
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MARILDA SOTOMAYOR 

 
 

 

 

 

 

 

 

 

WORKING PAPER SERIES   Nº  2013-09 
 

Department of Economics- FEA/USP 

MODELING COOPERATIVE  
DECISION SITUATIONS: THE 
DEVIATION FUNCTION FORM AND 
THE EQUILIBRIUM CONCEPT 



DEPARTMENT OF ECONOMICS, FEA-USP 
WORKING PAPER     Nº  2013-09 

 

 

MODELING COOPERATIVE DECISION SITUATIONS: THE DEVIATION 
FUNCTION FORM AND THE EQUILIBRIUM CONCEPT 
 

 

Marilda Sotomayor (marildas@usp.br) 

 

 

 

 

 

 

JEL Codes:  C78, D78 

Keywords:  cooperative equilibrium, core, stability, matching 

Abstract:  

Rosenthal (1972) points out that the coalitional function form may be insufficient to analyze some 
strategic interactions of the cooperative normal form. His solution consists in representing games in 
effectiveness form, which explicitly describes the set of possible outcomes that each coalition can 
enforce by a unilateral deviation from any proposed outcome. 
This paper detects some non-appropriateness of the effectiveness representation with respect to 
the stability of outcomes against coalitional deviations. In order to correct such inadequacies, it is 
proposed a new model, called deviation function form, which modifies Rosenthal’s setting by also 
modeling the coalition structure, in an appropriate way, and by incorporating new kinds of  
coalitional interactions, which support the agreements proposed by deviating coalitions. This 
modification propitiates that the concept of stability of the matching models, viewed as a cooperative 
equilibrium concept, be translated to any game in the deviation function form and be confronted with the 
traditional notion of core. Precise answers are given to the questions raised.  



 1 

MODELING COOPERATIVE DECISION SITUATIONS: THE 

DEVIATION FUNCTION FORM AND THE EQUILIBRIUM 

CONCEPT 

  

    MARILDA SOTOMAYOR1 

Universidade de São Paulo 

Department of Economics, Cidade Universitária, Av. Prof. Luciano 

Gualberto 908, 05508-900, São Paulo, SP, Brazil 

e-mail: marildas@usp.br 

ABSTRACT 

Rosenthal (1972) points out that the coalitional function form may 

be insufficient to analyze some strategic interactions of the cooperative 

normal form. His solution consists in representing games in effectiveness 

form, which explicitly describes the set of possible outcomes that each 

coalition can enforce by a unilateral deviation from any proposed 

outcome.  

This paper detects some non-appropriateness of the effectiveness 

representation with respect to the stability of outcomes against coalitional 

deviations. In order to correct such inadequacies, it is proposed a new 

model, called deviation function form, which modifies Rosenthal’s setting 

by also modeling the coalition structure, in an appropriate way, and by 

incorporating new kinds of coalitional interactions, which support the 

agreements proposed by deviating coalitions. This modification propitiates 

that the concept of stability of the matching models, viewed as a 

cooperative equilibrium concept, be translated to any game in the 

deviation function form and be confronted with the traditional notion of 

core. Precise answers are given to the questions raised.  
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INTRODUCTION 

We idealize an environment in which a cooperative decision 

situation takes place, involving a finite set  of agents who can freely 

communicate and want to form coalitions. These agents will be called 

players.  

The players involved in a coalition interact among themselves, by 

acting according to established rules, aiming to reach an agreement (or to 

sign a contract) on the terms that will regulate their participation in the 

given coalition. An outcome is a set of coalitions, whose union is the 

whole set of players (coalition structure), together with the set of 

agreements reached by the coalitions in any phase of the negotiation 

process. An outcome is feasible if it does not violate the established rules. 

One of the features of this cooperative decision situation is that a 

player might want to enter in more than one coalition, so a coalition 

structure is not necessarily a partition of the whole set of agents. Also, the 

agreements reached in a given coalition are independent of the agreements 

reached in any other coalition. Of course a player derives a utility level in 

each coalition he2 enters and has preferences over possible outcomes.  

In this context, the natural question is then: What outcomes can one 

predict that will occur? 

The answer to this question involves the assumption that the 

players should take their decisions based on some criterion of rationality, 

taking into account the consequences of the possible agreements they 

could make in each coalition they could form. More specifically, we 

idealize the cooperative decision situation by assuming that all agents are 

rational and we postulate that the cooperative behavior of the players 

should be governed by the following line of reasoning: 

 “Facing a feasible outcome  x,  any coalition  S  of players will 

take any joint action against  x  (this joint action may involve current 

partners out of the coalition), whenever such action is allowed by the 

established rules and all the outcomes that might arise from this 

particular joint action are preferred to  x  by all players in  S”.     

                                                 
2 For simplicity of exposition, along this paper we will refer to a player as “he”. 
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The consequences of this line of reasoning for the players lead 

naturally to some kind of equilibrium, which we will call cooperative 

equilibrium. The intuitive idea is that a feasible outcome  x  is a 

cooperative equilibrium if there is no coalition whose members can 

profitably deviate from x, by taking actions that are allowed by the 

established rules. 3  

Since the players take rational decisions and are free to interact 

coalitionally, we can expect that the outcomes that will occur should be 

stable against any coalitional deviation. Thus the prediction will be that 

only cooperative equilibria will occur. 4 

In general terms, the way game theorists use to approach a 

cooperative decision situation is by constructing a mathematical model. 

They do that by abstracting from the negotiation process and focusing on 

what each coalition can obtain, without specifying how to obtain. The 

model is called cooperative game. How much of the details of the rules of 

the game should be retained is the central issue in the modeling of a 

cooperative game situation. Certainly, this depends on the purpose of the 

analysis.  

Basically, the actions players can take to play the game are 

modeled by the set of feasible outcomes. However, the feasible outcomes 

are too general to capture all the relevant details of the rules of the game 

for the purpose of observing cooperative equilibria.  It turns out that no 

cooperative equilibrium analysis can ignore the set of feasible actions that 

the players in a coalition are allowed to take in order to deviate from a 

given feasible outcome. Taking this into account, the game theorists 

proposed forms, which represent special classes of cooperative games, to 

serve as vehicle for the equilibrium analysis of these games. For example, 

                                                 
3 This concept contrasts with that of core: An outcome  x  is in the core if there is no 
coalition  S  whose members can profitably deviate from  x  by interacting only among 
themselves. Therefore, every cooperative equilibrium is a core outcome. 
 
4 Well known special cases of such a cooperative decision situation are the matching 
markets. The coalition structure is given by a matching and the individual payoffs of the 
players only depend on their agreements with their partners. In these markets the intuitive 
idea of cooperative equilibrium is captured by the concept of stability, which has been 
defined locally, for every matching model that has been studied, since Gale and Shapley 
(1962).  
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the cooperative normal form represents games in which each player 

participates in only one coalition and the payoff of a player is conditioned 

to the actions taken in all coalitions formed. In the characteristic function 

form, an outcome is represented by the payoffs of the players, so the 

information with respect to the actions the players take to reach these 

payoffs is lost. The conditionality that characterizes the payoffs of the 

players in the cooperative games in the normal form is also lost. 

Consequently, as observed in Rosenthal (1972), we may have an outcome 

which is in the core of the game in the characteristic function form but it is 

not in the core of the game in the normal form. 

In an attempt to correct the imperfections of the characteristic 

function representation, Rosenthal (1972) proposed the effectiveness 

form, which is enough general to model cooperative games in normal 

form. Then, an outcome might consider the actions which support the 

payoffs, and the payoffs of a coalition might depend on the actions taken 

by  the players out of  the coalition. For a given coalition  S  and a given 

outcome  x,  Rosenthal defined a set of alternative outcome subsets which 

the members of  S  can enforce against  x.  

In the characteristic function form and in the effectiveness form, 

the joint actions that the members of a coalition can take against a 

proposed outcome, and that can be captured by these models, are restricted 

to “interactions among themselves”, so that the cooperative analysis is 

based on the core. However, when the rules of the game allow the 

coalitions to do more than “to merely interact among themselves”, we may 

expect that some core outcomes will not occur. (Sotomayor, 1992, 1999, 

2010, 2012). In these cases the cooperative equilibrium analysis only 

based on the core is not the most appropriate approach.  

A simple example in the text illustrates that the cooperative 

equilbrium analysis may be deficient if it uses as vehicle the characteristic 

function form or the effectiveness form. In this example none of these 

forms captures all the details of the established rules that are relevant to 

conclude if a given outcome is or is not a cooperative equilibrium.  

It is for solving problems as the one presented in that example that 

we propose the deviation function form (df-form, for short). This form is 
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a mathematical model which intends to serve as vehicle for cooperative 

equilibrium analysis of cooperative decision situations of the type 

idealized here. Our framework is more general than the effectiveness form 

and it complements that form by also capturing the kinds of coalitional 

interactions that support the agreements proposed by deviating coalitions. 

More specifically, as in the effectiveness form, we also define a function, 

the deviation function, that for each feasible outcome  x  and coalition  S  

associates a set of feasible deviations from  x  via  S. These outcomes 

intend to reflect, in some sense, which feasible actions the members of  S  

can take against  x. Since these feasible actions for the players in  S  are 

not necessarily restricted to “interaction only among themselves”, the two 

sets may be distinct and the set of deviation outcomes from  x  via  S  

contains the set of effective outcomes for  S  against  x.  

The intuitive meaning of a feasible deviation from an outcome  x  

via some coalition  S  leads naturally to the identification of some structure 

that such deviation should have for capturing the relevant details of the 

rules of the game for the cooperative equilibrium analysis purpose. 

Roughly speaking,  in a feasible deviation  y  from  x  via  S,  (i) the 

members of  S make new agreements and make these agreements only 

among them; (ii) if a current coalition of  x  is maintained in  y,  and gives 

to its members higher individual payoffs than those obtained at  x,  then 

this current coalition must be contained in  S; (iii) any coalition formed 

with players in  S  and players out of  S  must be some current coalition of  

x; (iv) the interaction inside such coalition must keep the current 

agreements or reformulate some of the terms of them. As illustrated by an 

example in the text, the reformulation of the agreements in some current 

coalition does not increase the individual payoffs of the members of that 

coalition.  

Some internal consistency is required for the set of feasible 

deviations from an outcome  x  via some coalition  S.  If  y  belongs to this 

set, then any feasible outcome at which the players in  S  take the same 

actions as at  y  is also a feasible deviation from  x  via  S. Also, if the 

members of coalition  S  only interact among themselves, then y  is a 

feasible deviation from  x  via  S.  If ,in addition, the payoffs of the players 
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in  S only depend on the coalitions they form, then the outcome is a 

feasible deviation from  any feasible outcome via  S. 

The intuitive idea of cooperative equilibrium for deviation function 

form games is captured by the solution concept called stability, whose 

definition uses a new kind of domination relation. Roughly speaking, a 

feasible outcome  x  is destabilized by a coalition  S  if there is some 

feasible deviation from  x  via  S  such that all the outcomes that arise from 

this particular deviation are preferred to  x  by all players in  S. An 

outcome is stable if it is not destabilized by any coalition.  

For the models where the payoffs of the members of the coalitions 

only depend on the agreements made inside the coalitions, the definition 

of stability has a simpler form: A feasible outcome  x  is stable for a game 

in the deviation function form if there is no coalition  S  and no feasible 

deviation from  x  via  S  which is preferred to  x  by every player in  S.  

This definition applies to the matching models, providing a general 

definition of stability for these models.  

The key observation in the modeling of the cooperative decision 

situation idealized here is that there might exist more than one way to 

represent an outcome, and some of these representations might lead to 

incorrect conclusions. For example, consider the outcome at which each of 

the following pairs of agents, S1={p1, q1}, S2={p1,q2}  and S3={p2,q3},  

agrees to work together. Suppose these agreements are independent. 

Clearly,  C1={S1, S2, S3},  and  C2={S1∪S2, S3}  can be used to represent 

the given outcome. Now observe that the alternative outcome  C3 at which  

p1  keeps its partnership with  q1,  and  p1  and  q3  form a new coalition, is 

a feasible deviation from  the given outcome via  S={p1, q3}.  However, 

this outcome cannot be identified as a feasible deviation from  C2  via  S, 

since  {p1,q1}  is not one of the current coalitions of  C2.  Thus, the 

outcome might be unstable if it was represented by  C1 and might be 

stable if it was represented by  C2. 

The way we found to avoid such inconsistency in the 

representation of an outcome was to require that in the modeling of a 

feasible outcome, the coalitions be minimal for the respective agreements. 

Roughly speaking, a coalition is minimal if its members cannot reach the 
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part of the agreement due to them by rearranging themselves in proper 

sub-coalitions. Thus, in the situation above, the given outcome cannot be 

represented by  C2  because  S1∪S2  is not minimal. The players in  S1  and 

in  S2  get the same agreements as they get in S1∪S2,  but in two proper 

sub-coalitions.   

In the remaining part of this paper we define the effectiveness 

function for games in which the outcomes are supported by a minimal 

coalition structure and we use this function to define the core for these 

games. Then we establish the connection between the core concept and the 

cooperative equilibrium concept in a game in the df-form. We also provide 

a sufficient condition under which these two concepts are equivalent.  

We point out that when the game is derived from the cooperative 

normal form, there is some connection between the stability concept and 

the concept of strong equilibrium point5: the stable outcomes at which all 

players are single are the strong equilibrium points of the strategic game 

associated. 

Finally we derive the df-form of a game given in the characteristic 

function form, under the assumption that this form fully describes the 

decision problem in consideration.6 For such game we prove that the core 

and the stability concepts are equivalent. 

Further details are discussed in the text. In section 2 the 

cooperative normal form, the coalitional function form and the 

effectiveness form proposed by Rosenthal (1972) are described and an 

example is presented with the intent of illustrating some inadequacy of the 

coalitional function form and the effectiveness form for the cooperative 

equilibrium analysis purpose. Section 3 is devoted to model a cooperative 

decision situation in the df- form, to explicit the primitives of this model 

and to propose the axioms that establish the structure of the feasible 

deviations.  Section 4 defines the solution concept of stability for games in 

the df-form as the notion that captures the intuitive idea of cooperative 

quilibrium for these games. Section 5 defines the core and the 
                                                 
5 The concept of strong equilibrium point is due to Aumann (1967): a profile of strategies 
such that no coalition can gain by deviating from it while the others retain the same 
strategies. 
6 These games were called coalitional games by Shapley. 
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effectiveness function for a game in df-form. Section 6 is devoted to prove 

the connection between the core and the stability concepts in games in the 

df-form. Section 7 derives the df-form of a coalitional game in the 

characteristic function form and proves that, in the coalitional games, the 

stability concept is equivalent to the core concept. Section 8 concludes the 

paper and section 9 presents some historical remarks on the stability 

concept.  

 

2. MOTIVATION 

 The normal form of a cooperative game is derived from strategic 

situations in which agents can gain from cooperation.  It consists of (a) a 

finite set  N  of players; (b) a strategy set  ΣS  associated with each 

coalition  S⊆N; (c) for each outcome  (P,σ),  where  P={S1,…,Sk}  is a 

partition of  N,  and  σ=(σ1, …, σk)  is a k-tuple of strategies, with  σj∈ΣSj,  

j=1,…,k, there is associated an  |N|-tuple of utility payoffs.7 Thus, the 

utility payoff of a player depends on the actions taken in all partition sets 

belonging to  P.  

The strategies in  ΣS  represent the actions allowed to  S  by the 

rules of the game. They involve all members of  S  and only members of  S  

and are addressed to the members of  S, but they may be conditioned to 

the actions taken by players out of  S. 

For each non-empty coalition S, the coalitional function  V 

specifies a set V(S)⊆ R|S|. Normally,  V(S)  is interpreted as the set of |S|-

dimensional payoff-vectors, each of which coalition  S  can “assure” itself 

in some sense, through interactions only among its members. A game in 

coalitional function form is a triple  (N,V,H),  where  H  is the set of 

possible utility outcomes for the players.8 

The effectiveness form of a game was proposed by Rosenthal 

(1972). A game  G  in effectiveness form consists of (a) a finite set  N  of 

players; (b) a set  X  of outcomes; (c) an ordinal, vector-valued utility 

                                                 
7 The difference between this game form and the non-cooperative normal game form is 
that in the non-cooperative case the partition is always formed with 1-player coalitions.   
8 Additional assumptions are generally required of  (N,V,H). The interested reader is 
referred to Aumann (1967) for a more complete discussion of the coalitional function 
form. See also Kannai, Y. (1992).  
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function  u: X→R|N|;  and (d) for each point  x∈X,  an effectiveness 

function, which maps every coalition  S⊆N  into a collection of subsets of  

X.9 

The effectiveness function for any proposed outcome  x,  should 

identify, for each coalition  S,  the set of alternative subsets of outcomes 

which the members of  S  can enforce, at least in a first round, against  x, 

by interacting only among themselves. 

The core concept for this framework, defined by Rosenthal (1972), is 

the following:  

 

The core of a game in the effectiveness form is defined to be the 

set of outcomes against which there exists no objection.  

 

The idea of an objection is very simple. Suppose an outcome  x  arises 

in a negotiation process. Suppose that coalition  S,  through actions that 

only involve players in  S, enforces the set  Y.  Then  S  objects to  x  with 

objection set  Y  if every point  y∈Y  that might “reasonably” arise  is 

preferred by every member of  S  to  x.  In this case, every such point  y  is 

called  an objection of  S  against  x  

Therefore, if  S  objects to  x  then, by interacting only among them in 

a convenient way, the elements of  S  are able to get higher payoffs than 

those given at  x.   

In the coalitional function formulation, it is usually assumed that 

the actions taken by the players in N\S cannot prevent  S  from achieving 

each of the payoff-vectors in V(S). This unconditional aspect of the 

coalitional function form makes it deficient in capturing certain features of 

some cooperative decision situations, such as those that can be represented 

in the normal form.  

 The effectiveness form representation of a game is intended to 

correct such deficiency of the coalitional function form. Its main 

characteristic is that it is adequate to model cooperative games in normal 

form, since it captures game situations in which the utility levels reached 
                                                 
9 Originally (d) requires, for each coalition  S⊆N,  an effectiveness function  which maps 
ever point  x∈X into a collection of subsets of  X. 
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by a coalition  S  also depend on the actions taken by players in  N/S.  This 

dependence is not expressed by  V(S).10    

Example 2.1, below, illustrates that there may be some features of the 

cooperative decision situations that are relevant for the purpose of 

cooperative equilibrium analysis, which are not modeled either by the 

effectiveness form or by the coalitional function form. In this example the 

cooperative analysis based upon the core is not the correct approach. 

 

EXAMPLE 2.1. (The effectiveness form and the characteristic 

function form do not capture all relevant details of the rules of the 

game for the purpose of cooperative equilibrium analysis)  

Consider a simple market of buying and selling with two sellers,  q1  

and  q2,  and one buyer  p.  Let  N  denote the set of agents. Seller  q1  has 

5 units of a good to sell and seller  q2  has 1  unit of the same good. The 

maximum amount of money buyer  p  considers to pay for one unit of the 

good is  $3. This agent has no utility for more than 5 units of the good. 

The negotiations are made between the buyer and each seller, 

independently, respecting the quotas of the agents, and the agents identify 

utility with money. Furthermore, the market allows some kind of 

flexibility on the number of items negotiated between the buyer and seller  

q1: Once the price of one item is negotiated, the buyer gets a discount of   

k%  over that price if he acquires  5 units of the good. 

Consider the following allocation  x  at which buyer  p  acquires  5  

units of the good of seller  q1  and pays to him  $1.80  for each unit. Then 

seller  q1  will get the total payoff of  $9  and the buyer will get the total 

payoff of  $6.  Seller  q2  does not sell anything.  

We can see that  x  is a cooperative equilibrium when  the discount is  

20%  and it is not so when  the discount is  10%. Furthermore  x  is in the 

core for any  k.   

In fact, if  the discount is  10%  and  x  is proposed, then buyer  p  and 

seller  q2  can counter-propose an alternative outcome  y   that both prefer. 

                                                 
10The interested reader can see Examples 1 and 2 of Rosenthal (1972) , where an outcome 
is not in the core of the game represented in normal form but it is in the core of the game 
in coalitional function form. 
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At this outcome buyer  p reduces, from  5  to  4,  the number of units to be 

acquired from  q1,  in order to trade with  q2.  Then he pays  $2  for each 

unit of the good of  q1  and  q2  sells his item to  p  for  $0.50.  We can 

expect that  p  and  q2 might want to take these actions because they are 

allowed by the rules of the market and make both of them better off. The 

power of  p  of increasing his payoff  is due to  q1’s concurs,  which is 

assured by the flexible nature of the agreement with respect to the number 

of units negotiated. Therefore,  x  cannot be considered a cooperative 

equilibrium when  k=10. 

The point  (6,9,0)  is the payoff-vector yielded by  x, where the first 

component is the payoff of the buyer, the second component is the payoff 

of seller  q1  and the third component is the payoff of seller  q2.  The 

outcome  y  yields the utility payoff  (6.5, 8,0.5),  which players  p  and  q2  

both prefer.  

Now observe that the value of the discount is not informed either by 

the characteristic function form or by the effectiveness form. By using the 

characteristic function  V  one can only conclude that  (6.5, 8,0.5)  is in  

V(N)  and (6.5,0.5) is not in  V(p,q2),  so  (6.5, 8,0.5)  does not dominate  

(6,9,0)  via coalition  {p,q2}.  Indeed, the payoff-vector  (6,9,0)  is clearly 

undominated, so it is in the core of the coalitional function form  of the 

game.   

Under the effectiveness form it is only possible to know that  y  is not 

in any subset of outcomes which can be enforced by  {p,q2}  against  x.  

Actually, there is no objection against  x,  so  x  is in the core of the 

effectiveness form of the game. 

If  the discount is  20%, it is easy to verify that there is no way for  p  

to increase his total payoff by only trading with  q2.  If  p  reduces from  5  

to  4  the number of units negotiated with  q1 , he will have to pay  $2.25  

for each unit of the good of  q1.  In this case there is no price that can 

increase the current total payoffs of  p  and  q2.  Also there are no prices 

that can increase the current total payoffs of the three agents. Therefore, 

the outcome  x  is a cooperative equilibrium, so it is in the core, when  

k=20. 
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We can also observe that, for any  k,  there are no prices that can 

increase the current total payoffs of the three agents, so  x  is in the core 

for any  k.  

In sum, it is advantageous for the buyer to acquire all the units of the 

good of seller  q1  when the discount is greater than or equal to  20%. 

Otherwise, he will want to also trade with seller  q2.  

The  point is that a cooperative equilibrium analysis for the market of 

this example cannot ignore the type of flexibility of the agreements that 

can be reached. On the other hand, the type of flexibility of the agreements 

cannot be modeled, either by the effectiveness form or by the 

characteristic function form. Therefore, there is no way to conclude from 

these representations if  x  is or is not a cooperative equilibrium. g 

 

 This example indicates that a cooperative equilbrium analysis may 

be deficient if it uses as vehicle the characteristic function form or the 

effectiveness form. It is for solving problems as the one presented in this 

example that we propose the deviation function form introduced in the 

next section.  

 

3. MODELING COOPERATIVE GAMES IN THE df-FORM 

 

In this session we provide a mathematical model for the 

cooperative decision situation described in section 1. The modeling is 

naturally obtained through the selection of the relevant aspects that should 

be retained for the cooperative equilibrium analysis purpose. The resulting 

model, which will be called deviation function form, intends to correct the 

deficiencies of the effectiveness form, as those pointed out in Example 

2.1. In what follows, if  x∈XB  and  B∈B,  we will denote by  xB  the 

restriction of the outcome  x  to the coalition  B  and by  xp  the restriction 

of  x  to  B={p}.  Given any sets  A  and  B,  we will denote by  A\B  the set 

of elements that are in  A  and are not in  B. 

In such cooperative decision situation there is a set  N  of 

participants called  players.  Any subset of  N  will be called coalition. A 

set of coalitions whose union is  N  is called coalition structure. Each 
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player may enter more than one coalition, so a coalition structure is not 

necessarily a partition of  N. It is assumed that the members of a coalition 

do not care about who belongs to the other coalitions that their partners 

might form. We will denote by  C  the set of feasible coalition structures. 

These are the coalition structures which do not violate the established 

rules, which include the restrictions on the number of coalitions a player 

may form or on the number of units of labor time he owns to distribute 

among his partners, etc. (In a college admission market, for example, a 

feasible coalition structure is given by a matching, which respects the 

quotas of the colleges, and such that no student is admitted in more than 

one college). 

Given a feasible coalition structure  β, a set of feasible agreements 

(agreements, for short)  ∇S  is associated to each coalition  S∈β. A feasible 

agreement  ∂S∈∇S  models a possible coalitional interaction among the 

players belonging to  S, whether and when  S  forms, that involves only 

players in  S  and that  is feasible to be reached  if these players interact 

only among themselves, according to the rules of the game. In general 

terms, an agreement is feasible for a given coalition if the activities that 

are specified in this agreement can be feasibly developed by each member 

of the coalition.  

In a feasible coalition structure, two feasible agreements  ∂S  and  

∂T  are independently reached by  S  and  T,  in the sense that the activity 

developed by  S  is independent of that developed by  T.  

  An agreement must specify the part of it that is due to each player 

in  S.  Denote   

 

∇≡{∇S;  S∈C}. 

 

For an abuse of notation we will use  ∇p  instead of  ∇{p}. 

Note that, unlike the normal form of a cooperative game, the set of 

agreements established by a coalition is not, necessarily, restricted to a set 

of strategies. In the discrete two-sided matching models, for example, a 
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feasible coalition structure is a feasible two-sided matching, which also 

models the corresponding agreements (who is matched to whom).  

Given a coalition structure  B={B1,B2,…,Bk},  a k-tuple  

∂=(∂1,…, ∂k),  with  ∂j∈∇Bj,  is called agreement structure for  B.  If  

∂  is an agreement structure for  B,  we say that   B  is compatible 

with  ∂,  and vice-versa.  

An outcome is represented by a pair  (∂;B).  As discussed in section 1, 

there might exist more than one way to represent an outcome, and some 

of these representations might lead to incorrect conclusions about the 

stability of the outcome we are trying to model. To avoid this problem 

it is required that, in the modeling of a feasible outcome, the coalitions 

be minimal for the respective agreements. Roughly speaking, a 

coalition is minimal if its members cannot reach the part of the 

agreement due to them by rearranging themselves in proper sub-

coalitions. It is this property that guarantees uniqueness in the 

representation of an outcome. The resulting representation will be called 

agreement configuration. 

 

Definition 3.1. Let  B  be a coalition structure and let  ∂  be an  

agreement structure for  B.   Coalition  B∈B  is a minimal 

coalition at (∂,B) (minimal coalition, for short) if its members 

cannot reach the part of  ∂B  due to them by rearranging 

themselves in proper sub-coalitions (not necessarily pairwise 

disjoint) of  B. We say that  B  is a minimal coalition structure 

compatible with  ∂  if every  B∈B   is a minimal coalition a  

(∂,B). 

 

Definition 3.2. An agreement configuration is a pair  (∂;B) ≡ 

((∂1,B1)…, (∂k,Bk)),  where  B  is a minimal coalition structure 

compatible with  ∂.  
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For technical convenience we will consider that if some minimal 

coalition has only one player then this player is reaching an agreement 

with himself. In this case we say that the player is single in this coalition.11  

If a player  p  belongs to several minimal coalitions at an agreement 

configuration, then the agreements reached by  p  in each minimal 

coalition are independent. This is the case, for example, of the continuous 

two-sided matching markets in which the players form multiple 

partnerships and the utilities are additively separable. (See Sotomayor 

1992, 2012).  

During the negotiation process that takes place in such environment, 

we can imagine that a sequence of outcomes will emerge.  It is reasonable 

to expect that in such outcomes no coalition takes actions that are injurious 

to its own welfare, or that violate the established rules or the restrictions, 

which the players might have on their participation in the game. E.g., we 

cannot expect that during the negotiation process a player agrees to get 

less in some minimal coalition than the minimum he can guarantee 

himself by playing as a single player; it is reasonable to also expect that if 

in a labor market, for instance, a firm  agrees to hire a set of workers in 

block,  then no subset of them could give it a higher profit by maintaining 

the current wages of each one, and so on.  

In this context, the outcomes that can be formed at the several steps of 

the negotiation process are the feasible outcomes. 12 Thus, 

 

                                                 
11 If side payments are not allowed in the one-to-one assignment game of firms and 
workers of Shapley and Shubik (1972), for example, the minimal coalitions are given by 
the firm-worker pairs and by the single agents. The agreement configuration is given by a 
one-to-one feasible matching, which specifies who works to whom, and an agreement 
structure, which specifies the salary each worker should receive from the firm which 
hires him. It should be clear that, if side payments are allowed, then a firm-worker pair 
may not be a minimal coalition at the given outcome. In the well known College 
Admission model of Gale and Shapley(1962) (with responsive preferences), a minimal 
coalition is formed by one student and one college, or only by a single student or a single 
college.  
 
12 In the college admission model with responsive preferences, for example, every pair 
formed with a student and a college at a feasible matching is mutually acceptable. In a 
model where the colleges admit the students in block, a minimal coalition must include 
all students that are admitted by a college. In this case, at a feasible matching, every 
college must admit an acceptable group of students, but this group might include 
individually unacceptable students for the college.  
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Under the assumption that the players take individual rational 

decisions and act according to the established rules, the idea of a 

feasible agreement configuration is captured by an outcome that can 

be formed at some step of the negotiation process. (Note that a feasible 

outcome is not necessarily a final outcome of the negotiation process). 

Thus, the feasible outcomes model the actions that the players can take 

to rationally play the game. The set of feasible outcomes 

corresponding to a given coalition structure  B  will be denoted by  XB;  

the set of feasible outcomes,  X,  is the union of all  XB’s.  

  

The players derive an individual utility level, or individual payoff, 

in each coalition they enter. That is, there is a function  UpB: XB→R,  so 

that, for each feasible agreement configuration  (∂;B), the utility level 

enjoyed by  player  p  if he contributes to coalition  B∈B  at  (∂;B)  is given 

by  UpB(∂;B).  The number  UpB((∂;B))  is called p’s individual payoff at 

(∂;B)  corresponding to coalition  B.13  Thus, the payoff of a player might 

be multi-dimensional: if say,  p  contributes to the minimal coalitions  B1, 

B2  and  B3  at   (∂;B),  then he gets the array of individual payoffs  

{UpB1((∂;B)), UpB2((∂;B)), UpB3((∂;B))}14.  The array of individual payoffs 

of player  p  is simply called  p’s  payoff.  The profile of payoffs, one for 

each player, is called payoff vector.  

Given an agreement configuration  (∂;B),  the coalition structure  B, 

together with the corresponding payoff vector  w  is called payoff 

configuration corresponding to  (∂;B)  and it is denoted by  (w,B).  We say 

that  w is compatible with  B  and vice-versa. The payoff configuration  

(w,B)  (respectively, payoff vector  w) is feasible if  (∂;B)  is feasible.15 

                                                 
13 In some situations, as those represented by a matching market, the value  UpB((∂;B))  
only depends on the agreements made by the players in  B. In some other situations, as 
those that can be represented in the cooperative normal form, such value may also depend 
on the agreements reached in the minimal coalitions that do not contain  p.  
14 This contrasts with the characteristic function form and the effectiveness form, in 
which the payoffs are one-dimensional.  
15 In the Multiple partners assignment game of Sotomayor (1992), for example, the 
partners must agree on the division of the income they can generate by working together 
and a player may contribute to more than one partnership. In this model, a feasible 
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When the agreement structures of the feasible outcomes are given by the 

payoff vectors of the players, the payoff configurations are the outcomes 

of  the game. (Further discussion related to this subject is provided in 

section 7).  

Of course, the players have preferences over outcomes.  

 

 The structure of preferences over the outcomes is modeled by an 

ordinal payoff function  u  which associates an |N|-tuple of utility 

payoffs  u(x)=(u1(x),…,u|N|(x)) to each outcome  x.  

 

Then, player  p  prefers the feasible outcome  x  to the feasible 

outcome  y  if  up(x)>up(y); he is indifferent between the two outcomes if  

up(x)=up(y).  

The several types of coalitional interactions the members of a 

coalition  S  are allowed to perform against a feasible outcome  x,  in order 

to deviate from  x,  are modeled by the set  φx(S) of  feasible deviations 

from  x  via  S.  

Given a coalition  S  and an agreement configuration  y=(∂,B),   we 

denote by φ*x(S,y)  the set of outcomes that could result if  S  deviated 

from  x  “by taking the same actions it takes at  y”. It can be interpreted 

that coalition  S  is able, through its actions, to deviate from  x  by 

restricting the negotiation process to any one of the subsets φ*x(S,y)’s.  

Nevertheless, coalition  S  is not able to determine the particular outcome 

in  φ*x(S,y)  that will result. Clearly,  y∈φ*x(S,y),  so  φ*x(S,y)≠φ. 

The formal definition of   φ*x(S,y)  requires some preliminaries.  

Player  q  is called  partner of  S  under an agreement configuration  

y=(∂,B),  if  q∈B,  for some coalition B∈B  such that  B∩S≠φ.  According 

to this definition, if  S={p},  the set of partners of  {p}  under  (∂,B)  is the 

union of all coalitions in  B  that contain  p  and so the partners of  p  may 

not be concentrated in the same minimal coalition.  

                                                                                                                         
outcome is given by a feasible payoff configuration, given by a feasible many-to-many 
matching together with an array of individual payoffs for each player.  
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Let  y=(∂,B).  We will use the notation  P[S; y]  to denote the set of 

all partners of  S  at  y. Therefore, 

 

P[S; y]={p∈N; p∈B for some B∈B and B∩S≠φ} 

 

That is, P[S; y]=∪Bj ,  over all  Bj∈B  such that Bj∩S≠φ.                   

Clearly,  S⊆ P[S; y]; i.e., each member of  S is also partner of  S.  

Set, 

 

S*(y)≡{Bj∈B; Bj⊆P[S;y]};   ∂S*(y)≡{∂Bj∈∂; Bj∈S*(y)}.   

           

That is, ∂S*(y)  is the set of agreements reached in the minimal 

coalitions at  y  whose intersection with  S  is non-empty. Define   

 

  yS*≡(∂S*(y),S*(y))  and  yB\S*≡(∂ \∂S*(y), B\S*(y)).  

                                  

That is,  yS*  and  yB\S*  are, respectively, the restrictions of  y  to the set 

of partners of  S  and to the set of non-partners of  S.  Then, for each 

coalition  S,  we can decompose  y  into  yS*  and  yB\S*  and we can 

represent  it  as  y=(yS*, yB\S*). 

 If  x∈X  and  y∈φx(S),  the set  φ*x(S,y)  is then identified with the 

set of feasible deviations  z=(zS*, zB\S*)   from  x  via  S   such that  zS*=yS*.  

That is,  

   

φ*x(S,y)≡{z∈φx(S); zS*=yS*}.                            

 

Of course,  φx(S)=∪ φ*x(S,y), taken  over all y∈φx(S). 

Faced with  x,  if coalition  S  deviates from  x  according to  yS*,  then 

any outcome of  φ*x(S,y)  might result.  Excepting the case in which  

φ*x(S,y)  is a singleton, the members of  S  are not able to determine which 

particular outcome in  φ*x(S,y)  will arise.  
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The model we have just described to represent a cooperative decision 

situation is called deviation function form. Here are the primitives of this 

model: 

 

 (a) a set  N = {1, . . . ,n}  of players;  

(b) a set  C  of feasible coalition structures; 

(c) For each coalition structure  β  in  C, a set  Xβ  of feasible 

outcomes compatible with β;16  

(d) for each  p∈N, for each coalition structure β and  B∈ β,, with  

p∈B,  a utility function  UpB: X β → R;   

(e) an ordinal, vector-valued utility function  u: X → Rn,  where  

X  is the union of the sets  X β 's  for all coalition structures β ;  

(f) for each  x∈X, a deviation function  φx  from  x,  which maps 

every coalition S⊆N into a set  of feasible outcomes, called 

feasible deviations from  x  via  S.  

 

Thus, a game in the deviation function form is represented by a 6-

tuple  (N, C, X, U, u, φ),  where  U  is the array of utility functions  UpS’s  

and  φ≡{φx, x∈X}.   

The intuitive meaning of a feasible deviation from an outcome  x  

via some coalition  S  leads naturally to the identification of some structure 

that such deviation should have for capturing the relevant details of the 

rules of the game for the cooperative equilibrium analysis purpose. 

Roughly speaking,  if  y  is a feasible deviation from  x  via  S,  (i) the 

members of  S make new agreements and make these agreements only 

among them; (ii) if a coalition  B’  of  y  is a current coalition  B  of  x  and  

B’  contains players in  S,  and in addition the individual payoffs of the 

members of  B’  at  y  are higher than their current individual payoffs at  B,  

then  B  must be contained in  S; (iii) any coalition formed with players in  

S  and players out of  S  must be some current coalition of  x; (iv) the 
                                                 
16 Some times, as in the cooperative games derived from the normal form, it might be 
useful to include the set of agreements for each coalition as one of the primitives of the 
model. We decided not to do it because the set of feasible outcomes already specifies 
such set. On the other hand, the set of coalition structures is necessary to make clear that 
an outcome is supported by a coalition structure.   
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interaction inside such coalition keeps the current agreements or 

reformulates some of the terms of them. In this last case, the reformulation 

of the agreements in some current coalition does not increase the 

individual payoffs of the members of that coalition. This is illustrated in 

Example 2.1: if buyer  p  acquires  5  units of the good of seller  q1  and the 

negotiated price of one item is  $1.8,  then  he can reformulate this 

agreement by reducing from  5  to  4  the number of items negotiated in 

order to be able to make a transaction with the other seller. If this is done 

and the discount is of 10%,  the seller will increase the price of each unit 

to  $2. Clearly, the reduction of the number of items will decrease the 

individual payoffs of the buyer and of seller  q1  in the coalition  {p,q1}.  

However, this could be of interest of the buyer if he acquires the item of 

seller  q2  at a price less than $1.      

Formally we assume the axioms listed below.  P1,  P2  and  P3 

establish the structure of the feasible deviations; P4 requires a sort of 

internal consistence for the set  φx(S);  P5  and  P6  imply that the df-form 

is more general than the effectiveness form and the characteristic function 

form, respectively. 

 (P1) Let  x∈XB  and   x’∈XB’.   If  x’∈φx(S)  then  ∀  p∈S  ∃  B’∈ B’  

such that  p∈B’  and  B’⊆S. 

That is, if  x’  is a feasible deviation from  x  via  S,  compatible with 

the coalition structure  B’,   then every player in  S  belongs to, at least, one 

coalition at  B’  only formed with players in  S.   

 

(P2) Let  x=(∂,B)∈XB  and   x’=(∂’,B’)∈XB’.  Suppose  x’∈φx(S),  B’∈B’,  

B’∩S≠φ  and   B’=B,  for some  B∈B.   If   UpB’(x’) >  UpB(x)  for all  p∈B’  

then  B’⊆S. 

          That is, if  a new interaction in a current coalition  B   makes the 

players in  B   better off, then all players in  B   should be in the coalition  

S.   
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(P3) Let  x=(∂,B)∈XB  and   x’=(∂’,B’)∈XB’.  If  x’∈φx(S),  B’∈B’,  B’∩S≠φ  

and  B’⊄S,  then  B’=B,  for some  B∈B.   Furthermore, ∂B=∂’B’  or  

UpB(x’) ≤ UpB( x)  for all  p∈B. 

That is, if  a coalition  B'  of  B’  contains elements of  S  and 

elements of  N\S  then  B'  must be some current coalition of  B.  

Furthermore,  no player in  B'  can get more at  x'  than he gets at  x,  for 

his participation in  B'. 

            

 (P4) Let  x=(∂,B)∈XB.   Let  x’  and  x” be feasible outcomes compatible 

with the coalition structures  B’  and  B’’,  respectively. If  S*(x')=S*(x'')  

and  x’  agrees with  x”  on  S*(x'),  then  x’∈φx(S)  if and only if  

x’’∈φx(S).   

 

(P5) Let  x=(∂,B)∈XB.  Let  x’∈XB’,  such that if  B’∈B’,  B’∩S≠φ  then  

B’⊆S.  Then  x’∈φx(S). 

That is, all outcomes at which the players in  S  only interact 

among themselves are feasible deviations from  x  via  S.  P5  implies that 

every effective outcome for  S  against  x  is a feasible deviation from  x  

via  S.  (Example 2.1 shows that the converse is not always true). 

 

  

P6  implies that, if in addition, the payoffs of the members of  S  do 

not depend on  N\S then every feasible deviation from  x  via  S  is a 

feasible deviation from any outcome  via  S.  Therefore, every feasible 

outcome  y,  such that the payoff vector corresponding to  yS*  belongs to  

V(S),  is a feasible deviation from  x  via  S  for all feasible outcome  x. 

(Example 2.1 shows that there may be feasible deviations  y  from  x  via  

S  such that the payoff vector corresponding to  yS*  is not in  V(S)).   

(P6) Let  x=(∂,B)∈XB.  Let  x’∈XB’,  such that if  B’∈B’,  B’∩S≠φ  then  

B’⊆S. Furthermore, the utility level reached by a player if  he contributes 

to a coalition  B'  at  x'  only depends on  x'B' .  Then  x’∈φx(S)  for all 

feasible outcome  x.     
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4. THE SOLUTION CONCEPT OF STABILITY 

In this section we define a solution concept that will be called 

stability, formulated for games that can be represented in the df-form. This 

concept captures the intuitive idea of cooperative equilibrium for these 

games. The definition of stability uses the version of the domination 

relation introduced below:  

 

Definition 4.1: Let  (N, C, X, U, u, φ) be a game in the 

deviation function form. Let  x  and  y  be in  X.  Outcome  y  

φ-dominates outcome  x  via coalition  S  if: 

             (a) up(y) >up(x)   for all players  p∈ S  and   

 (b) y∈φx(S). 

 

Since a coalition  S  cannot determine the particular outcome 

in  φ*x(S,y)  that will result from its deviation from  x  according to  

yS*, it is assumed that a coalition deviates whenever all its members 

are sure to be better off. Then we can define: 

    

Definition 4.2: Let  (N, C, X, U, u, φ)  be a game in the 

deviation function form. The feasible outcome  x  is 

destabilized by coalition  S  if there is some  y∈φx(S)  such 

that  x  is φ-dominated by every outcome in  φ*x(S,y)  via 

coalition  S. An outcome  x∈X  is stable for  (N, C, X, U, u, 

φ)  if it is not destabilized by any coalition.  

 

Clearly, the cooperative equilibria for the cooperative games in the 

df-form are the stable outcomes.  

In some games, as for example the matching models, the individual 

payoffs of the members of a minimal coalition only depend on the 

agreements taken inside that coalition. We will denote by  G*  the class of 

games such that, if  y∈φx(S), the individual payoffs of the players in  S  

only depend on the part  yS*  of  y.  Therefore, the players in  S  are 

indifferent between any two outcomes in  φ*x(S,y). In the games of this 
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class, if  x  is φ-dominated by  y  via coalition  S, then  x  is φ-dominated 

via  S  by every element of   φ*x(S,y).  Thus, we can write: 

 

Definition 4.3: An outcome  x  is stable for the game 

(N,C,X,U,u,φ)∈G* if it is feasible and it is not φ-dominated 

by any feasible outcome via some coalition. 

 

Therefore, the restriction of Definition 4.3 to the matching models 

provides a general definition of stability for these models.  

 

The following example illustrates these definitions. 

 

EXAMPLE 4.1. Consider a game in the df-form derived from the 

cooperative normal form where  N={1,2}  and the sets of strategies are 

given by  ∇1={σ1, σ2}, ∇2={γ1, γ2}, ∇12={σ1γ1, σ1γ2, σ2γ1, σ2γ2}. A 

feasible outcome is given by any partition  β  of  N  together with any 

compatible combination of strategies  ∂. The payoff function  U((∂;β))  is 

given by:   

U({σ1},{γ1},{1},{2})=U({σ1γ1},{1,2})=(4,3); 

U({σ1},{γ2},{1},{2})=U({σ1γ2},{1,2})=(3,4); 

U({σ2},{γ1},{1},{2})=U({σ2γ1},{1,2})=(2,5); 

U({σ2},{γ2},{1},{2})=U({σ2γ2},{1,2})=(5,2). 

Consider  x=({σ1},{γ1},{1},{2})  and  S={2}. If we expect that 

player  1  will choose any of his strategies when player  2  deviates from  

x, then  y  and  z  are in  φx(S),  where  y=({σ1},{γ2},{1},{2})  and 

z=({σ2},{γ2},{1},{2}),  and  φ*x(S,y)=φ*x(S,z)= {y,z}. We have that  

U2(y)>U2(x)>U2(z),  so  x  is φ-dominated by  y  via  S  and is not φ-

dominated by  z  via  S. Hence,  S={2}  does not destabilize  x. It is a 

matter of verification that  {1}  does not destabilize  y. Also, no deviation 

from  x  via  {1,2}  is preferred to  x  by both players, so  {1,2}  does not 

destabilize  x. Thus,  x  is stable under this approach.  

However, if  x  is proposed, the players might claim that the 

demand for stability is too strong. They could rather relax this demand and 
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still gain something from the game. Player  2, for example, might expect 

that player 1 would keep, at least temporarily, his strategy  σ1  and so  y  

would arise.  It then seems reasonable to consider that  φ*x(S,y)={y}.  

Under this approach,  S={2}  destabilizes  x  and so  x  is not stable. g  

 

REMARK 4.1. As discussed in section 1, the main point of the theory 

developed here can be summarized in the following: facing a proposed 

outcome  x,  a coalition will take a joint action against  x  whenever such 

joint action is allowed by the rules of the game and all its members are 

sure to be better off. However, as illustrated by Example 4.1, there are 

cases in which we can expect that such line of reasoning might be relaxed. 

In general terms, if a game   Γ  is derived from the cooperative normal 

form, let us denote by   Γ#  the strategic game associated to  Γ,  obtained 

by identifying, for each player  p,  the set  ∇p  with the set of strategies for 

player  p.  Let  Ω  be the set of outcomes where all players are single. It 

seems reasonable to base the cooperative behavior of the players upon the 

following criterion of rationality:  

a coalition, which analyses the possibility of deviating from an 

outcome  x∈Ω,  takes an optimistic view.    (*) 

That is, the members of a coalition  S  will change their current 

actions whenever they are sure to be better off,  at least in a first round, 

in which the players out of the coalition still maintain their current 

agreements. In this context, if  S  deviates from  x=(∂,B)   according to  yS*,  

then the outcome that results is  (yS* , xB\S*). Then, x∈Ω  is stable if there 

is no coalition  S  whose members can be better off by changing their 

current actions while the players in  N\S  do not change theirs. This is 

precisely how the strong equilibrium point, due to Aumann, is defined. 

We have then established a connection between these two concepts:  

 

Under the assumption  (*),  the outcome  x=(∂,B)∈Ω  is stable for  

Γ  if and only if  the profile of strategies  ∂  is a strong equilibrium point 

for the strategic game  Γ#.g 
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  In any case, from the exposed above, it is understood that, in order 

to check instabilities we have to know the kinds of deviations which are 

feasible (and may be expected) to the coalitions of players. We present 

below three cases with the intention of merely suggesting the kind of 

details of the rules of the game that can be captured by the deviation 

function form. In all of them,  (P1)-(P6)  are clearly satisfied.  

 

1st case. The minimal coalition structures compatible with the feasible 

outcomes are partitions of  N.  In this case the players are allowed to enter 

one minimal coalition at most.  It is then implied by  (P1) that, given x∈X ,  

S⊆N  and  y∈φx(S),  there is no minimal coalition at  y  that contains 

elements of  S  and elements of  N\S.  Hence, at all y∈φx(S),  all partners of  

S  are in  S.    

On the other hand, at all y∈φx(S),  y≠x,  the players of  S  only 

perform standard coalitional interactions against  x: they discard all 

current agreements at  x  and make a new agreement  ∂S∈∇S, compatible 

with a feasible set of minimal coalitions whose union is  S  and whose 

pairwise intersection is the empty set.  

There are two approaches of interest. Under the first one, if  y 

deviates from  x  via  S,  the agreements chosen by the players in  N\S   at  

y  do not affect the utility levels reached at  y  by the players in  S.  Thus, 

the feasible deviations from  x  via  S  are independent of   x  and are given 

by:   

 

φ(S)≡ { y∈X; S=P[y,S]}. 

 

The other approach is appropriate when the cooperative decision 

situation is that derived from a strategic game. In such situation, the utility 

levels reached by the players in  S  when they act against  x  also depend 

on the actions taken by the players that are not partners of  S  at  x.  In 

these cases, the players in  S  might reasonably expect that their non- 

partners at  x  would continue, at least in a first round, to play their part at 

x.  Thus,  
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 y=(∂,B)∈ X   is a feasible deviation  from  x=(γ,D)  via  S   

if  (i)  S=P[y,S]  and  (ii) if  Bj∈B  and  Bj∩P[S,x]=φ,  then  

Bj=Dk,  for some  Dk∈D,  and  ∂j=γk.   

 

Remark 4.1 is related to this case. g 

 

 In the following two cases, the players are allowed to enter more 

than one minimal active coalition and may perform non-standard 

coalitional interactions. The power of a deviating coalition also depends 

on interactions among some of its members with some current partners out 

of the coalition. 

 

2nd case: The coalition structures associated to the outcomes are not, 

necessarily, partitions of  N and the agreements, in some sense, are 

flexible. 

The kind of flexibility that is allowed is specified by the rules of the 

game situation that is being modeled. In Example 2.1, the market allows 

some kind of flexibility on the number of items negotiated between the 

buyer and seller  q1: Once the price of one item is negotiated, the buyer 

gets a discount of   k%  over that price if he acquires  5 units of the 

good. Furthermore, the number of units demanded by the buyer is always 

accepted if this demand can be satisfied by the seller. It might then be of 

the interest of the buyer to reduce the number of items that was being 

proposed at  x,  to be able to trade with the other seller.  

Coalitional interactions of this sort are called agreement 

reformulations.  They are proposed by members of the deviating coalition. 

In such coalitional interactions the individual utility levels of the players 

involved in the coalition do not increase. On the other hand, this kind of 

agreement allows some of these players (those who are in the deviating 

coalition) to make new coalitional interactions with players in other 

coalitions, which might cause some increasing in their total payoffs.  
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In general, when agreements are flexible, some players in the 

deviating coalition  S  may want to keep some of its current partnerships, 

which contain partners out of  S, and to keep or to reformulate some of the 

agreements of these current partnerships.  

Agreement reformulations are not considered new agreements. 

That is, given  x=(γ,D)  and  Dj∈D,  a new agreement  ∂j  for  Dj   with 

respect to  x    is an agreement such that at least one player in  Dj   prefers   

∂j   to  γj. Furthermore, all players in  Dj  are in the deviating coalition. 

Then, under flexible agreements,  

 

y=(∂,B) is a feasible deviation  from  x=(γ,D)  via  S   if for 

every   (∂j,Bj)∈yS* either  (i)Bj=Dk  for some  Dk∈D  and  

∂j=γk;  or (ii) Bj=Dk  for some  Dk∈D,  with  Bj⊄S  and  ∂j  is 

a reformulation of  γk;  or (iii)Bj⊆S  and  ∂j  is a new 

agreement. Furthermore,  S=∪Bk  over all  Bk   with  Bk⊆S.     

 

In Example 2.1, outcome  y  is a profitable feasible deviation from  

x  via  S={p,q2}  when  k=10. g 

 

3rd case: The coalition structures associated to the outcomes are not, 

necessarily, partitions of  N and the agreements, in some sense, are rigid. 

  Under a rigid agreement, if some of the terms are altered, then the 

whole agreement is nullified. In this case, some members of  S  may want 

to keep some of its current agreements with partners out of  S  as in the 

previous case. However, they are not allowed to reformulate their current 

agreements. Then it is possible that the members of  S  arrange themselves 

into a feasible set of minimal coalitions  (i) by discarding some current 

minimal coalitions of partners (not necessarily all),  if needed; (ii) by 

keeping some others with their respective agreements; and (iii) by forming 

new sets of partners, with new agreements, only among themselves.   

Thus,  
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 y=(∂,B) is a feasible deviation  from  x=(γ,D)  via  S   if for 

every   (∂j,Bj)∈yS* either (i)Bj=Dk  for some  Dk∈D  and  

∂j=γk;  or (ii)Bj⊆S  and  ∂j  is a new agreement. 

Furthermore, S=∪Bk  over all  Bk   with  Bk⊆S. g  

      

5. THE EFFECTIVENESS FUNCTION AND THE CONCEPT OF 

CORE OF A GAME IN THE df-FORM. 

In this section we will define the effectiveness function for games 

in which the outcomes are supported by a minimal coalition structure and 

we will use this function to define the core for these games. As we have 

discussed in the previous sections, these games can be fully represented in 

the df-form.  The effectiveness function form of a game in the df-form is 

closely related to the effectiveness form proposed by Rosenthal (1972). 

Let  Γ=(N,C,X,U,u,φ)  be a game in the df-form. Given a feasible outcome  

x  and a coalition  S  define  

 

Eφx(S)≡{y=(∂,B)∈X; y∈φx(S) and if B∈B  then either B⊆S or B⊆N\S}              

(C3)  

 

That is,  Eφx(S)  is the set of feasible deviations from  x  via  S  

in which  the elements of  S  interact only among themselves. Then 

if  y∈ Eφx(S)  we have that  P[y,S]=S.  The functions  Eφx  are 

called the effectiveness functions of   Γ.   It must be pointed out that 

the level of utility reached by a player in  S  at an outcome  

y∈Eφx(S)  may also depend on the agreements made at  y  by 

players in  N\S.  

Given the game  Γ=(N,C,X,U,u,φ),  the 6-tuple  (N,C,X,U,u,Eφ),  

where  Eφ≡{Eφx, x∈X},  is called the effectiveness function form of  

Γ.  It is implied by  C3  that  Eφx(S) ⊆ φx(S)  for all feasible 

outcome  x  and coalition  S. However, these two sets may be 

distinct, as it happens in the situation illustrated by Example 2.1. 

There, the effectiveness function form is not adequate to represent 

the cooperative game situation considered. When  Eφx(S)=φx(S)  for 
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every  x∈X  and every  S⊆N,  the effectiveness function form of   Γ  

can be used to fully represent the game  Γ.  Games that can be fully 

represented in its effectiveness function form are called effective 

games. 

 

Definition 5.1: The game  Γ=(N,C,X,U,u,φ)  is an effective 

game if and only if  Eφ≡φ. 

 

If  x∈X  and  y∈Eφx(S), the set  φ*x(S,y) of feasible deviations from  x  

via  S   according to  yS* can be identified with a subset of outcomes 

enforced by  S  against  x,  denoted by  E*φx(S,y). Formally, 

 

E*φx(S,y)≡φ*x(S,y)={z∈Eφx(S); zS*=yS*}                                        

         

The definition of core of a game in the df-form (respectively, 

effectiveness function form) is given by using the domination relation. It is 

equivalent to the core concept defined by Rosenthal (1972) for a game in 

the effectiveness form. Formally, 

 

Definition 5.2: Let  Γ=(N,C,X,U,u,φ)  (respectively,  

Γ=(N,C,X,U,u,Eφ) )   be a game in the df- form (respectively, 

effectiveness function form). The feasible outcome  y  

dominates the feasible outcome  x  via coalition  S  if: 

             (a) up(y) >up(x)  ∀p∈ S  and   

 (b) y∈Eφx(S). 

 

Definition 5.3: Let  Γ=(N,C,X,U,u,φ)  (respectively,  

Γ=(N,C,X,U,u,Eφ) )  be a game in the df- form (respectively, 

effectiveness function form). The feasible outcome  x  is 

blocked by coalition   S  if there is some  y∈Eφx(S)  such that  x  

is dominated by every outcome in  E*φx(S,y).  An outcome is in 

the core of the game  Γ  if it is not blocked by any coalition. 
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In games belonging to  G*,  if  x  is dominated by some feasible 

outcome  y  via some coalition  S,  then  x  is dominated by every element 

of  E*φx(S,y). For these games we can rewrite the definition above:   

 

Definition 5.4:  Let  Γ=(N,C,X,U,u,φ)  (respectively,  

Γ=(N,C,X,U,u,Eφ) )   be a game in  G*.  An outcome is in 

the core of  Γ  if it is feasible and it is not dominated by any 

feasible outcome via  some coalition. 

 

 This is the usual concept of the core defined by the 

domination relation for games in which the payoff that a coalition  

S  can achieve does not depend on the actions taken by the players 

in  N\S. 

 

6. CONNECTION BETWEEN THE STABILITY AND THE CORE 

CONCEPTS FOR GAMES IN df-FORMS. 

Theorem 6.1 connects the core concept and the stability concept in 

a game in the df-form: the stability concept can be viewed as a refinement 

of the core concept. Such connection has been already established in 

several matching models, where examples show that the core may be 

smaller than the set of stable outcomes (see Sotomayor 1992, 1999, 2007, 

2010 or 2012, for example). This phenomenon is also illustrated in 

Example 2.1. Theorem 6.2 assures the equivalence between the two 

concepts for effective games.  

 

Theorem 6.1. Let  Γ=(N,C,X,U,u,φ) be a game in the df-form. Then the set 

of core outcomes contains the set of stable outcomes. 

Proof. It is immediate from Definitions 5.2, 5.3, 4.1 and 4.2 and 

the fact that  Eφx(S) ⊆ φx(S)  that if   S  blocks  x  then  S  

destabilizes  x. g  

 

In games in which the coalition structures are partitions of  N,  each 

player is allowed to enter one minimal coalition at most. Proposition 6.1 
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implies that, in this case, the effectiveness function form captures all the 

relevant details of the game for the purpose of cooperative equilibrium 

analysis. 

  

Proposition 6.1. Let  Γ=(N,C,X,U,u,φ)  be a game in the df-form. Suppose 

that every coalition structure in  C is a partition of  N. Then  Eφ≡φ.  

Consequently,  Γ  is an effective game.  

Proof.  By C3, we have that  Eφx(S)⊆φx(S)  for any feasible outcome  x  

and coalition  S.  Thus we only have to show the inclusion in the other 

direction. Since, by hypothesis, the players are allowed to enter one 

minimal coalition at most, (P1)  implies that if  y∈φx(S)  then every 

minimal coalition at  y  is either contained in  S  or in  N\S.  It is then 

implied by (C3) that  y∈Eφx(S).  Hence,  φx(S)⊆ Eφx(S)  and the proof is 

complete.g 

 

Theorem 6.2. Let  Γ=(N,C,X,U,u,φ) be a game in the df-form. Suppose  

that  Eφ≡φ. Then,  the set of core outcomes equals the set of stable 

outcomes.    

Proof.   Let  x  be in the core of   Γ. Then  x  is stable, for otherwise 

Definition 4.2 implies that there is some coalition  S  and some  y∈φx(S)  

such that  x  is φ-dominated, via  S, by every outcome in  φ*x(S,y).  Since  

y∈Eφx(S),  by hypothesis, it follows from Definition 5.2 that  x  is 

dominated via S  by every outcome  in  Eφ*x(S,y),  so Definition 5.3 

implies that  x  is blocked by  S,  which is a contradiction. The other 

direction follows from Theorem 6.1. Hence the proof is complete. g 

 

Corollary 6.1. Let  Γ  be an effective game. Then, the set of core outcomes 

equals the set of stable outcomes.    

Proof. It is immediate from Definition 5.1 and Theorem 6.2. g 

 

Corollary 6.2. Let  Γ=(N,C,X,U,u,φ)  (respectively,  Γ=(N,C,X,U,u,Eφ) )   

be a game in the df-form (respectively, effectiveness function form). 
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Suppose that every coalition structure in  C  is a partition of  N.  Then, the 

set of core outcomes equals the set of stable outcomes.    

Proof. It is immediate from Proposition 6.1 and Theorem 6.2. g  

 

 The converses of Theorem 6.2 and Corollary 6.2 are not true. In 

the many-to-one assignment game with additively separable utilities 

(Sotomayor 1992) the core coincides with the set of stable outcomes. 

Nevertheless, the players of one of the sides may enter more than one 

minimal coalition. For this model, it is easy to construct examples of an 

outcome  x  such that  Eφx(S)≠φx(S).    

 

7. COALITIONAL GAMES 

The deviation function form is a mathematical model to represent 

cooperative decision situations in which the object of interest is an 

agreement configuration. However, it is possible that a game is given a 

priori in the characteristic function form  (N,V,H), where an outcome is a 

payoff-vector of  R|N| and the coalition structure is not specified. In this 

section we will see how our theory applies to such games.  

The df-form derivation is made under the assumption that the game is 

a coalitional game, i.e., the characteristic function form is a reasonable 

description of the decision problem in consideration. Then, if the S-vector  

vS∈V(S),  it can be interpreted that  S  can take some joint action which 

yields itself at least  vS.  This payoff vector does not depend on the actions 

taken by non-members of  S. It is then convenient to consider that  

H=V(N),  so the coalitional game is described by  (N,V)  ( see, for 

example, the discussion concerning this assumption in Rosenthal (1972), 

page 96).  

In such a game, it is not specified a coalition structure, but the 

existence of some coalition structure that can be associated to a given 

payoff-vector is always guaranteed (the coalition  N  can always be 

formed). Since each player receives only one payoff, then any coalition 

structure compatible to some payoff-vector of V(N)  must be a partition of  

N  into pairwise-disjoint coalitions. Thus a feasible outcome is a feasible 



 33 

payoff configuration  (v, B)  such that  v∈V(N)⊆R|N|  and  B  is a partition 

of  N   into minimal coalitions.  

Let  X  be the set of the feasible outcomes. Within this context, it can 

be then interpreted that the actions that the members of a coalition  S  are 

allowed to take against a given outcome  x  are restricted to the 

interactions among themselves and do not depend on  x.  Therefore, the df-

form and the effectiveness function form can be derived from  (N,V)  by 

identifying,  for every  x∈X  and  S∈C,     

 

φx(S)= Eφx(S) ≡ {(v,B)∈X;  vS∈V(S)} 

 

The other elements of these forms are naturally specified. Then, let  

Γ=(N,C,X,U,u,φ)  be the df-form associated to the coalitional game  (N,V).  

If  y=(w,β)  and  x=(v,γ)  are feasible payoff configurations such that  y  is 

a feasible deviation from  x  via  S,   we say that  w  is a feasible deviation 

from  v  via  S.  Clearly,  (v,γ)  is in the core of   Γ  (respectively, stable)  if 

and only if  v  is in the core (respectively, a stable payoff) of  (N,V). 

Since every coalition structure is a partition of  N, Corollary 6.2 

implies that the set of core payoffs equals the set of stable payoffs in  

Γ=(N,C,X,U,u,φ). Therefore we have proved the following result. 

 

Theorem 7.1. Let  Γ=(N,C,X,U,u,φ)  be the df-form associated to the 

coalitional game  (N,V).  Then, in Γ, the set of core payoffs equals the set 

of stable payoffs. 

 

As it was seen in Example 2.1, Theorem 7.1 may fail to hold when  

(N,V)  is not a coalitional game.    

 Since  (N,V)∈G*  ( if the players in  S  prefer some outcome in 

φ*x(S,y)  to  x,  then they prefer every outcome in  φ*x(S,y)  to  x),  by 

using Definition 5.4 and Theorem 7.1, the core and the stability definitions 

can be rewritten as follows: 
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Definition 7.1:  A feasible payoff-vector  w  is stable for 

(respectively, in the core of) the coalitional game  (N,V)  if 

there is no coalition  S  and no payoff-vector  v∈V(N)      

such that vi>wi  for all  i∈S  and  vS∈V(S).  

 

 This is the usual concept of core for coalitional games.  

 

8. CONCLUSION  

The idea of focusing on the stability concept rather than on the core 

concept has been widely explored in the literature of matching markets, 

since Gale and Shapley (1962). Following the approach of these authors, 

some attempt has been done in the mathematical modeling of these 

markets, in the sense of establishing the concept of stability as the one 

which captures the intuitive idea of equilibrium for the market in 

consideration: an outcome is stable if it is not up set by any coalition. This 

idea of equilibrium for matching markets is identified with the idea of 

cooperative equilibrium when these markets are mathematically modeled 

as cooperative games.17 

 It turns out that the concept of stable allocation has been locally 

defined for each matching model that has been studied, and it has not 

always been associated, and it has not always been correctly associated, to 

the idea of cooperative equilibrium. In the past literature, some confusion 

has been due to an incorrect definition of stability in Roth (1984). In the 

recent literature, the term stable outcome has been used, some times, in 

new models, without any justification, especially among some applied 

specialists who very rarely pose questions regarding the appropriateness of 

the solution concept they use. The author simply imposes that the 

outcomes with certain mathematical properties will be called “stable”. The 

intuition behind the definition is not discussed.  

This work grew out of the attempt to give a precise definition of 

stability for the matching markets and to extend this definition to more 

                                                 
17 See, for example, Roth and Sotomayor (1990), chapter 8, where the Assignment game 
of Shapley and Shubik (1971) is treated as a matching market of buyers and sellers and 
also modeled as a cooperative game in the coalitional function form. 
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general games. In the matching models, the definition of stability is 

supported by the matching structure of an outcome. The generalization of 

such structure to other games was obtained here by using a coalition 

structure with minimal coalitions. If the coalitions in a coalition structure 

are not minimal, we may have more than one representation of the same 

outcome. This does not affect the core stability of the outcome, but we 

may be led to conclude that it is a cooperative equilibrium under one of 

the representations and it is not so under some other representation.  When 

the coalitions are minimal the outcome has only one representation. 

Furthermore, the modeling of an outcome by using a minimal coalition 

structure permits to well define the sets of feasible deviations, crucial for 

the identification of the stable outcomes with the cooperative equilibria. 

Guided by a key example presented here we identified the line of 

reasoning which supports the cooperative behavior of the members of a 

deviating coalition. 18 Then, the intuitive idea of cooperative equilibrium 

emerged naturally.  

The next step was to define stability as a solution concept that 

captured such idea. Example 2.1 showed that some aspects of certain 

cooperative game situations may fail to be captured in the characteristic 

function form and in the effectiveness form, yielding incorrect conclusions 

in both game forms. The necessary ingredients to formulate 

mathematically the stability concept were provided here by the deviation 

function form. This model establishes, for each feasible outcome  x  and 

coalition  S, the set of  feasible deviations from  x  via  S.  

The coalitional interactions illustrated by our examples allowed the 

identification of the structure that the outcomes should have to capture, 

among the actions that the members of  S  can take against  x, those which 

are feasible and are relevant for the cooperative equilibrium analysis 

purpose. This structure allows to regard an effective outcome for  S  

against  x  as a feasible deviation from  x  via  S.  This way, the df-form is 

adequate to represent games that can be described in the effectiveness 

form. 

                                                 
18 Illustrative examples are given in Sotomayor (1992 and 1999). 
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The df-form intends to be adequate to represent a variety of 

cooperative decision situations, in which the main activity of the agents is 

to form coalitions. The matching markets configures as the special class of 

these situations where the coalitional interactions are restricted to pairwise 

interactions. In the literature there are several concepts of stability for 

these models: the corewise-stability; the pairwise stability, due to Gale 

and Shapley (1962); the setwise-stability, defined in Sotomayor (1999), 

and the strong stability defined by the first time in Sotomayor (1992). 

These concepts capture the idea of cooperative equilibrium in some 

models and fail to do that in some other models. None of them provides a 

general definition of stability. The definition presented in this paper fills 

this gap in the literature of matching models.  

 

9. HISTORIACAL REMARKS ON THE STABILITY CONCEPT 

Gale and Shapley (1962) defined the concept of pairwise-stability 

for the marriage model and for the college admission model, with the 

objective of identifying the stable matchings in these models, which turn 

out to be the core points and the strong core points, respectively. The 

pairwise-stability concept was translated to the continuous matching 

models and to the other discrete matching models.  Sotomayor 1992 

introduced the continuous multiple partners assignment game with 

additively separable utilities. This paper was the first to point out that the 

corewise-stability is not equivalent to the stability concept. In this model, 

the set of stable outcomes is characterized as the set of pairwise-stable 

outcomes, and it is a subset of the core, but this set may be smaller than 

the core. Following the approach of Roth (1985) for a discrete many-to-

many matching model with substitutable preferences, Blair (1988) 

observed that the core and the set of pairwise-stable matchings, regarded 

inappropriately as the stability concept by Roth, might be disjoint.  

 Later, Sotomayor 1999 showed that pairwise stability is 

inadequate to define stability in the discrete many-to-many matching 

models, which include Roth’s model, and then proposed the concept of 

setwise-stability for these models.  
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The strong stability concept was defined in Sotomayor 1992 for the 

multiple partners assignment game and proved to be equivalent to the 

pairwise-stability concept. In that paper, the stable outcomes are identified 

with the set of strong stable outcomes.  

This concept was shown to be adequate to define stability for the 

time-sharing assignment game with flexible agreements and to be 

inadequate for the time-sharing assignment game with rigid agreements, 

both models introduced in Sotomayor 2012. This paper introduced the 

continuous version of setwise-stability and also proved that this concept is 

not equivalent to the strong stability concept. Setwise-stability is the 

stability concept for the time-sharing assignment game with rigid 

agreements and it is not so for the time-sharing assignment game with 

flexible agreements. The extension of the setwise-stability concept to a 

non-matching game was presented, by the fist time, in Sotomayor 2010.  

An important class of games that has been very little explored in 

the literature is that of the discrete matching models with indifferences. 

For these models, a natural solution concept called Pareto-stability was 

introduced in Sotomayor (2011). This paper argues that when a stable 

matching is weakly blocked by the grand coalition, the players are induced 

to renegotiate their agreements through acceptable exchange of partners. 

The resulting matching is still stable and it does not admit any weak 

Pareto-improvement. This suggests that not all stable outcomes can be 

associated to the outcomes that we can predict that will occur. The 

stability concept defined here can still be refined, by requiring the 

additional property of Pareto-optimality. When preferences are strict, the 

stability concept and the Pareto-stability concept are equivalent because 

there is no weak blocking coalition. With indifferences the set of Pareto-

stable outcomes may be a proper subset of the set of stable outcomes.   
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