2.

Table 2: Descriptive Statistics – Trip Specific Variables
Observed Choices Imputted Values
Mean Std. Dev. Mean Std. Dev.

Trip Cost (in BRL)
Bus 3.0349 1.2318 2.3000 0.0000
Rail 3.8121 2.3005 2.3000 0.0000
Driving 2.4370 3.8657 4.6111 7.6080
Motorcycle 0.6441 0.4337 0.9292 1.0808
Taxi 21.7254 20.3965 30.2214 29.9220
Shared Ride/Walking/Bike 0.0001 0.0275 1.5948 0.5945
Trip Time (Minutes)
Bus 73.3150 36.1439 62.6896 47.3669
Rail 94.4100 39.0813 57.1711 23.7539
Driving 39.2598 35.1201 60.8492 55.2158
Motorcycle 29.3690 18.3345 40.4610 38.0708
Taxi 39.0545 43.7068 61.9800 63.7472
Shared Ride/Walking/Bike 21.9505 22.1204 58.1907 53.5581
OBS: Weighted Sample. N=66,693 trips observed and N=259,152 trips imputted.

The descriptive statistics are in line with what is to be expected, with both the cost for observed choices and
the cost for the alternatives not chosen by the respondent are roughly in line with each other. The zero standard
deviation for the imputed values for the trip costs for bus and rail is due to the fact these values were imputed
according to the prevailing fares at the time.

In terms of number of trips using different modes and trip location, table 3 presents some interesting results:
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Table 3: Trip Distribution according to trip mode, motivation and region

Trip Location
Other Expanded Center Total

Work Related Trips

Bus 5,674,147 273,843 5,947,989
Rail 2,024,716 182,456 2,207,172
Driving 3,788,459 660,198 4,448,657
Motorcycle 533,584 29,277 562,861
Taxi 18,664 16,728 35,392
Other 4,232,609 527,165 4,759,774
Total 16,272,178 1,689,667 17,961,845

All Motives

Bus 10,298,255 566,647 10,864,901
Rail 2,718,583 315,680 3,034,263
Driving 6,050,724 1,231,198 7,281,922
Motorcycle 671,668 38,212 709,881
Taxi 43,557 47,016 90,573
Other 14,537,558 1,463,566 16,001,124
Total 34,320,346 3,662,318 37,982,664

First of all, comparing the upper and lower panels of table 3, we can see that work related trips (that is, trips
with were motivated by work reasons either in trip origin or destination) are more than half of all trips. This share
is roughly similar across modes. The second issue is the number of trips to/from the expanded center is actually
about 10% of all trips in Sao Paulo metropolitan area.

Although the share of trips to the expanded center is somewhat small, the issue here is not one of the absolute
number of trips. The congestion problem is the effect of this traffic on a limited road infrastructure. Figure 3 shows
a smoothed estimate for car and bus trip speed during the typical day. One can see in this figure that (i) car trips
tend to be faster than bus trips, and (ii) trips to/from the expanded center tend to be slower than trips to/from
areas off the expanded center.
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Figure 3: Speed in km/h for trips in the Expanded Center or off the Expanded Center
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The marked decrease in average speeds during the day can be related to the density of trips across the day, as
we can see in the figure 4:

Figure 4: Smoothed Density of Trips during the day
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In this figure, one can see the density of trips is higher during the period from 7am to approximately 4pm; after
that both densities almost coincide. Both curves show a marked increase in the morning peak at about 7am. Given
this dataset whose descriptive statistics are presented in tables 1 and 2, the next section will be focused on the
modeling to be used.
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4 Econometric Results

The econometric model follows the discrete choice approach discussed in equation 1 in section 2. Since the OD
survey is a panel dataset, in which all individuals are followed for a period, we used an approach suggested by Train
[2009, chap. 2] to model state dependence. We consider the respondent having to use her car when choosing the
“Driving” alternative induces dynamics related to return home the car at the end of all trips. For example, a person
that drives to work needs to return home driving later on. This is a substantial improvement over previous models,
such as Lucinda et al. [2017], in which this dynamic was not considered and all trips were seen as independent.

The complete utility specification for an individual i from choosing mode alternative j is as follows:

Uij = f(Cij , tij) + SDiβ
SD
ij + Ziβ

Z
ij + εij (11)

In which SDi is a variable intended to capture the dynamics from driving, due to the fact that the trips in our
dataset have a panel data structure (that is, several trips for the same individual are recorded). SDi is a dummy
variable which takes the value of zero if the person have not used the car, becomes 1 when the person uses the car
and remain 1 until the car is returned home. It has value zero if the person take any non car trip after returning
home the car. In summary, it is a variable that has value 1 if the car was used and not returned home. Since it
is a variable which has a single value (zero or one) for all choices individual i faces in a given moment, it is a case
specific variable. The Zi is a vector of case specific variables as follows:

• Whether the individual is coming/going to the expanded center of Sao Paulo

• Whether the is respondent is female

• Whether the trip begins or ends at a zone with dedicated bus lanes

• Whether the trip begins or ends with a rail station

• Income level, denoted by Ii

And finally, the f(Cij , tij) is a function of trip cost and trip time, intended both to capture unobserved alternative
characteristics as well as dealing with the problem of independence of irrelevant alternatives. This function is
specified as follows:

f(Cij , tij) = βCCij + βttij + βCI Cij

Ii
+ βtI tij

Ii
+ σCvCijCij + σtvtijtij

In which vCij and vtij are Halton draws from a standard normal distribution and βC , βt, βCI , βtI , σC and σt are
coefficients to be estimated by Maximum Simulated Likelihood6. The following table shows the econometric results,
using the sample of working trips and the survey sampling weights.

6The software used was Stata, version 14, and the code was the mixlogit by Arne Hole
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Table 4: Coefficient Estimates for the Alternative Specific Variables

Estimates

Fixed

Trip Time – tij -0.0384 ***
(-18.0153)

Trip Cost – Cij -0.2253 ***
(-13.1769)

Trip Time/Income – tij
Ii

0.0187 ***
(8.2267)

Trip Cost/Income – Cij

Ii
-0.0562 ***
(-3.9220)

Random

Trip Time – σt 0.0984 ***
(32.7974)

Trip Cost – σC 0.0982 ***
(16.4952)

Observations 3.9e+05
LR chi2 7.5e+03
Log-Lik. -1.6e+07

T-Stats in Parentheses. ***-p-value<0.01,** p-value<0.05
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Time spent on the trip has a negative effect on mode choice, and it increases as income increases. It corroborates
the well known result (see Small et al. [2007]) that the value of time increases with the income level. On the other
hand, trip cost also has a negative impact o mode choice, but it decreases as income increases. Which is in accordance
with the fact that the marginal utility of income decreases as income increases.

The next table also present coefficients for the individual specific variables.

Table 5: Estimates for the Using Car Dummy – βSD
j

Estimates

Using Car Dummy-Bus −3.3354 ***
(-7.0868)

Using Car Dummy-Rail −3.3583 ***
(-11.3161)

Using Car Dummy-Driving 3.6007 ***
(34.5392)

Using Car Dummy-Motorcycle −4.2680 ***
(-8.7837)

Using Car Dummy - Taxi −1.5985 ***
(-4.9055)

T-Stats in Parentheses. ***-p-value<0.01,** p-value<0.05

As for the case specific variables, the most interesting result is about the State Dependence dummy - represented
as “Using Car Dummy” in table 5, where it has a positive coefficient only for the “Driving” alternative, and negative
for all others. From the estimated coefficients, the table 6 presents the price elasticities7.

Table 6: Trip Mode Elasticity Matrix

Responses in Choice Probabilities

Bus Rail Driving Motorcycle Taxi Other

From
changes in
trip cost of

Bus −0.3454 0.0694 0.0975 0.1102 0.0615 0.1073
Rail 0.0632 −0.2803 0.0434 0.0571 0.017 0.0486
Driving 0.1406 0.0733 −0.3623 0.1310 0.0621 0.1254
Motorcycle 0.0062 0.0080 0.0039 −0.1783 0.0033 0.0105
Taxi 0.0124 0.0063 0.0093 0.0174 −2.1883 0.0137
Other 0.0488 0.0389 0.0499 0.1019 0.0286 −0.1637

Our own price demand elastcities for bus, rail and car trips are -0.34, -0.28 and -0.36, in line with the results
of Batarce and Ivaldi [2014], which report values of -0.34, -0.43 and -0.39. These values are also in line with the
results presented in the meta analysis of Oum and Walters II [2000], which report a range of own price elasticities
for car trips between 0.00 and -0.52 and for bus trips between 0.01 and -0.96.

7The elasticities are arc elasticities, computed as the percentage change in choice probabilities of a 1% change in trip costs.
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After estimating the demand parameters from the discrete choice model as in equation 11, we turn to the
equation relating travel time to traffic. Table 7 shows the model estimates relating time to traffic.

It is usual in the economics of transportation literature to assume a pre-established relationship between travel
time and traffic, as given by the BUREAU OF PUBLIC ROADS [1964] equation. We do not believe this is a good
assumption, and opt to estimate this relationship from data. There are two reasons for that. First, the Bureau
equation refers to traffic and time on a highway link, and that clearly is not the case here, where we look for traffic
in a city. Second, given that it is a large city we want to have heterogeneity in delays across the city. We expect
downtown delays in peak times to be much worse than delays on the suburbs.

Table 7: Traffic-time regressions

Bus (log) Car (linear)

Total Traffic 0.2176 ***
(20.9190)

Distance 0.0182 *** 0.8341 ***
(14.4756) (23.5888)

Origin of a Bus Lane -0.0821 *** -2.5963 ***
(-4.6862) (-5.2843)

Destination of a Bus Lane 0.0004 3.5927 ***
(0.0228) (7.6034)

Car Traffic Volume 0.0003 ***
(30.8019)

Constant 1.3717 *** 16.3776 ***
(12.9548) (38.9624)

Observations 3.6e+03 6.5e+03
R2 0.2607 0.3627

T-Stats in Parentheses. ***-p-value<0.01,** p-value<0.05

The algorithm presented in 2 was employed to find the optimal linear congestion charge, which came at about
6.BRL. A visual depiction of this equilibrium is presented in figure 1, where the the numbers refer to the morning
peak hours. The graph shows the computed demand function for car trips, the average private cost of and the social
marginal cost (average cost plus the negative externality).

Economic theory asserts this is an improvement compared to the decentralized equilibrium, since it forces
consumers to internalize the congestion externality from their decisions. However, it is not guaranteed a society will
actually implement such a solution. In the next section, we use the model estimates and the algorithm to simulate
the effects of an optimal congestion tax, and the political aspects of such a policy.
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5 The Political Economy of a Congestion Tax

As for the effects of a congestion tax, De Borger and Proost [2012] theoretically show such a policy does have an
heterogeneous effects on the population, with winners and losers. In this section, we use the conceptual framework
previously developed to assess the theoretical claims these authors made regarding the political economy of a
congestion tax under three scenarios. These scenarios all include a congestion tax, but differ with regard to the
destination of the revenue raised by it. In the appendix, a fuller exposition of the De Borger and Proost model
is presented and here only their main conclusions are reviewed. They start by positing individuals vote according
to their welfare gains or losses. An individual who suffers a welfare gain is a supporter of a given measure and,
conversely, an individual who has a decrease in his or her welfare opposes it.

Congestion Tax without Revenue Recycling Their baseline scenario is a congestion tax with no revenue
recycling effect; that is, all revenues from the congestion tax will be spent in activities without any effect on
consumers’ welfare. They conclude in this case drivers are worse off, since they continue driving but have to pay the
congestion tax. People who change their mode choice away from driving (for instance, towards public transportation)
also lose, since they are moving to a (previously) worse mode choice. On the other hand, individuals who originally
used other transportation modes (such as public transportation) do benefit from the congestion charge, since they
reap the gains from reduced travel times with less congestion. With majority voting and a not too high number of
drivers before the measure, a congestion charge can be implemented

Congestion Tax with Revenue Recycling – Lump-Sum transfer This scenario assumes all revenue raised
from the congestion tax is returned to all individuals as a lump sum transfer. Assuming individuals who keep
driving even after paying the congestion tax and receiving the lump sum transfer still experience a welfare loss,
the main change with regard to the previous scenario is about the individuals who switch away from driving; now
some of them might not lose from the measure, because the welfare losses from changing to a worse alternative are
compensated by gains from the lump sum transfer. The individuals who originally used other transportation means
are doubly benefited by this policy, since they experience reduced travel times and gain the lump sum transfer.
As in the previous scenario, with majority voting and a not too high number of drivers before the measure, a
congestion charge can be implemented. However, the number (before the congestion tax) of drivers required to
block a congestion tax is now higher.

Congestion Tax with Revenue Recycling – Public Transportation Subsidies In the last scenario, all
revenue is recycled as a reduction in public transportation fares. Users of public transportation now have a larger
gain than before (since the expenditure is focused on public transportation users), whereas individuals who continue
driving lose just as in the previous scenario. However, this scenario provider better gains for individuals who switch
away from driving towards public transportation, which restricts even more the initial mass of drivers required to
block the imposition of a congestion tax – that is, this is the scenario in which such a measure is most likely to be
implemented.
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An important thing to notice is we are not taking into account the effects such a policy might have on other
distortions in the economy, which might influence welfare gains for all individuals. For instance, Parry and Bento
[Parry and Bento, 2001]show the welfare effects on the labor market of a congestion can easily exceed the welfare
effects from transport mode choices. Another distortion which we do not take into account in the present paper
is the role of other distortions in the economy. Parry [Parry, 2002] points out that when public transportation
fares are set below their marginal cost, a congestion tax could have an additional welfare effect from the additional
commuters whose cost must be partially covered by taxes. In the next section, we will use the results of Algorithm
1 to estimate the welfare effects of a Congestion Tax in each scenario.

5.1 Scenario Results

Scenario I: congestion tax with no revenue recycling We start by looking at the simplest policy, simply
implementing an optimal congestion tax on downtown Sao Paulo, and revenues are used with no positive welfare
effects to the population. Table 8 shows that even an optimal tax would face resistance by a majority of the
population. One individual favors the policy if its average logsum (see equation 4) over all her trips is greater then
before the policy. That is one explanation for the low use of congestion tax as a policy for city congestion.8

As pointed out by Armelius and Hultkrantz Armelius and Hultkrantz [2006], a congestion tax tends to face
opposition by the majority without further measures. The last two columns of the table show the percentage
of citizens that gain, lose or are indifferent to the policy, conditional on initially being a car user or not. Non
surprisingly, it faces more resistance from car users than from non users.

Table 8: Against, Neutral or in Favor of the Tax - total and percentage

N total (%) car users (%) non users (%)
Against 4,444,173 33 70 26
Neutral 7,122,215 54 1 64
Pro 1,736,782 13 29 10

As discussed in the previous section, De Borger and Proost [De Borger and Proost, 2012] analyze the welfare and
political effect of a congestion tax. Table 9 and figure 5 shows the welfare impact of a congestion tax on the three
groups discussed: remaining drivers, those who switch to public transportation, and non drivers. The empirical
results corroborate some of the theoretical findings, but also point to major differences in results. First, the tax
has mixed impacts on remaining drivers: less than 10% of drivers suffer a welfare loss greater than 10%, while the
others have a negligible impact, and the top 10% experience substantial welfare increase. The graph on the right
hand side on figure 5 shows the histogram of welfare change for remaining drivers.

Second, as expected most non drivers are not affected by the policy, with 1% having a 5% reduction in welfare,
as show on the graph on the left.9

8License plate restriction and similar policies are more common in developing countries. See Lucinda et al (2017).
9This is a feature of the logit model and its consumer surplus formula, the logsum. It is the log of the sum of all available alternatives.

Hence, there is a utility reduction for non drivers which have driving as an available option.
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Figure 5: Welfare change with congestion tax for different groups
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And last, but perhaps the most interesting part, it is the fact that more than 95% of the citizens that switch
from car to public transit are worse off. De Borger and Proost’s model predicts that the remaining drivers is the
group that suffers the greatest welfare loss. Our results show that the group that switch to the public transport
is the one that carries the greatest policy burden. More than 50% of the individuals in this group experience a
welfare loss of more than 20%. And the lowest decile has a welfare decrease of more than 50%. The histogram on
the middle of figure 5 shows the welfare change for this group.

The reason is the following: value of time and value of money varies across citizens. Value of money decreases
and value of time increases with income. Hence, the tax has little impact on the higher income consumers which at
the end benefit from lower travel times. The group that switches is the one that really feels the impact of the tax on
welfare, and has a lower value of time. Consumer heterogeneity plays a key role in the results, and shows that the
cost of the policy falls heavily on this ’middle’ group, which abandon the car and switch to public transportation.
The tax is not high enough to impact the upper class, and it also does not affect the lower income groups since
they do not drive anyway.

Table 9: Welfare Change for Different Groups

p99 p95 p90 p75 p50 p25 p10 p5 p1
remaining-drivers 0.253 0.117 0.063 0.006 -0.000 -0.015 -0.088 -0.163 -0.335
switch-car-to-public 0.131 -0.004 -0.020 -0.074 -0.238 -0.405 -0.506 -0.553 -0.637
non-drivers 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.055

Table 10 shows the regression of an indicator variable that takes value one for those who switch away from
the car on explanatory variables. We can see that distance, income and their interaction have a negative effect on
leaving the car, while crossing the downtown area has a strong positive effect, as expected. It shows that higher
income individuals switch less away from the car than lower income ones. And this effects increases as the distance
travelled increases. The results are in line with the stylized fact that wealthier people who live outside downtown
are heavy car users.

Table 15 on the appendix shows the transition matrix across transportation modes when a congestion tax is
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Table 10: Who stops driving?
(1)

Ex drivers
Distance -0.00105∗∗∗

(-43.52)

Income -0.0153∗∗∗
(-384.02)

Dist x Income -0.0000138∗∗
(-2.77)

Downtown 0.735∗∗∗
(2566.41)

Constant 0.0640∗∗∗
(322.38)

Observations 3275940
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

introduced on car users. Before the tax, a total of more than 9 million trips were done by car. The introduction of
the tax shifts nearly a million trips to other transportation modes. From these, 751 thousand switch to the “outside
option” Other, which includes walking, cycling etc, while 162 thousand trips change to bus.

The changes in trip times for drivers caused by the congestion tax is shown in figure 8. The time reduction is
rather small, with few trips having a reduction of more than one minute.

Scenario II: congestion tax with lump sum transfers In this case tax revenues are redistributed back to
the whole population in a lump sum fashion. For this simulation, we added the rebate to the average (over trips)
logsum of each citizen, since changes in the logsum are measures of equivalent variation changes from a given policy.
A tax of 6.25 BRL was charged and the revenue returned back to the population as a rebate of 0.46 BRL to each
citizen per day. As table 11 shows, the population majority now favors the policy, with all consumers who were
neutral now supporting the policy and the share of individuals against it declining greatly. This is due to the rebate
the population receives, especially the group that was at first indifferent between having the policy or not.

Table 11: Against or in Favor - tax with lump sum rebate

N total (%) car users (%) non users (%)
Against 1,800,404 14 39 8
Pro 11,502,766 86 61 92

Table 12 and figure 6 show the welfare changes from introducing a tax with a lump sum rebate of the total
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Figure 6: Welfare changes with congestion tax and lump sum rebate for different groups
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revenue. If one compares these results with the ones in table 9 all citizens which were indifferent before are now
better off. However, it is important to note that the welfare change due to the lump sum transfer is small. For
example, the 99th quantile of non drivers have a less than 0.5% change in welfare due to the transfer. Other non
drivers have an even smaller change. Figure 6 is almost identical to figure 5.

Table 12: Welfare Change for Different Groups - lump sum redistribution

p99 p95 p90 p75 p50 p25 p10 p5 p1
remaining-drivers 0.265 0.127 0.068 0.010 0.000 -0.023 -0.119 -0.200 -0.387
switch-car-to-public 0.132 -0.004 -0.020 -0.074 -0.238 -0.405 -0.506 -0.553 -0.637
non-drivers 0.004 0.002 0.002 0.001 0.001 0.000 0.000 0.000 -0.153

Since the lump sum rebate does not change preferences, the transition matrix among modes is the same as table
15.

Scenario III: congestion tax with transit subsidies Now the policy consists of taxing car drivers and sub-
sidizing bus transportation. We choose the bus since this mode has more flexibility to adjust for a higher demand
than rail, since bus lines can be deployed in response to increased demand much quicker than rail lines.

We compute the bus subsidy per bus trip as the equilibrium subsidy that would induce as much car and bus
usage as to generate this amount of subsidy revenues. Given the optimal congestion tax, the product of the number
of car users in downtown Sao Paulo and the tax gives the total revenue generated. However, when this amount
is used to subsidize the bus, some drivers would switch to public transit, reducing the revenue from the tax and,
consequently, the bus subsidy. The algorithm has to search for the equilibrium bus subsidy in which the tax and
subsidy would imply as much car use as to generate a revenue that would give this exact subsidy for bus users.

The equilibrium subsidy is 1.95 BRL, which is a little less than the average bus fare (2.30 BRL in 2007). It
would imply a 35 cents bus tariff. A very low value for any standard. Since buses are a relevant alternative for
a large share of the population, subsidizing it has an important positive welfare effect. Table 13 below shows the
percentage of winners and losers. Now, 87% of population supports the policy. As before, the support is stronger
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among non drivers.

Table 13: Against or in Favor - tax with bus subsidy

N total (%) car users (%) non users (%)
Against 1,669,248 12 33 9
Neutral 121,709 1 0 1
Favor 11,512,213 87 67 90

Table 14 shows the welfare change for the three groups - remaining drivers, people who switch from car to public
and non drivers. Bus subsidies improved the situation of the three groups compared to the benchmark situation.

More interesting is to compare the impact of bus subsidies with those from the lump sum transfer. As expected,
the largest impact is on the group that switched from car to public transportation. In the case of the lump sum
transfer, more than 95% of the citizens in this group are negatively affected by the tax. When we move to bus
subsidies, little more than 50% is negatively affected. However, the major difference is on the magnitude of the
change. The top 10% in terms of welfare change experience a 10% or higher change in welfare with the subsidy.
Under the lump sum transfer, only the top 1% do not lose with the implementation of the tax.

Non drivers are better off under both policies - lump sum transfer or bus subsidy. But the welfare increase is
substantially larger under the bus subsidy. The top 25% of this population in terms of welfare change increase
its welfare by 5% or more under the bus subsidy, and in less than 1% under the lump sum transfer. Although
giving qualitatively similar results, the policies have very different quantitative impacts on welfare. Also, the results
indicate that targeting the revenue usage to the group that suffers the most with the tax may help increase the
political acceptance of the policy, as opposed to a uniform lump sum transfer for example.

Table 14: Welfare Change for Different Groups - public transit subsidies

p99 p95 p90 p75 p50 p25 p10 p5 p1
remaining-drivers 0.286 0.159 0.102 0.047 0.011 -0.024 -0.124 -0.209 -0.363
switch-car-to-public 0.379 0.143 0.106 0.060 -0.039 -0.218 -0.352 -0.430 -0.535
non-drivers 0.198 0.163 0.146 0.116 0.070 0.028 0.008 0.002 -0.004
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Figure 7: Welfare change with congestion tax and bus subsidy for different groups
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If we compare the empirical results to the theoretical ones from section A.1, we can see that there is more dis-
agreement within groups of citizens (remaining drivers, switch to public transportation and non drivers) than what
theory predicts. In both policies with revenue recycling there is a massive support for the policy implementation.

Changes in trip times is displayed on picture 8 below. The time reductions now are substantially larger than in
the case of a tax with no bus subsidy.

Figure 8: Travel times change for drivers
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6 Conclusions

In this paper we develop a econometric structural model to estimate and compute the optimal congestion tax, and
implement the estimation using origin and destination micro data for the city of Sao Paulo. Then, it uses the
model estimates to conduct a welfare analysis to try to understand the political economy behind the low use of a
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congestion tax as a valid policy to alleviate traffic congestion. We compute an optimal congestion tax of 6.25 BRL
(2 US Dollars) per trip in downtown Sao Paulo.

The political economy analysis shows that commuters that switch away from the car are bearing most of the
tax burden. The reason is the following: there are strong heterogeneity across the population, with value of
money decreasing and value of time increasing with income. Hence, the tax has little impact on the higher income
consumers which at the end benefit from lower travel times. The group that switches - the middle group - is the
one that really feels the impact of the tax on welfare, and has a lower value of time. The tax is not high enough to
have a strong impact on the remaining drivers, and it also does not affect the lower income groups since they do
not drive anyway.

Revenue recycling is a major issue when dealing with the acceptance of a congestion tax. In terms of general
acceptance by the population, it does not make much difference in terms of welfare whether the recycling is about
reducing bus fares or transferring lump-sum to individuals. However, bus subsidies have the greatest impact on the
welfare of the new bus users, that stop using their cars due to the tax. This is the group that can potentially put
up the strong opposition to the tax implementation.

There is a substantial difference in terms of traffic reduction, also. The bus subsidy induces a much stronger
migration to the bus compared to the lump sum transfer or no transfer at all. There is a 30% reduction in car use
using the revenues for transit subsidies, compared to a 10% reduction without it. However, such increases in bus
usage could not be achieved considering existing capacity constraints in developing countries.

The scenario without revenue recycling mimics the situation of cities where the cost of the fiscal budget is too
high or situations where there is low trust that revenue recycling is going to take place. Something familiar to
large cities in the developing world. The results show that it is politically difficult to implement the congestion
tax without revenue recycling, what may explain the seldom use of this policy. Since the general public may be
much more favorable with revenue recycling, an important policy when trying to implement a congestion tax is to
increase the credibility of the return of the tax revenue.
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A De Borger and Proost (2011) Model

A.1 A Theoretical Political Economy Model of a Congestion Tax

We lay out a simplified version of De Borger and Proost (2012) model. It helps us understand how a congestion
tax and different types of tax rebate affect the welfare of drivers and non-drivers. It will guide us in the empirical
analysis of the next section.

Suppose there are two transportation modes, car and public transit - buses, to make it simple - and a continuum
of commuters uniformly distributed on the [0, 1] interval, such that for any driver indexed by n we have n ∈ [0, 1].
So that the total demand for transportation is inelastic but there is substitution between car and public transport.
The average cost of car transport is AC = cn, increasing on the number of drivers. The total cost is TC = cn2.

The generalized cost of public transport for individual i is ci = 1 − i. The difference comes from access cost,
for example. It implies that c0 = 1 and c1 = 0 are the highest and lowest access cost among all individuals. This
generalized cost of public transport can also be understood as the willingness to pay for car use.

The equilibrium number of car users is given by the solution to 1− n = cn. Which is

no =
1

c+ 1
(12)

And the equilibrium number of public transport users is 1− no.
Since TC = cn2, the marginal social cost is MSC = 2cn. The social optimum number of drivers is given by the

solution to 2cn = 1− n, which is

n∗ =
1

2c+ 1
(13)

Note that no > n∗.
There are two policy instruments: a congestion tax t and a subsidy to the public transport s. The user

equilibrium with tax and subsidy is given by 1−n− s = cn+ t. It implies that the optimal tax and subsidy is given
by the following expression:
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t+ s = n∗c (14)

We now are able to analyze three different policies. (i) a congestion tax alone, (ii) a congestion tax with a lump
sum rebate to the whole population of commuters and (iii) a congestion tax with its revenue used to subsidize the
bus fare.

A.1.1 Congestion tax

In this case, t = cn∗, s = 0 and there are no lump sum transfers.
Remaining drivers pay the tax and have a decrease in travel time, −cn∗ + c (no − n∗). Substituting equations

12 and 13, we have

−c
(2c+ 1) (c+ 1)

< 0 (15)

Therefore, remaining drivers are worse off in this case.
Ex-drivers that switch to public transport are also worse off. They gain some time, do not have the cost of the

car trip but incur the cost of public transport: c (no − n∗)+cn∗−(1− n). There is a commuter n′ that is indifferent
between driving car or taking the bus, such that

c (no − n∗) + cn∗ − (1− n′) = 0 (16)

It is easy to show that n′ = 1
c+1 , and that is exactly no, given in equation 12. Since any individual n, such that

n < n′, is worse off with the tax, it means that all commuters that switched from the cars to the buses lose with
this policy.

Initial public transport users are better off since they pay nothing and save time on their trips.
Summarizing, remaining drivers and new public transport users are worse off, while the initial non drivers are

better off. Majority voting implies that a tax is implemented if 1− no > no, which is true if c > 1.

A.1.2 Congestion tax with lump sum transfers

Now, t = cn∗ and m = cn∗
2

, where m is the lump sum transfer to all commuters.10

Again, remaining drivers pay the tax, enjoy a decrease in travel time and now receive the lump sum transfer,
−cn∗ + c (no − n∗) + cn∗

2

. It is straightforward to show that this expression is negative if 1−n∗
n∗ > c.

Ex-drivers that switch to public transport gain some time, do not have the cost of the car trip but incur the
cost of public transport and receive the transfer c (no − n∗) + cn∗ − (1− n) + cn∗

2

. Now this group is better off,
with the indifferent citizen being n′ = no− cn∗2 . It means that not all new public transport users are worse off. Of
course, initial bus users are even better since they save time on bus rides and receive the lump sum transfer.

10We assume everyone is a commuter and voter.

30



If we consider the more sensible and interesting case where remaining drivers lose with this policy, majority
voting implies that the tax is implemented if 1− n′ > n′.

A.1.3 Congestion tax with transit subsidies

In this case, t+ s = cn∗, and the government budget restriction is tn∗ − s (1− n∗) = 0.
In this case remaining drivers are worse off than in the previous case with lump sum transfers. Commuters that

switched to buses have a change in utility of c (no − n∗) + cn∗− (1− n) + cn∗
2

1−n∗ , which is more than on the previous
case. Original bus users receive a larger transfer now.

Among the three policies, this is the case where the policy is more likely to be implemented.

B Tables

Table 15 shows the transition matrix across transportation modes when a congestion tax is introduced on car users.
Before the tax, a total of more than 9 million trips were done by car, as shown in the Total column at the far right
of the table. This column shows the volume of trips before the tax. The bottom row shows the total number of
trips after the congestion charge. The introduction of the tax shifts nearly a million trips to other transportation
modes. From these, 751 thousands switch to the “outside option” Other, which includes walking, cycling etc. While
162 thousands trips switch to Bus and 98 thousands switch to Rail.

Table 15: Transition matrix - with a congestion tax

Bus Rail Driving Motorcycle Taxi Other Total
Bus 11,133,748 0 24,598 0 0 35,815 11,194,161
Rail 291 4,710,151 4,566 0 0 11,169 4,726,177
Driving 162,124 98,857 7,996,957 84 0 751,554 9,009,576
Motorcycle 469 0 250 763,417 0 188 764,324
Taxi 0 0 0 0 169 0 169
Other 8,361 753 6,805 111 0 12,262,355 12,278,385
Total 11,304,993 4,809,761 8,033,176 763,612 169 13,061,081 37,972,792

Table 16 shows the transition matrix among modes when the policy consists of tax and bus subsidy. This policy
creates a large reduction in car usage of approximately 2 million trips being done by bus instead of car. It is an
attractive policy from this perspective. In practice, some caution must be taken: the bus system may not be able
to handle a sharp and large demand increase, which would require substantial investments in capacity.
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Table 16: Transition matrix - tax and bus subsidy

Bus Rail Driving Moto Taxi Other Total
Bus 11,187,458 0 5,305 0 0 1,398 11,194,161
Rail 296,883 4,339,155 23,982 9,188 0 56,969 4,726,177
Driving 1,978,372 123,350 6,244,291 1,201 0 662,362 9,009,576
Moto 311,605 1,548 1,771 438,818 0 10,582 764,324
Taxi 0 0 0 0 169 0 169
Other 6,433,594 8,106 17,672 25,072 94 5,793,847 12,278,385
Total 20,207,912 4,472,159 6,293,021 474,279 263 6,525,158 37,972,792
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