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ABSTRACT 

Aiming to obtain new characterizations for the concepts of core, cooperative 

equilibrium and competitive equilibrium, and new correlations among these concepts, 

we introduce labor time into the assignment game. Two many-to-many matching 

models are obtained, distinguished by the nature of the agreements - rigid and flexible. 

An example illustrates that the characteristic function form does not always fully 

represent the cooperative structure of the two markets. Two different notions of demand 

correspondence generate distinct sets of competitive equilibrium allocations. The 

connection between the cooperative structures of both markets and the cooperative and 

competitive structures of each market is established through five cooperative solution 

sets proved to be non-empty, distinct and correlated by the set inclusion - one set is a 

superset of the next: the maximal set is the core; the second one characterizes the 

cooperative equilibria for the rigid market; the third set characterizes the cooperative 

equilibria for the flexible market; the other two sets characterize the competitive 

equilibrium allocations for the two competitive markets.  

 

Keywords: stable allocations, core, competitive equilibrium allocations, feasible 

deviation. 
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INTRODUCTION 
                                                 
1 This paper was partially supported by CNPq-Brazil and by FIPA/USP. A draft of it was written in 1997 
and a preliminary version was written in 2002 and entitled “The multiple partners game with a general 
quota”. Another version was presented at Barcelona-Jocs seminar series, in May, 2009, and entitled: 
“Correlating new cooperative and competitive solution concepts in the time-sharing assignment game”.  
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The assignment game of Shapley and Shubik (1972)2 and its many-to-one and 

many-to-many extensions, have been studied in several papers. One of the peculiarities 

of these games is that they model environments that can be treated cooperatively and 

competitively. Thus the two game structures can be examined altogether and compared 

to each other, which permits that the natural solution concepts of each structure - core, 

cooperative equilibrium and competitive equilibrium - can be characterized and 

correlated.  

In the many-to-one assignment game introduced by Kelso and Crawford (1982) 

and studied later by Gul and Stacchetti (1999, 2000), as well as in the many-to-many 

extensions introduced by Sotomayor (1992, 2002), for example, it is assumed that the 

agents’ payoffs are one-dimensional. These payofs can be interpreted as resulting from 

negotiations in block. The agents only care about their total payoffs. This assumption 

causes the core, the set of cooperative equilibrium allocations and the set of competitive 

equilibrium allocations to coincide.  

Sotomayor (1992) also presents another many-to-many matching model, the so 

called multiple-partners assignment game, which has been widely studied in Sotomayor 

(1999-a, 2007, 2009) and in Fagebaume et al (2010). This model is obtained by 

introducing quotas into the assignment game and by assuming that agents’ utilities are 

additively separable. This assumption propitiates a multi-dimensional payoff for each 

individual, one individual payoff corresponding to each trade performed. The 

negotiations are then pairwise and independent.3 The agents can be interpreted as being 

buyers and sellers of indivisible goods and a buyer cannot acquire more than one item 

from the same seller.  

Studies that have been developed for the multiple-partners assignment game 

have revealed that the independence and multi-dimensionality of the individual payoffs 

in both sides of the market permit to work with cooperative and competitive structures 

more theoretically interesting than those provided by markets where the payoffs are 

one-dimensional or where the multiple-partnerships are restricted to only one of the 

sides of the market (Sotomayor 1999-a). In fact, unlike these markets, in the multiple-

partners assignment game, the core, the set of cooperative equilibrium allocations and 

                                                 
2 See also Roth and Sotomayor (1990) for an overview on the assignment game. 
 
3 The independence means that an agent’s individual payoff in a given partnership is not affected if this 
agent or his partner breaks some of his agreements in other partnerships or add new agreements to the 
pool, or leave some of his partners. 
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the set of competitive equilibrium allocations may be distinct sets.4 New 

characterizations for these sets and new correlations among them were established, 

leading to the discovery that the solution concept that captures the idea of cooperative 

equilibrium in matching games, called stability since Gale and Shapley (1962),  can also 

be extended to a certain class of non-matching games. In these games, the utilities are 

additively separable and, instead of pairs, the agents form coalitions of any size 

(Sotomayor 2010).  

In the present manuscript, motivated by the results obtained for the multiple-

partners assignment game and for the model proposed in Sotomayor (2010), we search 

new characterizations for the three solutions concepts mentioned above, as well as new 

correlations among them, aiming to reach a better understanding of these concepts. To 

reach these objectives, we formulate a new model called here time-sharing assignment 

game. To guarantee the distinction between the core and the set of cooperative 

equilibrium allocations, the common assumption of the multiple-partners assignment 

game and of the coalitional game presented in Sotomayor (2010) is maintained: the 

utilities are additively separable and the individual payoffs are multi-dimensional in 

both sides of the market, so the trades done by any agent are independent and pairwise. 

Nevertheless, instead of quotas in terms of the number of partneships an agent can form, 

it is considered that each participant owns an amount of units of a divisible good (e.g., 

labor time)5, which should be distributed among his 6 partners in any way he agrees and 

exchanged for money.  

The negotiations inside a partnership involve two kinds of agreements: the 

division of the gains of the partnership among the partners and the amount of labor time 

each partner should contribute.  The more or less flexibility between these two types of 

trades opens up to two closely related cooperative markets, the rigid and the flexible 

markets7. In the rigid market all agreements are rigid. This means that an agreement is 

                                                 
4 The fact that the set of cooperative equilibrium allocations may be a proper subset of the core was first 
proved in Sotomaor (1992); that the set of competitive equilibrium allocations may be a proper subset of 
the set of cooperative equilibrium allocations was first proved in Sotomayor (2007). 
5 This assumption is not necessary. All of our results and concepts apply when the goods are indivisible 
and the amounts are integers. In this case the rules of the game of the multiple partners assignment game 
are slightly modified: a buyer can acquire more than one unit of the good from the same seller.  
 
6 For the sake of exposition we will treat any generic agent as “he”, any buyer as “she” and any seller as 
“he”. 
 
7 In the model presented in Sotomayor (2010) the agreements are always rigid due to the fact that the 
trades are not, necessarily, pairwise. 
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nullified once any of its terms is changed. In the flexible market all agreements are 

flexible. A flexible agreement between two partners allows either agent to decrease the 

number of units of labor time (u.l.t. for short) he contributes to the partnership without 

breaking the agreement corresponding to the division of the income per u.l.t.. Therefore, 

either agent is allowed to transfer part of his common labor time to some other current 

partnerships or to some new partnerships.  

The feasible allocations specify the individual payoffs for each agent and the 

amount of labor time allocated to each partnership that it is formed. Intuitively, a 

feasible allocation is a cooperative equilibrium (or a stable allocation) if there is no 

coalition whose members can profitably “deviate” from the given allocation by acting 

according to the rules of the game. This idea contrasts with that of core in that the 

members of a blocking coalition “deviate” by interacting only among them. Weather 

the agents can do more than that, it is established by the rules of the game. 

Therefore, in order to characterize the cooperative equilibrium allocations we 

need to make precise the rules of the game. The difficulty we face is that, unlike most of 

the cooperative games, the feasible allocations do not fully model the rules of the game, 

since they do not inform if the agreements inside each partnership are rigid or flexible. 

Therefore, the two markets provide the same sets of feasibe allocations. Also, the 

characteristic function does not capture the nature of the agreements, so the two markets 

are indistinguishable under their representation in the characteristic function form. As it 

is illustrated in the text by an example, it might  happen that, given a feasible allocation, 

it would be of interest of the members of a coalition to transfer part of their labor time 

from some current partnerships to some other current partnerships or to some new 

partnerships. This kind of deviation is allowed in the flexible market but it is not so in 

the rigid market. Then, the given allocation might be a cooperative equilibrium 

allocation for the rigid market and it might not be so for the flexible market. In this case, 

the use of the characteristic function in modeling the rules of the rigid and the flexible 

markets would be inappropriate for the purpose of observing cooperative equilibrium 

allocations.  

Thus, it is crucial to provide a model for the rules of these markets that captures 

the information on the nature of the agreements concerning the labor time. To this end, 

an axiomatic theory is proposed, permiting to find out a general form to fully represent 

the cooperative games defined by these markets. This representation is called deviation 
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function form 8. Once this foundation is laid out, then it becomes possible to identify the 

cooperative equilibrium allocations in each market. 

As in every continuous two-sided matching model, another way of looking upon 

these markets is to think of them operating as in an exchange economy. The agents are 

buyers and sellers. A competitive market is specified by the set of agents and the 

demand correspondences for the buyers. The natural solution concept is called 

competitive equilibrium allocation.9 By assuming that the prices of all units of labor 

time owned by a seller are equal,10 a feasible allocation is a competitive equilibrium 

allocation if the demand of the buyers is satisfied at the given prices and all units of 

labor time with a positive price are sold.  

We provide two different definitions for the demand correspondences of the 

buyers, which generate two distinct competitive markets: competitive market with 

discriminatory demands and competitive market with non-discriminatory demands. In 

both markets, given the prices, a buyer demands a feasible assignment for herself (a 

bundle of units of labor time that satisfies her quota). In the former market, she demands 

the feasible assignments which give her the maximum total surplus, assuming this 

number is non-negative; in the other market, she demands the feasible assignments 

which give her the maximum total surplus among those which complete her quota and 

give her the same individual surpluses, if such assignments exist, assuming these 

individual surpluses are non-negative. (This definition is slightly different in the text in 

order to include the case in which the individual gains are zero. There, dummy objects 

are included to fill the quotas of the buyers). Clearly, the set of competitive equilibrium 

allocations of the former market contains the set of competitive equilibrium allocations 

of the other market. 

In the present work we characterize the cooperative equilibrium allocations and 

the competitive equilibrium allocations in the rigid and flexible markets, show their 

existence and establish the connection between the cooperative and competitive 

structures in each market.  

                                                 
8 The deviating function form was introduced in Sotomayor (2011) to model cooperative decision 

situations in which agents form coalitions and freely interact inside each coalition that is formed, by 

acting according to some established rules. 

 
9 This concept was introduced in Sotomayor (2007). 
10 In the multiple partners assignment game, this is not an assumption of the model, but a consequence of 
the requirement that each buyer cannot acquire more than one object from the same seller.  
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We capitalize on the fact that the two models are treated altogether to make 

comparisons between their cooperative structures. Such treatment allows the 

identification of five cooperative solution concepts, defined in the text via three types of 

domination relation. These solution concepts apply to each cooperative market and have 

each a special meaning for the cooperative and competitive markets. Namely they are 

the corewise-stability, the setwise-stability, the strong-stability, the buyer-non-

discriminatory strong-stability and the non-discriminatory strong-stability. Setwise-

stablity is the translation of the concept defined in Sotomayor (2010). The last three 

concepts are newly defined. We show that the corresponding solution sets are non-

empty, distinct and correlated by the set inclusion: one is a superset of the next. The 

maximal set is the core11; the set of setwise-stable allocations characterizes the set of 

cooperative equilibria for the rigid market; the set of strongly-stable allocations 

characterizes the set of cooperative equilibria for the flexible market; the set of buyer-

non-discriminatory strongly stable allocations is identified with the set of cooperative 

equilibrium allocations of the flexible market that do not discriminate the buyers. This 

set characterizes the set of competitive equilibrium allocations for the competitive 

market under discriminatory demands. The minimal set, the set of non-discriminatory 

strongly-stable allocations, is identified with the set of cooperative equilibrium 

allocations of the flexible market that do not discriminate any agent. This set 

characterizes the set of competitive equilibrium allocations for the competitive market 

under non-discriminatory demands.  

As it is the case of the multiple-partners assignment game and of the model 

presented in Sotomayor (2010), in the models treated here, the distinction between the 

core and the set of cooperative equilibria is also due to the multi-dimensionality of the 

agents’ payoffs, in both sides of the market, and to the independence among the trades. 

In fact, these assumptions imply that the agents in a deviating coalition can do more 

than the members of a blocking coalition can do. Besides to merely trade among them, 

they are also allowed to renegotiate among them while keeping (or reformulating, when 

the agreements are flexible) the terms of some current agreements with current partners 

outside the group. The difference between the sets of cooperative equilibrium 

allocations in the rigid and in the flexible markets is due to the fact that the 

renegotiation of a current agreement takes into consideration the nature of the 

                                                 
11 The corewise-stability captures the idea of cooperative equilibrium for the time-sharing assignment 
game in which all agents have one-dimensional payoff, given by their total payoff. 
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agreements. Only flexible agreements can be reformulated. This may generate distinct 

coalitional interactions in the two markets. As showed in an example given in the text, 

the nature of the agreements can lead to deviations that are feasible in the flexible 

market and are not feasible in the rigid market. 

The characterizations of the sets of competitive equilibrium allocations as 

subsets of strongly-stable allocations establish the link between the cooperative and the 

competitive structures of the rigid and the flexible markets.  They do not take into 

account the nature of the agreements. More specifically, the nature of the agreements, 

which generates distinct sets of cooperative equilibria, has no effect on the competitive 

structures, however. The competitive structure under the rigid market is the same as the 

one under the flexible market.  

Thus, the cooperative structure of the flexible market creates a bridge between 

the competitive and the cooperative structures of the rigid market: the competitive 

equilibrium allocations are also cooperative equilibrium allocations under rigid 

agreements and so they are in the core. However, as it is proved here, the kind of 

correlation between the competitive and the cooperative equilibria is not the same in the 

two markets. An example illustrates that, unlike the flexible market, the cooperative 

equilibrium allocations which do not discriminate the buyers in the rigid market, as well 

as those which do not discriminate any agent, are not necessarily competitive in any of 

the two competitive markets. An implication of this result is that the fraction of the 

cooperative equilibrium allocations that are competitive is smaller under rigid 

agreements than under flexible agreements.  

It is worth to point out that, as far as we know, the link between the cooperative 

and the competitive structures of the markets presented here is new. In fact, the 

multiple-partners assignment game and the flexible time-sharing assignment game share 

the property that the competitive equilibrium allocations (under discriminatory 

demands) are the cooperative equilibrium allocations that do not discriminate the 

buyers. However, the competitive equilibrium allocations for the multiple-partners 

assignment game can be created by “shrinking” the set of cooperative equilibrium 

allocations through an isotone function. The set of competitive equilibrium payoffs is 

then characterized as being the set of fixed points of that function. Such characterization 

fails to hold in the flexible market, as we see in the text through an example. 

The proof of the existence theorem is obtained by showing that the competitive 

equilibrium allocations for the competitive market with non-discriminatory demands are 
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exactly the dual allocations. These are the allocations that are naturally defined from the 

dual solutions of the transportation problem whose objective function is the value of the 

grand coalition. By the Duality Theorem, these dual solutions always exist, so all 

solution sets for the time-sharing assignment game are non-empty. 

This work is organized as follows. In section 2 we present the cooperative 

structure of the rigid and flexible markets. In sub-section 2.1 we describe the two 

cooperative models and give the common definitions.  Sub-section 2.2 defines the 

cooperative solution concepts, illustrates with some examples that the set inclusion 

relation among the corresponding solution sets may be strict and presents some results 

related to the core. In sub-section 2.3 we define the primitives of the game in the 

deviation function form and characterize the cooperative equilibrium allocations in both 

cooperative markets. Section 3 presents the competitive framework. Sub-section 3.1 

describes the two competitive markets and sub-section 3.2 gives the definition of the 

competitive equilibrium concept. Section 4 identifies the two sets of competitive 

equilibrium allocations and then discusses the correlation between the cooperative and 

the competitive structures. Section 5 proves the existence theorem for the solution sets. 

Final remarks and related work are presented in section 6. The longer proofs are given 

in the Appendix. 

 

2. COOPERATIVE STRUCTURE OF THE TIME-SHARING ASSIGNMENT 

GAME  

2.1 FORMAL COOPERATIVE MODEL  

There are two finite and disjoint sets of agents,  P  with  m  elements and  Q  

with  n  elements, which we may think of as a set of buyers and a set of sellers, or a set 

of firms and a set of workers. We will describe the model in terms of buyers and sellers, 

who we will sometime call P-agents and Q-agents, respectively. Generic agents of  P  

and  Q  will be denoted by  p  and  q,  respectively.  

 Each agent has a quota of units of labor time (e.g. man-hours) at his disposal, 

which he can distribute among the partnerships he forms in any way he likes. Each 

seller  q  supplies a quota of  s(q)∈R+  units of labor time (u.l.t. for short) and each  

buyer  p  cannot acquire more than her quota of  r(p)∈R+ u.l.t.. Dummy-agents, denoted 

by  0,  will be included in both sides of the market for technical convenience. The quota  

r(0)  of the dummy P-agent is equal to ∑q∈Q s(q)  and the quota  s(0)  of the dummy Q-
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agent is equal to  ∑p∈P r(p).  We will assume that the reservation price of one u.l.t.  is 

zero for all sellers. For each pair  (p,q)∈PxQ  there is a nonnegative number  apq,  which 

is to be split between the partners in any way they agree. The number  apq  can be 

interpreted as the maximum amount of money  buyer  p  would consider paying for one 

unit of labor time supplied by seller  q.  Then,  apq  is the gain from trade when one u.l.t. 

of seller  q  is sold to buyer  p. Thus, if seller  q  sells one u.l.t. to buyer  p  at price  wpq  

then  p  will get the individual payoff of  upq=apq – wpq  and  q  will receive  wpq. The 

matrix of numbers  apq’s  will be denoted by  a, with  ap0=a0q=0  for all  (p,q)∈PxQ.  

The agents who are not dummies will some times be called real agents. We will denote 

by  r  and  s,  respectively, the sets of numbers  r(p)´s  and  s(q)´s. 

The rules of the game are that any  p∈P  and  q∈Q  may form a partnership if 

they both agree. If a partnership  (p,q)  is formed, both agents should agree about the 

labor time they must contribute to the partnership and the division of the income  apq  

among them.  

We will assume that for a partnership  (p,q)  to be active both members must 

contribute the same positive amount of units of labor time and each agent should 

receive equal individual payoff per each u.l.t. he contributes to the partnership. This 

assumption is natural under our buyer-seller market interpretation: if a trade between a 

buyer and a seller  is performed then the number of units of labor time acquired by the 

buyer is equal to the number of units of labor time sold by the seller. Furthermore, all 

these u.l.t. are sold to the buyer for the same price and so the buyer gets the same 

individual payoffs with all of them.  

The rules of the game must also specify the kind of agreement concerning the 

amount of labor which is to be contributed to the partnership by its members. We 

consider two types of agreements: 

Rigid agreement -  if  p  or  q  breaks the agreement regarding the amount of labor, then 

the whole agreement, including the division of the income, must be nullified. 

Flexible agreement – a flexible agreement between  p  and  q allows either agent to 

decrease the number of u.l.t. he contributes to the partnership without breaking the 

agreement corresponding to the division of the income per u.l.t.. Therefore, any of the 

two agents is allowed to transfer part of his common labor time to some other current 

partnerships or to some new partnerships.  
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Let us call rigid market (respectively, flexible market) the time sharing 

assignment game in which the rules require that all agreements be rigid (respectively, 

flexible).  

 The players seek to form sets of partnerships to distribute all their labor time. 

The obvious condition for feasibility is that all money generated by a partnership per 

u.l.t. is distributed among its members. Formally, 

 

Definition 2.1.1 A labor time allocation  is a real matrix  x=(xpq).  The labor time 

allocation  x  is feasible if 

(a)  ∑q∈Q xpq=r(p)  for all real agents  p∈P;  

(b)  ∑ p∈P xpq=s(q)  for all real agents  q∈Q. 

(c)   xpq≥0  for all pairs  (p,q)∈PxQ. 

 

The number  xpq (non-necessarily integer)  may be interpreted as the amount of 

labor time  p  and  q  work together. Note that  (a)  is an equation, not an inequality, 

because  p  can always contribute left over labor time to the partnership  (p,0). Similar 

observation applies to  (b).  

A feasible labor time allocation  x  is optimal if  

(d) ∑(p,q)∈PxQ apq xpq≥∑(p,q)∈PxQ apq x’pq,  for all feasible labor time allocations  x’.   

 
NOTATION: For the labor time allocation  x,  set  C(x)≡{(p,q)∈PxQ; xpq>0}.  If  (p,q)∈C(x)  we say that  

(p,q) is active at  x  (or simply active, for short, when there is no confusion). For the labor time allocation  

x  and  (p,q)∈PxQ,  set  B(p,x)≡{q´∈Q; (p,q´)∈C(x)} and  B(q,x)≡{p´∈P; (p´,q)∈C(x)}.   

 

Definition 2.1.2. Given a labor time allocation  x,  a money allocation  (u,w)  

corresponding to   x   is a pair of non-negative real functions on  C(x).  It is feasible if  x  

is feasible and  

(e)   upq+wpq= apq  for all  (p,q)∈C(x).  

We say that  (u,w)  is compatible with  x  and vice-versa. The triple  (u,w;x)  is called a 

feasible allocation.  

 

That is, (u,w;x)  is a feasible allocation if it satisfies  (a), (b), (c)  and (e). 

Condition  (e)  clearly implies that  up0=w0q=0  if  the corresponding partnerships are 

active. Observe that  upq  is not defined if  xpq=0. 
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NOTATION: (a)We will denote by  ∑  the set of all feasible allocations.  A player compares two 

feasible allocations by comparing his total payoff in each allocation. The  p’s  total payoff and the  q’s  

total payoff generated by  (u,w;x)  are given, respectively, by:  Up=∑q∈B(p,x) upqxpq  and  Wq=∑p∈B(q,x) 

wpqxpq.   (b) For every  p∈P  and  q∈Q  define  up(min)=min{upq; q∈B(p,x)}  and  wq(min)= min{wpq; 

p∈B(q,x)}. 
 

Definition 2.1.3. The feasible allocation  (u,w;x)  is P-non-discriminatory  if   

(f)  wpq=wq(min)  for all  (p,q)∈C(x).  

The feasible allocation  (u,w;x)  is Q-non-discriminatory   if  

(g)  upq=up(min)  for all  (p,q)∈C(x).  

The feasible allocation  (u,w;x)  is non-discriminatory if the payoff functions  u  and  w 

satisfy  (f)  and  (g). 

 

Definition 2.1.4. Let  S⊆ P∪Q ,  S≠φ.  The feasible labor time allocation  x  is feasible 

for  S  if, for every  real agent  p∈S  and real agent  q∈S, [B(p,x)-{0}]⊆S  and [B(q,x)-

{0}] ⊆S. The feasible allocation (u,w;x) is feasible for  S  if  x  is feasible for  S. 

 

That is, under the assumptions above,  x  is feasible for  S  if no real agent in this 

set interacts, at  x,  with real agents out of  S.  

For every coalition  S, define  V(S)  as being the set of feasible allocations that 

are feasible for  S.  That is,  

(h) V(S)={(u,w;x)∈ Σ; x is feasible for  S}.  

For each  R⊆P  and  T⊆Q   the gain  G(R∪ T)   of coalition  R∪ T   is given by  

(i) G(R∪ T)≡max {∑(p,q)∈RxT apq xpq;  x  is feasible for  R∪ T}. 

That is,  G(R∪ T)  is the maximum income the real players in  R∪ T  can get by 

themselves. According to this definition, a labor time allocation  x  is optimal if and 

only if  G(P∪ Q)=∑(p,q)∈PxQ apq xpq. 

 
REMARK 2.1.1. From Definition 2.1.4, if (u,w;x)∈V(R∪T) then the real players of  R∪T  achieve their 

total payoff and fill their quota of labor time without any interaction with real players out of  R∪T.  The 

feasibility of  (u,w;x)  then implies that  ∑p∈R,q∈TUp+Wq = ∑(p,q)∈RxT  apq xpq. By (i),  ∑p∈R,q∈T (Up+Wq)≤ 

G(R∪T). In particular, since any feasible allocation  (u,w;x)  belongs to  V(P∪Q),  ∑p∈P,q∈Q(Up +Wq) 
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≤ G(P∪Q).  However, it is very easy to find an allocation that satisfies this expression and does not 

satisfy  (e), so it is not feasible. g 

 

2.2 COOPERATIVE SOLUTION CONCEPTS 

In the previous sub-section we have presented the basic ingredients that describe 

the rigid and the flexible markets. In these markets, the payoff of an agent may be multi-

dimensional and the trades are done independently and pairwisely. A third model for the 

time-sharing assignment game can be obtained by assuming that agents negotiate in 

block with their whole set of partners and disregard the individual payoffs they could 

obtain in each individual transaction. Under these rules, an outcome  (U,W;x) would be 

a vector of total payoffs, one total payoff for each player, plus a labor time allocation. 

Within this context, the outcome  (U,W;x)  is feasible if  ∑p∈P, q∈Q(Up +Wq) ≤ G(P∪Q). 

This model is studied in Sotomayor (2002). We will refer to it as the time-sharing 

assignment game with one-dimensional payoffs.  

 In this sub-section we define the following cooperative solution concepts that 

apply to all three models: corewise-stability, setwise-stability, strong-stability, P-non-

discriminatory strong-stability12 and non-discriminatory strong-stability. We show that 

the corresponding solution sets are set inclusion related: one is a super-set of the next 

and the set inclusion relation may be strict. In the next sub-section we will see that 

corewise-stability is the cooperative equilibrium concept for the time-sharing 

assignment game with one-dimensional payoffs. Setwise-stability is the cooperative 

equilibrium concept for the rigid market and strong-stability is the cooperative 

equilibrium concept for the flexible market. Section 4 will show that the other two 

cooperative solution concepts have a relevant importance in the establishment of the 

link between the cooperative and the competitive structures of the rigid and flexible 

markets. They are exactly the concepts of competitive equilibrium allocation for two 

market games defined by two different demand correspondences.  

Three types of domination relations are used to define the cooperative solution 

concepts.    

 

                                                 
12 The Q-non-discriminatory strong-stability concept is defined symmetrically.  Since we are treating the 
P-agents as buyers, the P-non-discriminatory strong-stability concept has a special interpretation in the 
competitive market.  



 13

Definition 2.2.1. The feasible allocation  σ´=(u´,w´;x´)  dominates the feasible 

allocation  σ=(u,w;x)  via coalition  S=R∪T≠φ,  with  R⊆P  and  T⊆Q,  if   

      (i1) U´p >Up  ∀p∈R  and  W´q>Wq  ∀q∈T  and 

     (i2) (u´,w´;x´)∈V(S).  

 

That is, the feasible allocation  σ´ dominates the feasible allocation  σ  via 

coalition  S  if every player in  S  prefers  σ´ to  σ  and the players of coalition  S  reach 

allocation σ´ by  

1. breaking all their current agreements,  and  

2. replacing their current agreements with a new set of agreements, which only involves 

players in  S. 

This is to say that the feasible allocation  σ  is dominated by another feasible 

allocation  σ´  via coalition  S  if the players in  S  can profitably deviate from the 

given allocation  σ  and obtain  σ´  by interacting only among them. This is how a 

corewise-stable allocation is defined. That is, 

 

Definition 2.2.2. The feasible allocation  is corewise-stable if it is not dominated by any 

other feasible allocation via some coalition. Such a coalition is called blocking 

coalition. 

 

The following two propositions will be useful. Proposition 2.2.1 gives a 

sufficient condition for a feasible allocation to be corewise-stable. Proposition 2.2.2 

asserts that every corewise-stable allocation is individually rational.  

 

Proposition 2.2.1:  Let (u,w;x)  be a feasible  allocation such that  

(j) ∑p∈R Up+ ∑q∈SWq ≥ G(R∪S),  for every   R⊆ P  and  S⊆ Q. 

Then,  (u,w;x)   is corewise-stable. 

Proof: If the feasible allocation  (u,w;x)  was dominated by some feasible allocation  

(u´,w´;x´)  via some coalition  R∪T, Definition 2.2.1-(i2) would imply that  

(u´,w´;x´)∈V(R∪T). By Remark 2.1.1,  ∑p∈R U´p+ ∑q∈TW´q ≤ G(R∪T).  Definition 

2.2.1-(i1) then would imply   ∑p∈R Up+ ∑q∈TWq < G(R∪T), which is a  contradictiong.  

 

Proposition 2.2.2. If (u,w;x)   is corewise-stable  then 
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(k) Up≥0  for all  p∈P  and  Wq≥0  for all  q∈Q. 

Proof. This is immediate from the fact that if, say  Up<0  for some agent  p∈P,  then 

any feasible allocation that gives zero amount of money to  p  and allocates her quota of 

labor time to the dummy Q-agent, would  dominate (u,w;x) via coalition  S={p,0}. g 

 

The concept of setwise-stability can be defined by the quasi-domination relation.  

Roughly speaking, the feasible allocation  σ´ quasi-dominates the feasible allocation  σ  

via coalition  S  if every player in  S prefers  σ ´ to  σ   and the players of coalition  S  

reach allocation  σ ´ by  

1. breaking some of their agreements (non-necessarily all of them),  

2. keeping the whole terms of the current agreements which were not broken, and  

3. replacing the dissolved agreements with a new set of agreements which only 

involves players in  S.13 

Formally, 

 

 Definition 2.2.3. Let σ=(u,w;x) and  σ´=(u´,w´;x´) be feasible allocations. Allocation  

σ´ quasi-dominates allocation σ  via coalition  R∪T,  with  R⊆P  and  T⊆Q  if 

 (i1)  U´p >Up  ∀p∈R  and  W´q>Wq  ∀q∈T,  and   

            (i2)  if  [p∈R  and  x´pq>0]  then [q∈T]  or [ x´pq=xpq  and  u´pq=upq]; if  [q∈T  

and  x´pq>0]  then [ p∈R]  or [ x´pq=xpq  and  w´pq=wpq].  

 

Definition 2.2.4. Allocation  σ =(u,w;x)  is setwise-stable if it is feasible and is not 

quasi-dominated by any  feasible allocation via  some coalition. 14 

 

The strong quasi-domination relation can be used to define the strong stability 

concept. Roughly speaking, the feasible allocation  σ´ strongly quasi-dominates the 

feasible allocation  σ  via coalition  S  if every player in  S  prefers  σ´ to  σ  and the 

players of coalition  S reach allocation  σ´  by  
                                                 
13 The quasi-domination relation defined here is a translation to this model of the concept introduced in 
Sotomayor (2010) for a coalitional game, which is not a matching game.  
 
14 The translation of the concept  of setwise-stability for the discrete matching models was first proposed 
in Sotomayor (1999-b). For the Multiple-partners assignment game, the setwise-stability coincides with 
the concept of stability. 
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1. breaking some of their agreements (non-necessarily all of them),  

2. keeping the whole terms of some of their current agreements which were not broken 

and 

2’. reformulating the terms of the remaining current agreements (which were not 

dissolved and were not maintained) with respect to the time allocation (by reducing the 

number of u.l.t and keeping the terms on the division of the income  apq), and  

3. replacing the dissolved agreements with new agreements which only involve players 

in  S. 

 Formally, 

 

Definition 2.2.5. Let σ=(u,w;x) and  σ´=(u´,w´;x´) be feasible allocations. The feasible 

allocation  σ´=(u´,w´;x´) strongly quasi-dominates the feasible allocation  σ=(u,w;x)  

via coalition  S=R∪T≠φ,  with  R⊆P  and  T⊆Q,  if 

(i1) U´p >Up  ∀p∈R  and  W´q>Wq  ∀q∈T,  and   

(i2) if [p∈R  and  x´pq>0]  then  [q∈T]  or [xpq≥ x´pq  and  u´pq=upq]; if  [q∈T  and  

x´pq>0]  then [ p∈R]  or  [xpq ≥ x´pq  and  w´pq=wpq]. 

 

Definition 2.2.6. A feasible allocation is strongly-stable if it is not strongly quasi-

dominated by any other feasible allocation via some coalition. 

  

Therefore, domination implies quasi-domination, which implies strong quasi-

domination. Thus, the core contains the set of setwise-stable allocations, which contains 

the set of strongly stable allocations. Indeed, as the examples below show, all these 

inclusions may be strict. 

 

Example 2.2.1. (The core is bigger than the set of setwise-stable allocations) 

Consider  P={p1,p2}, Q={q1, q2}  r(p1)=r(p2)=s(q2)=2  and  s(q1)=1.  The numbers  apq’s  

are given by: a11=3,  a21=5,  a12=2,  a22=3. The nature of the agreements is arbitrary. 

Consider the allocation (u,w;x)  where  x11=0, x12=1,  x10=1, x21=x22=1,  x20=0  and  

u12=1,  u10=0,  u22=1,  u21=3;  w12=1,  w21=2,  w22=2.  The corresponding total payoffs 

are  U1=1,  U2=4,  W1=2  and  W2=3. 

 The values of the coalitions are given by:  G(p1,q1)=3,  G(p1,q2)=4,  G(p2,q1)=5,  

G(p2,q2)=6,  G(p1,q1,q2)=5,  G(p2,q1,q2)=8,  G(p1,p2,q1)=5,  G(p1,p2,q2)=6,  
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G(p1,p2,q1,q2)=10,  G(S)=0  if  S⊆P, or  S⊆ Q.  It is a matter of verification that  (j)  is 

satisfied. Proposition 2.2.1 then implies that  (u,w;x)  is corewise-stable. However, 

(u,w;x) is not setwise-stable.  In fact, players  p1  and  q1  can increase their total payoffs 

if  p1  keeps his agreement with  q2,  q1  breaks his agreement with  p2,  p1  and q1  work 

together 1 u.l.t. and receive for this labor, respectively,  0.5  and  2.5. g  

 

Example 2.2.2. (The set of setwise-stable allocations is bigger than the set of 

strongly-stable allocations) Consider  P={p1},  Q={q1, q2}, r(p1)=5=s(q1), s(q2)=1, 

a11=a12=3. The nature of the agreements is arbitrary. Consider the allocation  (u,w;x)  

where  x11=5, x12=0, x02=1; u11=1, w11=2, w02=0. Then  U1=5,  W1=10  and  W2=0. 

   Allocation  σ=(u,w;x) is setwise-stable, so it is corewise-stable. It is easy to verify 

that there is no way for  p1  to increase his total payoff by only trading with  q2.  In order 

to increase his total payoff,  p1  must trade with both sellers, but there are no prices that 

can increase the current total payoffs of the three agents.  

 Allocation  σ  is not strongly-stable. In fact, the feasible allocation  σ´=(u´,w´;x´),  

where  x´11=4<5=x11,  x´12=1,  u´11=1,  u´12=2,  w´11=2,  w´12=1, is preferred to  σ   by  

p1  and  q2. The agreement between  p1  and  q2 at  σ´  is new and the trade between  p1  

and  q1  is a reformulation of the current trade: The number of negotiated units of labor 

time is reduced to 4, but the division of the income  a11  between the agents is 

maintained. g   

 

These two examples also illustrate that the interactions allowed among the 

members of a coalition, for the purpose of blocking an allocation, are not affected by the 

nature of the agreements.   

The P-non-discriminatory strong-stability and non-discriminatory strong-

stability concepts are naturally defined. 

 

Definition 2.2.7  A feasible allocation is P-non-discriminatory strongly stable if it is 

strongly stable and P-non-discriminatory; a feasible allocation is non-discriminatory 

strongly stable if it is strongly stable and non-discriminatory. 

 

   Of course, the set of strongly stable allocations contains the set of P-non-

discriminatory strongly stable allocations, which contains the set of non-discriminatory 
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strongly stable allocations. It is easy to construct examples in which these inclusions are 

strict.  

 

2.3. COOPERATIVE EQUILIBRIUM AND THE DEVIATION FUNCTION 

FORM 

Since Gale and Shapley (1962), the cooperative equilibrium allocations in 

matching markets are called stable allocations. The general idea proposed in Sotomayor 

(2011) is that an allocation is stable if there is no coalition of players who can 

profitably deviate from the given allocation by acting according to the rules of the 

game. Such a coalition is called deviating coalition. 

 This concept differs from that of corewise-stability in markets where the players 

of a coalition are allowed to do more than to merely interact among themselves. What 

agents can do must be specified by the rules of the game.  

In the time-sharing assignment games with multi-dimensional payoffs, the 

independence among the trades, implied by the assumption that the utilities are 

additively separable, means that the rules of these markets allow that agents in a 

coalition can renegotiate among themselves while keeping the terms of some current 

agreements with current partners outside the group. However, the trades inside a 

partnership take into consideration the nature of the agreements, so the rules of the rigid 

and flexible markets are distinct. It is a fact that the nature of the agreements may 

generate coalitional interactions that are relevant for the purpose of observing 

cooperative equilibrium allocations. Indeed, such coalitional interactions can lead to 

new types of deviations which might destabilize some corewise-stable allocations.  In 

Example 2.2.2, for instance, the agreement between  p  and  q2  at  σ´  is new,  but the 

agreement between  p  and  q1  at  σ´  is a reformulation of the agreement between these 

agents at  σ.  Therefore, if we do not know if this kind of interaction is allowed by the 

rules of the game, we cannot predict if  σ  will or will not occur. Allocation  σ  is stable 

in the rigid market but it is unstable in the flexible market.  

How to model the rules of the game so that to capture the information on the 

nature of the agreements? 

 It is worth to point out that, unlike the continuous matching models studied in 

the literature, the coalitional function  V,  defined here for each coalition  S  as the set of 

feasible allocations which are feasible for  S,  is not suitable to fully represent the time-
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sharing assignment game with multi-dimensional payoffs, whatever kind of agreement 

is being considered.  In the situation illustrated in Example 2.2.2, for instance, there is 

no way to capture the nature of the agreements from the characteristic function  V.  This 

function only informs that  σ  is in  V(P∪Q)  and it is not in  V(S).  Thus, in general, we 

cannot guarantee that an allocation  is stable by only using the characteristic function  V. 

Therefore, it becomes more convenient to work with the deviation function form 

of the game. This representation was introduced in Sotomayor (2011) and it is given by 

the set of agents, the set of feasible allocations and for each feasible allocation  σ  and 

coalition  S,  the set of feasible deviations from  σ  via coalition  S.   

Roughly speaking, a feasible allocation  σ´  is a feasible deviation  from  σ  via 

coalition  S  for the rigid market  if the players in  S  obtain  σ´  from  σ   by breaking 

some or all of their agreements at  σ, by keeping those ones at  σ  which were not 

broken and by replacing the broken agreements at  σ   with a new set of agreements, 

which only involves agents in  S. Therefore, the players in  S  obtain  σ´  by modifying  

σ  through actions allowed by the rules of the game that take into account the rigid 

nature of the agreements. Formally, 

 

Definition 2.3.1. Given a coalition  S⊆P∪Q  and a feasible allocation  σ=(u,w;x),  a 

feasible allocation  σ’=(u’,w’;x’)  is a feasible deviation from  σ  via  S  for the rigid 

market if  

(l)  when [ p∈S,  x’pq>0  and  (x’pq≠xpq  or  u’pq≠upq)]  then  q∈S;  when  [q∈S,  

x’pq>0  and  ( x’pq≠xpq  or  w’pq≠wpq)]  then   p∈S;   

(m)  for every  p  in  S, there is some  q  in  S  such that  x’pq>0  and  [x’pq≠xpq  or  

u’pq≠upq];  and for every  q  in  S, there is some  p  in  S  such that  x’pq>0  and  [x’pq≠xpq  

or  w’pq≠wpq]. 

If   σ’  is a feasible deviation from  σ  via  S  we say that  S  is a deviating 

coalition.  

 

When agreements are flexible, a deviating coalition can do more than the rules 

specify when agreements are rigid. In fact, a feasible allocation  σ´  is a feasible 

deviation  from  σ  via coalition  S  for the flexible market  if the players in  S  obtain  σ´  

from  σ   by breaking some or all of their agreements, keeping the whole terms of some 
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of their current agreements which were not broken and  reformulating the terms of the 

remaining current agreements (which were not dissolved and were not maintained) with 

respect to the time allocation (by reducing the number of u.l.t and keeping the terms on 

the division of the income  apq), and replacing the dissolved agreements with new 

agreements that only involve agents in  S. Formally, 

 

Definition 2.3.2. Given a coalition  S⊆P∪Q  and a feasible allocation  σ=(u,w;x),  a 

feasible allocation  σ’=(u’,w’;x’)  is a feasible deviation from  σ  via  S  for the flexible 

market if  

(n)  when  [p∈S,   x’pq>0  and  q∉S]  then [ xpq≥x’pq  and   u’pq=upq];  when  [q∈S,  

x’pq>0  and  p∉S]  then  [xpq≥x’pq  and  w’pq=wpq]; 

(o)  for every  p  in  S, there is some  q  in  S  such that  x’pq>0  and  x’pq>xpq  or  

u’pq≠upq;  and for every  q  in  S, there is some  p  in  S  such that  x’pq>0  and  x’pq>xpq  

or  w’pq≠wpq. 

 

We can define, 

 

Definition 2.3.3. The allocation σ∈Σ  is stable for market  M  if in  M  there is no 

feasible deviation  σ’ from  σ  via some coalition  S  such that every player in  S  prefers  

σ´ to  σ. 

 

By Definitions 2.3.1 and 2.3.2,  any feasible deviation from some  σ∈Σ  via 

some coalition  S  for the rigid market is also a feasible deviation from  σ  via  S  for the 

flexible market. Therefore, the stable allocations for the flexible market are stable for 

the rigid market.  

 Let  φR  (respectively,  φF)   be  the set of all feasible deviations from feasible 

allocations via some coalition for the rigid market (respectively, flexible market). The 

deviation function form of the time-sharing assignment game with rigid agreements is 

then given by  (P,Q,Σ,φR) and for the time-sharing assignment game with flexible 

agreements is then given by  (P,Q,Σ,φF).  

 The following proposition is straightforward. 
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Proposition 2.3.1. a) A feasible allocation  σ  is stable under rigid agreements if and 

only if it is not quasi-dominated by any other feasible allocation via some coalition. b) 

A feasible allocation  σ  is stable under flexible agreements if and only if it is not 

strongly quasi-dominated by any other feasible allocation via some coalition.  

 

Thus, the solution concept that captures the idea of stability for the time-sharing 

assignment game with rigid agreements is that of setwise-stability and for the time-

sharing assignment game with flexible agreements is that of strong-stability . 

Of course, every blocking coalition is a deviating coalition for both, the rigid 

and the flexible markets although the converse is not always true. As observed before, 

Example 2.2.2. illustrates that an allocation may be stable under rigid agreements, 

unstable under flexible agreements and corewise-stable in both markets.  

The corewise-stability concept is equivalent to the stability concept in the time-

sharing assignment game with one-dimensional payoffs. In fact, as it is shown in 

Sotomayor (2002), Definition 2.2.2 is equivalent to require that  ∑p∈R Up+ ∑q∈SWq ≥ 

G(R∪S),  for every   R⊆ P  and  S⊆ Q,  and  ∑p∈P, q∈Q(Up +Wq) = G(P∪Q).  Therefore, 

the characteristic function  V  captures all details of the rules of the game that are 

relevant to the model. Then, V(S)  equals the set of the feasible deviations from  σ  via  

S,  for all  σ∈Σ  and all  S⊆P∪Q.  Hence, the corewise-stability concept is equivalent to 

the cooperative equilibrium concept for that model. 

 

3. COMPETITIVE STRUCTURE OF THE TIME-SHARING ASSIGNMENT 

GAME 

3.1 THE COMPETITIVE MARKETS  

The cooperative market corresponds to situations in which an individual or 

group of individuals is working cooperatively toward the achievement of some well-

defined goal. In the competitive market, an individual or group of individuals is not 

only working toward different goals but are actually competing with each other. In this 

section we will analyze the competitive structure of the time-sharing assignment game 

with multi-dimensional payoffs. 

We will be assuming that all u.l.t. are supplied by the sellers. Therefore, to be 

well defined, the competitive market should specify the set of goods, the set of agents 

and the demand correspondence of each buyer. Every  seller wants to sell his units of 
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labor to the buyers and all his units of labor have the same price (the sellers do not 

discriminate the buyers). In this context, the prices of the goods are not negotiated, but 

taken as given by the buyers who, according to their demand correspondences, demand 

a set of bundles of units of services which respects their quotas. Our main problem is to 

determine how the goods will be allocated to the buyers. The natural solution concept is 

called competitive equilibrium allocation, which, informally, is a feasible allocation 

under which the bundle of goods allocated to a buyer belongs to her demand set at the 

given prices and all units of labor with a positive price are sold.  

  We provide two different definitions for the demand sets of the buyers, which 

generate two distinct competitive markets, namely, competitive market with 

discriminatory demands and competitive market with non-discriminatory demands.  

We will illustrate these notions by using a simpler competitive market which is 

obtained when the goods are indivisible. In this case, every seller  q  supplies  s(q)  

identical objects. In the competitive market with discriminatory demands, denote by  Q*  

the set of all objects in the Economy (including the dummy objects). The prices of all 

objects in  Q*  are announced, so that the objects supplied by a seller have the same 

price.  It is then natural to expect that a buyer  p  will demand the bundles of  the r(p)  

most preferred objects in  Q* at prices  p. These are the sets of  r(p) objects that 

maximize  p´s  total surplus among all subsets of  Q*  with  r(p)  objects,  assuming this 

total surplus is non-negative. Of course, the objects of the demanded bundles by a buyer 

may produce distinct individual surpluses. The presence of the dummy objects in the 

Economy causes the demand sets to be non-empty. 

 In the competitive market with non-discriminatory demands, each seller  q  

supplies  s(q)  objects of type  q  (we identify seller  q  with the type of the objects 

supplied by him).  Then the set of all types can be denoted by  Q.  The prices of all 

types are announced. Buyer  p  will demand the bundles of types of objects that are 

feasible for her (that respect her quota). Furthermore, in any demanded bundle, every 

type whose number of units in the bundle is positive, maximizes p’s individual 

surpluses.  

 We extend these notions to the case where the goods are divisible. To do that, let 

a feasible assignment vector for  p  (or assignment vector for p,  for short ) be a  

vector of non-negative numbers  xp≡ (xpq)q∈Q   which satisfies  (a) and such that  xpq≤s(q)  

for all  q∈Q. The set of all feasible assignment vectors for  p  will be denoted by  Xp. 
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Clearly, if  x  is a feasible labor time allocation then  xp  is a feasible assignment vector 

for  p,  for all  p∈P.   

A  vector  π∈Rn
+ is called feasible price vector or price vector, for short. That is, 

a price vector is a vector  π  of non-negative numbers, one coordinate for each Q-agent, 

where  πq  is the price of each u.l.t. offered by agent  q.  

 

3.1.1. COMPETITIVE MARKET WITH DISCRIMINATORY DEMANDS 

In the competitive market with discriminatory demands, buyers have preferences 

over feasible assignment vectors. Given a price vector  π, the preferences of agent  p  

over feasible assignment vectors are completely described by  the numbers  apq’s. For 

any two assignment vectors for  p,  xp  and  x’p,   p  prefers  xp to  x’p  at prices  π  if  

∑q∈Q (apq-πq)xpq >∑q∈Q (apq-πq)x’pq.  Agent  p  is indifferent between these two 

assignment vectors at prices  π  if  ∑q∈S (apq-πq)xpq = ∑q∈S’ (apq-πq)x’pq.  The units of 

labor time supplied by  q  are acceptable to  p  at  prices  π  if  apq-πq ≥0.  

Under the structure of preferences we are assuming, given a price vector π,  each 

buyer  p  is able to determine which assignment vectors he would most prefer. The set 

of such assignment vectors is called demand set of  p  at prices  π  and denoted by  

Dp(π).  That is,   

Dp(π)={xp∈Xp; ∑q∈Q(apq-πq)xpq ≥ ∑q∈Q(apq-πq)x’pq  ∀ x’p∈Xp}. 

Note that  Dp(π)  is never empty, because  p  has always the option of buying the  

assignment vector  xp,  with  xpq=0  for all  q≠0  and  xp0=r(p). Note also that, if  

xp∈Dp(π)  and  xpq>0  then the units of labor time offered by  q  are acceptable to  p.  

  

REMARK 3.1.1. If  xp∈Dp(π)  then   apq-πq≥ apt-πt  for all sellers  q  and  t  such that  xpq>0  and  xpt=0. 

In fact, define the feasible assignment vector  x’p,  where  x’pq*=xpq*  for all  q*∉{q,t},  x’pq=xpq-λ≥0,  

x’pt=λ,  where  λ>0.  Now use the definition of  Dp(π).g 

  

3.1.2. COMPETITIVE MARKET WITH NON-DISCRIMINATORY DEMANDS 

In the competitive market with non-discriminatory demands, buyers have 

preferences over the u.l.t. supplied by the sellers. Under a competitive equilibrium, the 

bundle of goods allocated to buyer  p  is a feasible assignment vector for  p and it 

belongs to the demand set of the buyer at the given prices. Thus, for the purpose of 

analyzing competitive equilibria, there will be no loss in restricting the demand set of a 
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buyer to the bundles of goods that are feasible assignment vectors for the buyer. 

Therefore, in the competitive market with non-discriminatory demands, given a price 

vector  π,  each buyer  p  will demand the assignment vector  xp  if, for all  q∈Q  with  

xpq>0  and  q´∈Q,  we have that  (apq-πq) ≥ (apq´-πq´). Thus, buyer  p  will receive equal 

surpluses with all  q∈Q  with  xpq>0.   

Set  ND p(π)  the demand set of buyer  p  at prices  π  in the competitive market 

with non-discriminatory demands.  That is, 

NDp(π)={xp∈Xp; (apq-πq) ≥ (apq´-πq´)  ∀ q∈Q  with  xpq>0  and  q´∈Q }. 

Under this definition, the set  NDp(π)  may be empty.   

 

Remark 3.1.2. Clearly,  NDp(π) ⊆ Dp(π). Furthermore, if  xp∈Dp(π)  and  (apq-πq) = 

(apq´-πq´),  ∀ q, q´∈Q  with  xpq>0  and  xpq´>0,  then  xp∈NDp(π).g 

 

3.2. COMPETITIVE EQUILIBRIUM 

The natural solution concept for the competitive markets is that of competitive 

equilibrium. 

 

Definition 3.2.1. The pair  (π,x)  is a competitive equilibrium if (i1)  π  is a price vector, 

(i2) x  is a feasible labor time allocation such that   xp∈Dp(π)   for all  p∈P  and  (i3)  

πq=0  if  x0q>0. If  (π,x)  is a competitive equilibrium then  π  is called a competitive 

equilibrium price vector ( or equilibrium price for short).   

 

Let  x  be a feasible labor time allocation  satisfying condition  (i2) of Definition 

3.2.1 for a price vector  π.  We say that  π  is a competitive price vector and  x  is 

compatible with  π.  Labor allocation  x  is called competitive if it is compatible with a 

competitive equilibrium price. 

If  (π,x)  is a competitive equilibrium, the corresponding money allocation for 

the  Q-agents, that will also be denoted by  π, is defined by πpq=πq  for all  (p,q)∈C(x). 

The corresponding money allocation for the P-agents is defined feasibly. The resulting 

feasible allocation  (u,π;x)  is called a competitive equilibrium allocation and (u, π)  is 

called a competitive equilibrium payoff.  

It follows from Definition 2.1.3 that a competitive equilibrium allocation for 

both competitive markets in consideration is P-non-discriminatory, and a competitive 
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equilibrium allocation for the competitive market with non-discriminatory demands is a 

non-discriminatory allocation.  

 

Remark 3.2.1. Since  NDp(π) ⊆ Dp(π)  by Remark 3.1.2,  it follows that every 

competitive equilibrium for the competitive market with non-discriminatory demands is 

a competitive equilibrium for the competitive market with discriminatory demands.  If a 

competitive equilibrium for the competitive market with discriminatory demands is a 

non-discriminatory allocation, then Remark 3.1.2 implies that the allocation is a 

competitive equilibrium for the competitive market with non-discriminatory demands. 

g   
 

4. CORRELATION BETWEEN THE COOPERATIVE AND THE 

COMPETITIVE STRUCTURES 

The main results of this section, Theorem 4.5 and Theorem 4.6, establish the 

links between the cooperative and competitive structures of the rigid and flexible 

markets. Theorem 4.5 characterizes the competitive equilibrium allocations for the 

competitive market under discriminatory demands as the stable allocations of the 

flexible market that do not discriminate the buyers. Theorem 4.6 identifies the 

competitive equilibrium allocations for the competitive market under non-

discriminatory demands as being the stable allocations of the flexible market which do 

not discriminate any agent. Therefore, the cooperative structure of the flexible market 

creates a bridge between the competitive and the cooperative structures of the time-

sharing assignment game with rigid agreements: the competitive equilibrium allocations 

are also stable allocations under rigid agreements and so they are corewise-stable. 

However, the correlation between the cooperative and competitive structures is not the 

same in both markets. Example 4.1 illustrates that in the rigid market, the stable 

allocations which do not discriminate the buyers, as well as those which do not 

discriminate any agent, are not necessarily competitive in any of the two competitive 

markets. Thus, the fraction of the stable allocations that are competitive turns out to be 

smaller under rigid agreements than under flexible agreements.  

Example 4.2 illustrates that the kind of correlation between the competitive 

equilibrium allocations and the stable allocations, in both markets, is different from that 

kind found in the multiple-partners assignment game. 

To prove these results some preliminaries are in order. 
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Definition 4.1. The pair  (p,q)  is unsaturated with respect to the labor allocation  x 

(unsaturated, for short)  if  xpq<r(p)  and  xpq<s(q). (i.e. no player in  {p,q}   contributes 

all his labor time to the partnership ). 

 

 In particular, if  xpq=0  then  {p,q}  is unsaturated. 

 
NOTATION: Let  (u,w;x)  be a feasible allocation. For every unsaturated pair  (p,q),  define  

up(q)(min)≡min{upr;  r∈B(p,x)-{q}}  and  w(p)q(min)≡min{wtq;  t∈B(q,x)-{p}}.  

 

Definition 4.2.  The feasible allocation   (u,w;x)  is pairwise-strongly-stable  if it is 

feasible and  

 (p)  up(q)(min) + w(p)q(min) ≥ apq  for all unsaturated pair  (p,q)∈ PxQ. 

 

   Given a feasible allocation  (u,w;x)  and a labor time allocation  x´,  we can 

construct a  feasible allocation  (u´,w´;x´)  so that  each agent  q  maintains his 

individual payoffs in the partnerships where he decreases or keeps his labor time 

contribution; if  q  increases his labor time contribution in  (p,q)  then, he obtains, for 

each unit of additional labor time, the minimum individual payoff among all individual 

payoffs he obtains with partners other than  p.  Call  F  the set of such feasible 

allocations derived from  (u,w;x).  Of course,  (u,w;x)  is in  F. Also, if  p is distinct 

from  p´,  the feasible allocation in  F  that maximizes  p’s total payoff may be different 

from the feasible allocation in  F  that maximizes the total payoff of  p´.  However, 

Theorem 4.3 asserts that this is not the case if   (u,w;x)  is strongly-stable. Moreover,  

(u,w;x)  is strongly-stable if and only if, for all  p∈P,  Up=∑q∈B(p,x)upqxpq,  is the highest 

p’s total payoff that can be generated by some feasible allocation in  F.  By symmetry, 

this theorem holds if we reverse the roles between P-agents and Q-agents. To prove this 

result we first characterize the pairwise-strongly-stable allocations as the feasible 

allocations where the total payoff of every buyer is a maximum among all feasible 

allocations in  F.  Then we characterize the stable allocations of the flexible market as 

the pairwise-strongly-stable allocations.  

 

Proposition 4.1. Let  (u,w;x)  be a feasible allocation. Then  (u,w;x)  is pairwise-

strongly-stable if and only if for all  p∈P  and feasible labor allocation  x´  we have that 
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(*) Up ≥ ∑q∈B(p,x´)(apq-w´pq)x´pq, 

where  w´pqx´pq = wpqx´pq  if  xpq ≥ x´pq,  w´pqx´pq = wpqxpq + w(p)q(min)(x´pq-xpq)  if  

0<xpq<x´pq  and  w´pqx´pq= w(p)q(min)x´pq  if  0=xpq< x´pq. 

 

Proposition 4.2.  Let (u,w;x)  be a feasible allocation. Then  (u,w;x)  is strongly-stable 

if and only if it is pairwise-strongly-stable. 

 

 It follows immediately from these two propositions that: 

 

Theorem 4.3. Let  (u,w;x)  be a feasible allocation. The following assertions are 

equivalent 

(i1) (u,w;x)  is strongly-stable; 

(i2) (u,w;x)  is pairwise-strongly-stable; 

(i3)  for all  p∈P  and feasible labor allocation  x’  we have that 

(*) Up ≥ ∑q∈B(p,x´)(apq-w´pq)x´pq, 

where  w´pqx´pq = wpqx´pq  if  xpq ≥ x´pq,  w´pqx´pq = wpqxpq + w(p)q(min)(x´pq-xpq)  if  

0<xpq<x´pq  and  w´pqx´pq= w(p)q(min)x´pq  if  0=xpq< x´pq. 

 

Corollary 4.4. Let  (u,w;x)  be an allocation that is feasible and P-non-discriminatory.  

Then (u,w;x)  is  strongly-stable  if and only if,  for all  p∈P  and feasible labor 

allocation  x’,  we have  

(**) Up ≥ ∑q∈B(p,x´)(apq-wpq)x´pq. 

Proof. Immediate from Theorem 4.3.g 

 

Corollary 4.4 implies that, under a strongly-stable allocation that is P-non-

discriminatory, every buyer is maximizing his total payoff  by taking as given the prices 

of the u.l.t. supplied by the sellers. This is precisely how the concept of competitive 

equilibrium allocation is defined when the demands are discriminatory. Then, the 

competitive equilibrium allocations for the market with discriminatory demands are the 

strongly-stable allocations such that no Q-agent discriminates any P-agent. Therefore, 

we have proved Theorem 4.5 below. 
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Theorem 4.5. Let  (u,w;x)  be a feasible allocation. Then  (u,w;x)  is a competitive 

equilibrium allocation for the market with discriminatory demands if and only if it is 

strongly-stable and  wpq=wq(min) for all  (p,q)∈PxQ. 

 

 It follows from Remark 3.2.1 that if allocation  σ  is a competitive equilibrium 

allocation for the competitive market with non-discriminatory demands then it is a 

competitive equilibrium allocation for the competitive market with discriminatory 

demands. Theorem 4.5 then implies that  σ  is strongly-stable and no Q-agent 

discriminates any P-agent. Since, at  σ,  each buyer receives the same payoffs at all 

individual trades, we have that σ  is a non-discriminatory strongly-stable allocation. 

Conversely, if σ  is a non-discriminatory strongly-stable allocation, then it is P-non-

discriminatory strongly-stable and so Theorem 4.5 implies that it is a competitive 

equilibrium allocation for the market with discriminatory demands. Since  σ  is a non-

discriminatory allocation, it follows from Remark 3.2.1 that σ  is also a competitive 

equilibrium allocation for the market with non-discriminatory demands. Then, the 

competitive equilibrium allocations for the market with non-discriminatory demands are 

the strongly-stable allocations such that no agent is discriminated. Thus we have proved 

the following: 

 

Theorem 4.6. Let  (u,w;x)  be a feasible allocation. Then  (u,w;x)  is a competitive 

equilibrium allocation for the market with non-discriminatory demands if and only if it 

is strongly-stable and upq=up(min),  wpq=wq(min) for all  (p,q)∈PxQ. 
 

 The characterizations given by Theorems 4.5 and 4.6 do not take into account 

the nature of the agreements. More specifically, the nature of the agreements, which 

generates distinct cooperative structures in the time-sharing assignment game with 

multi-dimensional payoffs, does not have any effect on the competitive structures 

treated here.  The following corollary follows immediately from Theorems 4.5 and 4.6 

and from the fact that every strongly-stable allocation is setwise-stable.  

 

Corollary 4.7. a) The competitive equilibrium allocations for the market with 

discriminatory demands are setwise-stable (and so they are corewise-stable).  
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b) The competitive equilibrium allocations for the market with non-discriminatory 

demands are setwise-stable (and so they are corewise-stable). 

 

Example 4.1 illustrates that in the rigid market, the stable allocations which do 

not discriminate the buyers, as well as those which do not discriminate any agent, are 

not necessarily competitive in any of the two competitive markets. 

 

Example 4.1. (Example 2.2.2 continued)  (A setwise-stable allocation that is non-

discriminatory – and so it is P-non-discriminatory – but it is not a competitive 

equilibrium allocation in any of the two competitive markets) Consider  P={p1},  

Q={q1, q2}, r(p1)=5=s(q1), s(q2)=1, a11=a12=3. The allocation  (u,w;x)  where  x11=5, 

x12=0, x02=1; u11=1, w11=2, w02=0  is clearly non-discriminatory. As already proved,  

(u,w;x) is setwise-stable and is not strongly-stable. Then, by Theorem 4.6,  (u,w;x) is 

not a competitive equilibrium allocation for the market with non-discriminatory 

demands. Since  (u,w;x)  is also  P-nondiscriminatory, Theorem 4.5 implies that  (u,w;x) 

is not a competitive equilibrium allocation for the market with discriminatory demands. 

g 
  

The kind of correlation between the competitive equilibrium allocations and the 

stable allocations, in both markets, is new. In the multiple partners assignment model 

the competitive equilibrium allocations can be created by “shrinking” the set of 

cooperative equilibrium allocations through an isotone function  g,  which maps every 

stable allocation  (u,w;x)  to a competitive equilibrium allocation  (u´,w´;x)   where  

w´pq=wq(min)  for all  (p,q)∈P×Q  and  u´ is feasibly defined. The set of competitive 

equilibrium payoffs is characterized as being the set of fixed points of that function. 

Such characterization fails to hold in the time-sharing assignment game with flexible 

agreements, as we can see in the example below.  

  

Example 4.2. (A competitive allocation that cannot be derived from a strongly 

stable allocation by reducing the individual payoffs of each seller to their 

minimum) Consider  P={p1,p2},  Q={q1}, r(p1)=5=s(q1), r(p2)=1, a11=3,  a21=4. The 

allocation  (u,w;x),  where  x11=4,  x21=1,  x10=1;  u11=1,  u10=0,  u21=1,  w11=2,  w21=3,  

is clearly strongly-stable. However, the allocation  (u´,w´;x),  where  

w´11=w´21=2=min{2,3}, u´11=1, u´10=0,  u´21=2,  is not competitive in both competitive 
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markets, since  p1  demands the whole amount of u.l.t. supplied by the seller. (Indeed 

this allocation is not in the core, since it is blocked by  {p1, q1}). g 

 

5. NON-EMPTINESS OF THE SOLUTION SETS 

Set  P*≡P-{0}  and  Q*≡Q-{0}.  Consider the primal linear programming 

problem  (P1)  of finding a matrix  x=(xpq) which maximizes 

(A1)  ∑(p,q)∈PxQ apqxpq 

subject to: 

(A2)  ∑q∈Q* xpq ≤ r(p)  for all  p∈P*; 

(A3)  ∑ p∈P* xpq ≤ s(q)   for all  q∈Q*; 

(A4)  xpq≥0  for all  (p,q)∈P*×Q*, 

The dual problem (P1)*  is to find an  m-vector  y=(yp)p∈P*  and an  n-vector  z=(zq)q∈Q*  

which minimizes 

(B1)  ∑p∈P* r(p)yp  +  ∑q∈Q* s(q)zq 

subject to: 

(B2)  yp + zq≥ apq,  for all  (p,q)∈P*× Q*; 

(B3)  yp ≥0,  zq ≥0,  for all  (p,q)∈P*× Q*. 

Because we know that  (P1)  has a solution, we know that  (P*1)  must have an 

optimal solution15. By the Duality Theorem, for every solution  x  of  (P1)  and  (y,z)  of  

(P1*)  we have that   

 ∑p∈P* r(p)yp  +  ∑q∈Q* s(q)zq = ∑PxQ apqxpq = v(P∪Q). 

 If  x*  is any optimal solution for  (P1)  and  (y,z)  is an optimal dual solution 

then, by the Linear Programming Equilibrium Theorem or by the Complementary 

Slackness (see Gale, 1960),  we can conclude that 

(A) if  ∑q∈Q* x*pq < r(p)  then  yp=0; 

(B) if  ∑p∈P* x*pq < s(q)  then  zq=0; 

(C) if  x*pq=0  then  yp + zq ≥ apq; 

(D) if  x*pq>0  then  yp + zq = apq. 

Now, let  x*  be an optimal solution for the linear programming problem  (P1)  

and let  (y,z)  be a dual optimal solution. Let  x  be a labor time allocation obtained from  

x*  as follows: xpq=x*pq  if  p∈P*  and  q∈Q*;  if   ∑q∈Q* x*pq =k<r(p)  for some  p∈P* 
                                                 
15 Thompson (1980) considers a model in which the core is defined as the set of dual solutions of P1.  
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(respectively,  ∑p∈P* x*pq =k<s(q)  for some  q∈Q*)  then set  xp0=r(p)-k  (respectively, 

x0q=s(q)-k).  Define for all  p∈P*  and  q∈Q*:  upq=yp  and  wpq=zq  if  xpq>0;  u0q= 

w0q=0  if  x0q>0  and  up0=wq0=0  if  xp0>0. Then, by  (A)  and  (B)  up(min)=yp  and  

wq(min)=zq  for all  p∈P*  and  q∈Q*.  The resulting allocation  (u,w;x)  will be called 

dual allocation and  (u,w)  is called dual money allocation. Then, dual allocations 

always exist.  

Proposition 5.2 characterizes the competitive equilibrium allocations of the 

competitive market with non-discriminatory demands as the dual allocations. We need 

Proposition 5.1 to prove it. 

 

Proposition 5.1.  Let  (u,w;x)  be a strongly-stable allocation. Then  x  is an optimal 

labor time allocation. 

 

 Note that if  x  is an optimal labor time allocation and  (u,w;x´)  is a strongly 

stable allocation with  x´≠x,  then  x  is not necessarily compatible with  (u,w).  This is 

because  u  and  w  are indexed according to matching  x´. 

 

Proposition 5.2. The set of competitive equilibrium allocations of the competitive 

market with non-discriminatory demands coincides with  the set of dual allocations. 

 

Corollary 5.3. The set of dual allocations coincides with the set of non-discriminatory 

strongly-stable allocations . 

Proof. It is immediate from Proposition 5.2 plus  Theorem 4.6. g  

 

We can now prove the existence theorem. 

 

Theorem 5.4. The set of competitive equilibrium allocations of the competitive market 

with non-discriminatory demands, the set of competitive equilibrium allocations of the 

competitive market with discriminatory demands, the set of stable allocations for the 

flexible market, the set of stable allocations for the rigid market and the core are non-

empty. 

Proof. From the Duality Theorem we have that the dual allocations always exist. Let  σ   

be a dual allocation. Corollary 5.3 implies that  σ  is strongly-stable, so it is setwise 
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stable and so it is corewise-stable. Hence  the result follows and the proof is 

complete.g 

 

Remark 3.2.1  implies that the set of competitive equilibrium allocations for the 

competitive market with discriminatory demands contains the set of competitive 

equilibrium allocations for the competitive market with non-discriminatory demands. 

Proposition 5.2 then implies that the set of competitive equilibrium allocations for the 

competitive market with discriminatory demands contains the set of dual allocations. 

However, it is easy to construct examples in which this inclusion is strict.  

 

6. FINAL REMARKS AND RELATED WORK 

   

The present work introduced and analyzed, cooperatively and competitively, the 

time-sharing assignment game, aiming to contribute to a better understanding of the 

cooperative and competitive equilibrium concepts.  

The cooperative analysis was conducted under the assumption of rigid 

agreements or flexible agreements. The associated competitive markets are of two 

kinds: with discriminatory demands and with non-discriminatory demands. The set of 

competitive equilibrium allocations of the competitive market with non-discriminatory 

demands is contained, and may be properly contained, in the set of competitive 

equilibrium allocations of the competitive market with discriminatory demands. 

We put all these markets together and compared their corresponding cooperative 

and competitive equilibria. Such an innovation permited to distinguish five cooperative 

solution concepts: corewise-stability, setwise-stability, strong-stability, buyer-non-

discriminatory strong-stability and non-discriminatory strong-stability. The definition of 

these concepts implies that the corresponding solution sets are set inclusion related: one 

is a super-set of the next. Examples showed that the set inclusion relation may be strict. 

These sets, as well as the two sets of competitive equilibrium allocations are the same 

under both kinds of agreements. A consequence of this is that these allocations can be 

identified by just using the characteristic function of the game. However, the 

characteristic function does not give enough information to identify the cooperative 

equilibria of the rigid market with the setwise-stable allocations and the cooperative 

equilibria of the flexible market with the strongly-stable allocations. The appropriate 

model was shown to be the deviation function form, introduced in Sotomayor (2011), 
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which uses the concept of feasible deviation from a given allocation via a coalition. 

Intuitively, a feasible deviation consists of a set of actions allowed by the rules of the 

game which can be taken against the given allocation by the members of the coalition. 

These actions are not captured by the characteristic function of the time-sharing 

assignment game. The representation given by the deviation function form allowed to 

show that: 

(A) The corewise-stability does not capture the idea of cooperative 

equilibrium in both cooperative models;  

(B) the cooperative equilibrium allocations of the rigid model are 

identified with the setwise-stable allocations;  

(C) the cooperative equilibrium allocations of the flexible model are 

identified  with the strongly-stable allocations.  

(D) the competitive equilibrium allocations of the competitive market 

with discriminatory demands are characterized as the stable 

allocations of the flexible model which do not discriminate the 

buyers;  

(E) the competitive equilibrium allocations of the competitive market 

with non-discriminatory demands are characterized as the stable 

allocations of the flexible model which do not discriminate any 

agent;  

(F) the stable allocations of the flexible model which do not discriminate 

any agent are identified with the dual allocations.  

(B) and (C) and the definitions of setwise-stability and strong-stability then 

implied that the set of cooperative equilibrium allocations of the flexible model is 

contained in the set of cooperative equilibrium allocations of the rigid model.  Example 

2.2.2 illustrated that stable allocations under rigid agreements may be unstable under 

flexible agreements.  

(D) and (E) established the connection between the cooperative and the 

competitive structures. Therefore, the competitive equilibrium allocations of the two 

competitive markets are stable in both cooperative markets, so they are in the core.  

From the technical point of view, the set inclusion relation among the 

cooperative and competitive solution sets propitiated the proof of the existence theorem. 

The well-known results of Linear programming, the Duality theorem and the Linear 

programming equilibrium theorem, implied that the dual allocations always exist. The 
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identification given in  (F) was then used to prove the non-emptiness of the core, of the 

sets of stable allocations for the rigid and flexible markets and of the sets of competitive 

equilibrium allocations of both competitive markets.  

The problem of correlating the cooperative e and competitive equilibrium 

concepts has been directly or indirectly treated in several matching models existent in 

the literature. In the assignment game, for instance, the set of competitive equilibrium 

allocations, the set of stable allocations and the core coincide and are non-empty 

(Shapley and Shubik, 1972). The same result applies in the many-to-one matching 

model of Kelso and Crawford (1982) and also in the many-to-many case with one-

dimensional payoffs introduced in Sotomayor (1992). In the multiple-partners 

assignment game, these sets are non-empty and one is contained in the next, but they do 

not always coincide.  Furthermore, the set of competitive equilibrium allocations under 

discriminatory demands is characterized as the set of stable allocations in which no 

seller discriminates any buyer and it is obtained by shrinking the set of stable 

allocations through an isotone function (Sotomayor 1992, 2007).   

The technique of analysing the rigid and the flexilbe markets altogether 

possibilitated to compare the correlations between the cooperative and competitive 

structures obtained in the two markets.  The novelty brought by the time-sharing 

assignment game is that these correlations are distinct from one another and differ from 

that one that was observed in the multiple-partners assignment game. The stable 

allocations of the rigid model in which the sellers do not discriminate the buyers are not 

necessarily competitive. This occurs in the flexible market. Nevertheless, the set of 

competitive equilibrium allocations are not obtained by shrinking the set of stable 

allocations for the flexible model through an isotone function.  

It can be easily verified that all results of the present paper could be obtained if 

we required that the numbers  r(p)’s,  s(q)’s  and  xpq’s  were integers. The market of 

buyers and sellers of indivisible goods, in which the quota of a seller is the number of 

identical objects he owns, the quota of a buyer is the maximum number of objects he 

can acquire and a buyer is allowed to purchase more than one item from the same seller 

fits well in this model. Within this context, the multiple-partners assignment game is the 

restriction of the time-sharing assignment game to the case where each buyer can 

acquire one item at most from the same seller. This assumption causes the rigid and the 

flexible markets to coincide. 
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Another kind of connection between the cooperative and competitive structures 

of the rigid and flexible markets is considered in a companion paper. There, we obtain 

precise results by examining the algebraic structure of the five solution sets treated here.  

Sotomayor (2010) extends the time-sharing assignment game with rigid 

agreements to a non-matching coalitional game, in which players form coalitions of any 

size.  The concept of stability is identified with the appropriate version of the setwise-

stability concept given here. It is proved there that the core may be bigger than the set of 

stable allocations. 

A variation of the buyers and sellers market described above, where the objects 

of a seller may be distinct, is proposed by Jaume et al (2007). These authors concentrate 

their analysis on the algebraic structure of the set of competitive equilibrium price 

vectors, rather than on the algebraic structure of the set of competitive equilibrium 

allocations. Their competitive equilibrium concept is closely related to the competitive 

equilibrium concept for the market with non-discriminatory demands presented here. 

They prove that this set preserves the lattice structure that is observed in the previous 

models.  

Camiña (2006) studies the particular case in which a unique seller owns all 

objects, non necessarily identical, and each buyer wants to buy one object at most. She 

shows that the set of core allocations is a non-empty complete lattice under the partial 

order defined by the preferences of the buyers and may be different from the set of 

competitive equilibrium allocations.  

 

APENDIX: PROOFS OF PROPOSITIONS 4.1, 4.2 AND 5.2. 
Proposition 4.1. Let  (u,w;x)  be a feasible allocation. Then  (u,w;x)  is pairwise-strongly-stable if and 

only if for all  p∈P  and feasible labor allocation  x’  we have that 

(*) Up ≥ ∑q∈B(p,x’)(apq-w’pq)x’pq, 

where  w’pqx’pq = wpqx’pq  if  xpq ≥ x’pq,  w’pqx’pq = wpqxpq + w(p)q(min)(x’pq-xpq)  if  0<xpq<x’pq  and  

w’pqx’pq= w(p)q(min)x’pq  if  x’pq>0  and  xpq=0. 

Proof. Suppose  (u,w;x)  is pairwise-strongly-stable but there is some feasible labor allocation  x’  and  

p∈P  such that (*) is not satisfied. Then, 

(1)  Up < ∑q∈B(p,x’)(apq-w’pq)x’pq. 

Define  I={q∈Q; xpq ≥ x’pq>0},  J={q∈Q; xpq < x’pq}  and  K={q∈Q; xpq >0, x’pq=0}. 

Then,  ∑q∈I upqxpq +  ∑q∈J∩B(p,x) upqxpq  +  ∑q∈K upqxpq < ∑q∈I (apq-wpq)x’pq + ∑q∈J(apq-w’pq)x’pq =  

∑q∈I upqx’pq + ∑q∈ J∩B(p,x) [(apq-wpq)xpq + (apq- w(p)q(min))(x’pq-xpq)] +  ∑q∈ J-B(p,x) (apq- w(p)q(min))x’pq =∑q∈I 
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upqx’pq + ∑q∈J∩B(p,x)upqxpq +∑q∈J (apq- w(p)q(min))x’pq -∑q∈J∩B(p,x)(apq- w(p)q(min))xpq= ∑q∈I upqx’pq+ 

∑q∈J∩B(p,x)upqxpq+∑q∈J(apq- w(p)q(min))(x’pq –xpq),  so 

(2)  ∑q∈I upq(xpq – x’pq) +  ∑q∈K upqxpq < ∑q∈J (apq- w(p)q(min))(x’pq-xpq). 

Since   ∑q∈I(xpq – x’pq) = (r(p) - ∑q∈J∪K xpq) – (r(p)-∑q∈J x’pq)= ∑q∈J (x’pq - xpq) - ∑q∈K xpq    it 

follows that  upr∑q∈J (x’pq - xpq) = upr ∑q∈I(xpq – x’pq) +upr∑q∈K xpq ≤  ∑q∈I upq(xpq – x’pq) + ∑q∈K upqxpq,  

where  upr=min{upq;q∈I∪K}. 

By (2)  we have  

upr∑q∈J (x’pq - xpq) < ∑q∈J (apq- w(p)q(min))(x’pq-xpq). 

Then,  

∑q∈J(apq- w(p)q(min) – upr)(x’pq-xpq)>0,  so we must have  (apq- w(p)q(min) – upr) >0  for some  q∈J.  

But  r≠q  because  r∈I∪K  and  q∈J.  Then  upr ≥  up(q)(min)  and  0< (apq- w(p)q(min) – upr) ≤ apq - 

w(p)q(min) - up(q)(min),  so  up(q)(min) + w(p)q(min)< apq,  which contradicts the assumption that  (u,w;x)  is 

pairwise strongly-stable. Hence  (*)  is satisfied for all  p∈P  and feasible labor allocation  x’. 

 In the other direction, let   (p,q*)  be an unsaturated pair (with respect to  x). Then  xpq*<r(p)  and  

xpq*<s(q*).  Set  upm ≡ up(q*)(min). Let   λ   be some positive number such that  xpm- λ ≥0,  xpq* + λ≤ r(p)  

and  xpq* + λ≤ s(q*).  Consider a feasible labor time allocation  x’  such that  x’pq*= xpq* + λ,  x’pm =xpm- λ,   

x’pk = xpk  for all  k∉{q*,m}.  Then we have 

∑k∈B(p,x)-{q*,m} upkxpk + upmxpm + upq*xpq* =∑k∈B(p,x) upkxpk = Up  ≥ ∑k∈B(p,x)-{q*,m} (apk – wpk) xpk + 

(apm – wpm)(xpm - λ) + (apq*-wpq*)xpq* + (apq*-w(p)q*(min))λ,  where the weak inequality follows from  (*). 

Then,  λupm  ≥ (apq*-w(p)q*(min))λ  and hence   upm + w(p)q*(min)  ≥ apq*.  Then,  up(q*)(min) + 

w(p)q*(min) ≥ apq*,  so  (u,w;x)  is pairwise-strongly-stable and the proof is complete.g 

 

Proposition 4.2.  Let  (u,w;x)  be a feasible allocation. Then  (u,w;x) is strongly-stable if and only if it is 

pairwise-strongly-stable. 

Proof. Suppose  (u,w;x)   is strongly-stable. If  condition  (p)  did not hold for some unsaturated pair  

(p,q),  then buyer  p  and seller  q  could increase their earnings by transferring part of their labor time 

from some other partnership to  {p,q}  (which is possible since  (p,q)  is unsaturated) and both players 

could profit from the increased earnings so obtained, which is absurd. 

In the other direction, suppose by contradiction that  (u,w;x)  satisfies  (p)  but it  is not strongly-

stable. This means that  (u,w;x)  must be strongly-quasi-dominated by a feasible allocation  (u*,w*;x*)  

via some coalition  R∪T,  with  R⊆P  and  T⊆Q. By  Definition 2.2.5 – (i1),  we have that, for all  p∈R  

and for all  q∈T   

(1)  Up < ∑q∈B(p,x*) u*pq x*pq   and  Wq< ∑p∈B(q,x*) w*pq x*pq.                  

Set  A≡{(p,q)∈C(x*);  p∈R  or  q∈T},   D≡{(p,q)∈C(x*);  p∈R ,  q∈T  and  xpq=0} and  

E≡{(p,q)∈C(x*);  p∈R ,  q∈T  and  xpq>0}. 

Adding up  (1)  yields 

(2)  ∑p∈RUp  <∑p∈R∑q∈B(p,x*) u*pq x*pq   and  ∑q∈T Wq < ∑q∈T ∑p∈B(q,x*)w*pq x*pq.                             

Definition 2.2.5 – (i2)  implies that  xpq ≥x*pq  and  upq=u*pq   for all  (p,q)∈A  with  q∉T  and  xpq 

≥x*pq  and   wpq =w*pq    for all  (p,q)∈A  with p∉R.   Then,  
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(3)   ∑ q∉T ∑p∈R∩ B(q,x*)  u*pq x*pq +  ∑ p∉R ∑q∈T∩ B(p,x*)  w*pq  x*pq   

= ∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   upqx*pq + ∑p∉R  ∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq.   

From (2)  and  (3)  we get 

∑p∈RUp + ∑q∈T Wq < [∑p∈R∑q∈T∩ B(p,x*) u*pq x*pq + ∑q∈T ∑p∈R∩ B(q,x*)  w*pq x*pq]  + [∑ q∉T ∑p∈R∩ 

B(q,x*)  u*pq x*pq +  ∑ p∉R ∑q∈T∩ B(p,x*)  w*pq x*pq] = [(∑p∈R∑q∈T∩ B(p,x*) - B(p,x) u*pq x*pq + ∑q∈T ∑p∈R∩ B(q,x*) - 

B(q,x) w*pq x*pq)  + (∑p∈R∑q∈T∩ B(p,x*) ∩ B(p,x) u*pq x*pq + ∑q∈T ∑p∈R∩ B(q,x*) ∩B(q,x) w*pq x*pq)]  + [∑ q∉T  ∑p∈R∩ 

B(q,x*)∩ B(q,x)   upqx*pq + ∑p∉R  ∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq]= 

(4)  ∑(p,q)∈D (u*pq   + w*pq )x*pq  + ∑(p,q)∈E (u*pq +w*pq) x*pq  + ∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   upqx*pq + ∑p∉R  

∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq.   

The feasibility of  (u*,w*;x*)  implies that condition (e) is satisfied, so the expression in  (4)  is 

equal to 

∑(p,q)∈D  apq x*pq +  ∑(p,q)∈E apq  x*pq + ∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   upqx*pq +  

∑p∉R  ∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq.   

From (p) and from the fact that all  (p,q)∈D  are unsaturated, it follows that  ∑(p,q)∈D apq x*pq ≤ 

∑(p,q)∈D (up(q)(min) +  w(p)q(min)) x*pq .  From definition of  E  we have that  ∑(p,q)∈E apq  x*pq =  ∑(p,q)∈E (upq 

+wpq) x*pq.  Then, 

(5)  ∑p∈RUp + ∑q∈T Wq < ∑(p,q)∈D (up(q)(min) +  w(p)q(min)) x*pq + ∑(p,q)∈E (upq +wpq) x*pq +  ∑ q∉T  ∑ 

p∈R∩ B(q,x*)∩ B(q,x) upqx*pq + ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq.     

We now have that for every  p∈R, 

∑q∈T∩B(p,x*)-B(p,x) x*pq +  ∑q∈T∩B(p,x*)∩B(p,x) x*pq +  ∑ q∈B(p,x*)∩B(p,x)-T x*pq = r(p)=   ∑ q∈B(p,x) - B(p,x*) xpq 

+  ∑q∈T∩B(p,x)∩B(p,x*) xpq +  ∑q∈B(p,x)∩B(p,x*)-S xpq, so   

∑q∈T∩B(p,x*)-B(p,x) x*pq = ∑ q∈B(p,x) - B(p,x*) xpq + ∑q∈ T∩B(p,x)∩B(p,x*) ( xpq – x*pq) + ∑q∈B(p,x*)∩B(p,x)-T (xpq -  

x*pq ). Using that  up(q) (min)= up(min)  for  all  q∈T-B(p,x)  we have 

(6) ∑q∈T∩B(p,x*)-B(p,x)up(q) (min) x*pq = ∑q∈T∩B(p,x*)-B(p,x) up (min) x*pq =∑ q∈B(p,x) - B(p,x*) up (min) xpq + ∑q∈ 

T∩B(p,x)∩B(p,x*) up (min)  ( xpq – x*pq) + ∑ q∈B(p,x*)∩B(p,x)-T up(min)(xpq -  x*pq ) ≤ ∑ q∈B(p,x) - B(p,x*) upq xpq + 

∑q∈T∩B(p,x)∩B(p,x*) upq ( xpq – x*pq) +  ∑ q∈B(p,x*)∩B(p,x)-T upq (xpq -  x*pq ) 

Symmetrically, for every  q∈T  we have that 

(7) ∑ p∈R∩B(q,x*)-B(q,x) w(p)q(min)x*pq ≤ ∑ p∈B(q,x)-B(q,x*) wpqxpq + ∑p∈R∩B(q,x*)∩B(q,x) wpq(xpq – x*pq) +  

∑p∈B(q,x*)∩B(q,x)-R wpq(xpq-x*pq).   

Adding up (6) and (7) yields 

∑(p,q)∈D (up(q)(min)+w(p)q(min)) x*pq ≤ [∑p∈R∑ q∈B(p,x) - B(p,x*) upq xpq + ∑p∈R ∑q∈ T∩B(p,x)∩B(p,x*) upq ( xpq 

– x*pq) + ∑p∈R ∑ q∈B(p,x*)∩B(p,x)-T upq (xpq -  x*pq )] + [∑q∈T ∑ p∈B(q,x)-B(q,x*) wpqxpq) +  ∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) 

wpq( xpq – x*pq) + ∑q∈T ∑p∈B(q,x*)∩B(q,x)-R wpq(xpq-x*pq)]= [(∑p∈R∑ q∈B(p,x) - B(p,x*) upq xpq+∑p∈R ∑q∈ 

T∩B(p,x)∩B(p,x*) upq xpq + ∑p∈R ∑ q∈B(p,x*)∩B(p,x)-S upq xpq)] + [(∑q∈T ∑ p∈B(q,x)-B(q,x*) wpqxpq +∑q∈T 

∑p∈R∩B(q,x*)∩B(q,x) wpqxpq +  ∑q∈T ∑p∈B(q,x*)∩B(q,x)-R wpqxpq)] – [∑p∈R ∑q∈T∩B(p,x)∩B(p,x*) upqx*pq + ∑p∈R ∑ 

q∈B(p,x*)∩B(p,x)-T upqx*pq + ∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) wpq x*pq  + ∑q∈T ∑p∈B(q,x*)∩B(q,x)-R wpqx*pq] = ∑p∈RUp + ∑q∈T 

Wq  - [∑p∈R ∑q∈T∩B(p,x)∩B(p,x*) upq x*pq + ∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) wpq x*pq] –             [∑ q∉T  ∑ p∈R∩ B(q,x*)∩ 
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B(q,x)upqx*pq + ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq]   = ∑p∈RUp + ∑q∈T Wq -∑(p,q)∈E (upq +wpq) x*pq- ∑ q∉T  ∑ p∈R∩ 

B(q,x*)∩ B(q,x) upqx*pq - ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq . Then,   

∑(p,q)∈D (up(q)(min)+w(p)q(min)) x*pq ≤∑p∈RUp + ∑q∈T Wq -∑(p,q)∈E (upq +wpq) x*pq- ∑ q∉T  ∑ p∈R∩ 

B(q,x*)∩ B(q,x) upqx*pq - ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq ,  so   

∑p∈RUp + ∑q∈T Wq ≥∑(p,q)∈D (up(q)(min)+w(p)q(min)) x*pq +  ∑(p,q)∈E (upq +wpq) x*pq + ∑ q∉T  ∑ p∈R∩ 

B(q,x*)∩ B(q,x) upqx*pq + ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq,  which contradicts  (5).  Hence  (u,w;x)  is strongly-

stable. g 

 

For simplicity of  notation, in what follows, we will use some times  ∑P,  ∑Q,  ∑PxQ  to denote, 

respectively,  ∑p∈P,  ∑q∈Q,  ∑(p,q)∈PxQ,  and so on.. 
 

Proposition 5.1.  Let  (u,w;x)  be a strongly-stable allocation. Then  x  is an optimal labor time 

allocation. 

Proof.  Let  x’  be any feasible labor time allocation. For all  (p,q)∈P×Q,  let  Δpq= xpq – x’pq.  We must 

show 

 (1)  ∑PxQ apq Δpq ≥ 0. 

Define  T≡{(p,q)∈C(x);  xpq-x’pq≥0},  T*≡{(p,q)∈C(x);  xpq-x’pq <0},  T(p)≡{q; (p,q)∈T},  T*(p)≡{q; 

(p,q)∈T*},  T(q)≡{p; (p,q)∈T}  and  T*(q)≡{p; (p,q)∈T*}.   Then, 

(2) ∑ q∈T(p) Δpq + ∑ q∈T*(p) Δpq =0  for all  p  and  ∑ p∈T(q) Δpq +  ∑ p∈T*(q) Δpq =0  for all  q,  by 

feasibility of  x  and  x’. Set   

(3) up≡ min{ upq; q∈T(p)}  and  wq≡ min{ wpq; p∈T(q)}.   

Then,   ∑C(x) apq Δpq = ∑T apq Δpq + ∑T* apq Δpq = ∑T( upq + wpq) Δpq + ∑T* apq Δpq 

= ∑P ∑q∈T(p) upq Δpq + ∑Q∑p∈T(q) wpq Δpq + ∑T* apq Δpq≥ ∑P up∑ q∈T(p) Δpq +  

+∑Q wq∑ p∈T(q) Δpq + ∑T* apq Δpq= - ∑P up∑ q∈T*(p) Δpq -  ∑Q wq∑ p∈T*(q) Δpq + ∑T* apq Δpq  = ∑T* - (up + wq) 

Δpq  + ∑T* apq Δpq=  ∑T* (apq - (up + wq)) Δpq,  where the third last equality follows from  (2). 

Since  (p,q)∈T*  we have  xpq < x’pq,  so  xpq<r(p) and  xpq< s(q)  and then  (p,q)  is unsaturated.  

From  (3)  up=upm  for some  m∈T(p)  and  wq= wkq  for some  k∈T(q),  so  m≠q  and  k≠ p  because  

(p,q)∈T*,  so  up≥up(q)(min)  and  wq≥w(p)q(min)  for all  (p,q)∈T*.  Finally, by strong stability,   (apq - 

(up(q)(min) + w(p)q(min))) ≤ 0  for all  (p, q) ∈ T*.  We also have  Δpq<0  for all  (p, q) ∈ T*,  so  ∑T* (apq - 

(up + wq)) Δpq≥0  and so  (1)  is proved.g  

 

Proposition 5.2. The set of competitive equilibrium allocations of the competitive market with non-

discriminatory demands coincides with the set of dual allocations. 

Proof. Let  (u,w;x)  be a dual allocation. It is implied by  (D)  and by the construction of  (u,w;x)  that  

this allocation  is feasible. Property  (p)  is implied by  (C)  and  (D); Theorem 4.3 implies that  (u,w;x)  is 

strongly-stable. Now use the definition of  u  and  w  to get that  (u,w;x)  is non-discriminatory and then, 

by Theorem 4.6, it is a competitive equilibrium allocation of the competitive market with non-

discriminatory demands.  
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Conversely, let  (u,w;x)  be  a competitive equilibrium allocation of the competitive market with 

non-discriminatory demands. Define  (y,z)  such that  yp=up(min)  and  zq=wq(min)  for all  p∈P  and  

q∈Q.  Theorem 4.6 implies that (u,w;x) is strongly-stable and  

(1) upq=up(min)=yp  and  wpq=wq(min)=zq  for all  (p,q)∈P×Q.                         

Proposition 5.1 implies that  x  is an optimal labor time allocation, so it is an optimal solution of  (P1). 

Theorem 4.3 implies that (p) is satisfied, so  yp+zq≥apq  if  xpq=0.  By (1)  it follows that  yp + zq=apq  if  

xpq>0,  so   (B2)  is satisfied.  The feasibility of (u,w;x)  implies that  (y,z)  minimizes (B1)  and  (B3)  is 

satisfied.  Hence  (u,w;x)  is a dual allocation and the proof is complete. g 
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