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INTRODUCTION 

In the one-to-one two-sided matching models with money as a continuous 
                                                           
1 The author is research fellow from CNPq-Brazil. 
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variable, the structure of agents’ preferences is given by utility functions that are 

increasing and continuous from  R  onto2  R.  The special case, in which the utility 

functions are linear, was introduced in Shapley and Shubik (1972). The general model is 

due to Demange and Gale (1985). For simplicity of exposition we will concentrate on 

the linear case. Nevertheless, as we remark in section 5, all the results presented here 

hold for the general continuous model.  

In these models the agents can be thought of as being buyers and sellers. In the 

linear case each seller owns one indivisible good and no buyer is interested in acquiring 

more than one item. Each buyer is assumed to place a monetary value on each of the 

objects. Each seller places a monetary value on his own object, that can be thought of as  

his reservation price. We will first assume that every seller specifies the same 

reservation price to every buyer. This assumption will be relaxed later. This model will 

be referred as buyer-seller market. 

As in a exchange economy, given a vector of prices, every buyer will demand 

the set of objects that maximize his surplus, the difference between his valuation and the 

price of the item, assuming that this surplus is non-negative. Sellers will want to sell if 

the given prices exceed their valuation. A competitive equilibrium is a vector of prices, 

one price for each object, and an allocation of the objects to the buyers, such that the 

demand of every buyer is satisfied, the price of every unsold object is its reservation 

price and no two buyers get the same object. The vector of prices is called equilibrium 

price.3 A competitive equilibrium allocation is a competitive equilibrium plus a feasibly 

defined payoff for each buyer. 

The results proved and stated here are established for the competitive approach, 

but all of them can be translated, with no loss, to the cooperative approach. This is 

because in the cooperative approach of this model the cooperative equilibrium is given 

by the core, which coincides with the set of competitive equilibrium allocations 

(Shapley and Shubik, 1972). 

The set of equilibrium prices is non-empty (Gale, 1960) and it is a complete 

lattice whose extreme points are the minimum equilibrium price and the maximum 

equilibrium price (Shapley and Shubik, 1972). These equilibrium prices are called 
                                                           
2 The assumption that the utility functions are onto  R  implies that a sufficient monetary payment can 
make any match more desirable than any other match at a given payment.  
3 The price equilibrium model was presented by the first time in Gale (1960), where it was defined and 
proved the existence of “equilibrium prices” . In Demange, Gale and Sotomayor (1986) it was introduced 
the term “minimum competitive price”.  In Roth and Sotomayor (1990) the minimum competitive prices 
are called “minimum equilibrium prices”. 
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buyer-optimal and seller-optimal equilibrium prices, respectively. 

This note concentrates on a class of mechanisms whose domain is the set of 

buyer-seller markets. For each market of this domain, such a mechanism selects a 

competitive equilibrium. This competitive equilibrium is not necessarily the optimal for 

the buyers or the optimal for the sellers. We will also consider competitive equilibrium 

rules associated to the mechanism. Under such a competitive equilibrium rule, the set of 

agents is fixed and only the agents’ valuations vary. We say that some competitive 

equilibrium rule is used for a specific market of its domain if we adopt the valuations 

stated in this market as the agents’ true valuations. In this case, the competitive 

equilibrium rule induces a strategic game.  The set of players is the set of agents; the 

strategies of a player are all possible valuations he can state; the outcome function is 

given by the competitive equilibrium rule and the true valuations (sincere strategies) are 

those ones specified by the market. A mechanism is manipulable (or it is not strategy-

proof) if there is some competitive equilibrium rule associated to it such that, in some 

strategic game induced by this rule, the sincere strategy is not a dominant strategy for at 

least one agent. We must point out that to say that a mechanism is manipulable does not 

mean that in every strategic game induced by the associated rules there will be some 

agent for whom honest revelation of his valuations is not the best policy.  

When a competitive equilibrium rule is used for a market, questions on 

incentives facing agents naturally emerge. The first important result in this direction is 

the Non-Manipulability Theorem due to Demange (1982) and Leonard (1983). These 

authors proved that:  

Let  M  be a buyer-seller market. If the buyer- optimal (respectively, seller-

optimal) competitive equilibrium rule is used for  M  then, in the induced 

strategic game, truth telling is a dominant strategy for each buyer 

(respectively, seller)4. 

Consequently, the mechanism that yields the optimal competitive equilibrium 

for a given side of the market is non-manipulable by the agents of that side. An 

immediate corollary of this result is that any competitive equilibrium rule is 

strategy-proof whenever the set of competitive equilibrium allocations for  M  is a 

singleton. 

Following this line of research, another important result is the impossibility 
                                                           
4 Demange and Gale (1985) proved a more general theorem, which can be obtained as a 
corollary of  Theorem 9.23 of Roth and Sotomayor (1990, 1992), due to Sotomayor. 
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theorem, established by Theorem 7.3 of Roth and Sotomayor (1990,1992): 

Any competitive equilibrium mechanism for the class of buyer-seller markets 

is manipulable. 

The proof consists in showing that there is a market with  n  buyers and one seller  

such that, under any competitive equilibrium mechanism, some agent has the incentive 

to misrepresent his/her valuations. We must point out that this result does not asserts 

that if a competitive equilibrium rule is used for a market which has more than one 

equilibrium price, then there will be some agent who will be able to increase his/her 

payoff by misrepresenting his/her valuations.  

In their paper of 1985, Demange and Gale present several examples of markets 

where a competitive equilibrium rule yields the optimal competitive equilibrium for a 

given side of the market. Then, an agent belonging to the other side can increase his/her 

true payoff by misrepresenting his/her valuations. These examples prove that if a 

mechanism produces the optimal competitive equilibrium for a given side of the market 

then the mechanism is manipulable by some agent belonging to the other side. 

However, these examples do not prove that if the optimal competitive equilibrium rule 

for a given side is used for a market which has more than one equilibrium price, then 

there will be some agent belonging to the other side who has incentive to misrepresent 

his/her valuations.  

It turns out that the belief that the phenomena observed in the particular market 

used in the proof of the impossibility theorem and in the particular markets of the 

examples of Demange and Gale (1985) always occur in any market of the domain of the 

mechanism has supported, along the years, the following Folk Theorems, never proved 

in the literature: 

  

Manipulability Theorem. Consider the buyer-seller market  M. Suppose  M  

has more than one competitive equilibrium price. If the buyer- optimal 

(respectively, seller-optimal) competitive equilibrium rule is used for  M, 

then there is some seller (respectively, buyer) who can profitably 

misrepresent his/her valuations, assuming the other agents tell the truth. 

 

General Impossibility Theorem. For every buyer-seller market with more 

than one equilibrium price, there is no competitive equilibrium rule that 

gives to every agent the incentive to state his/her true valuations.  
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Both theorems, together with the non-manipulability theorem, have constituted the 

foundation of the theory on incentives for the one-to-one continuous matching models.  

In the present work we provide the proofs and formal statements of the two Folk 

Theorems mentioned above, aiming to fill an important gap in the literature of the 

continuous one-to-one two-sided matching model. Indeed, we are able to prove a more 

general Manipulability Theorem than the result that the examples of Demange and Gale 

(1985) suggest, since it is not required that the competitive equilibrium rule produces 

the optimal competitive equilibrium for one of the sides:  

General Manipulability Theorem. Consider the buyer-seller market  M. Suppose 

some competitive equilibrium rule for  M  does not yield the buyer-optimal 

(respectively, seller-optimal) competitive equilibrium when the profile of sincere 

strategies is selected. Then, under this strategy profile, some buyer (respectively, seller), 

who is not receiving his/her optimal competitive equilibrium payoff, is not playing 

his/her best response.  

 

The conclusion of the General Impossibility Theorem then follows immediately, as 

corollary. It is also immediate that: 

 

“A competitive equilibrium rule for a given buyer-seller market  M   is strategy-

proof if and only if  the set of competitive equilibrium allocations of  M  is a singleton”. 

 

This note is organized as follows. In section 2 we present the cooperative 

framework and some results, already known, that will be used in section 4. The 

competitive equilibrium mechanisms and the competitive equilibrium rules are 

described in section 3. In section 4 we state and prove our main results.  The discussion 

of the general case is presented in section 5. 

 

2-THE COOPERATIVE FRAMEWORK AND PRELIMINARIES 

There are a set  P  with  m  buyers,  P={p1,p2,…,pm},  and  a set  Q  with  n sellers,  

Q={q1 ,q2,…,qn}.  Each seller owns one indivisible object. We will denote the seller as 

well as his object with the same notation. Letters  j  and  k  will be reserved to index  

buyers and objects (or sellers), respectively. Each seller  qk  values his object  at  sk≥0.  
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Each buyer  pj  values object  qk  at  αjk≥0  and wants to buy one object, at most. Thus, if 

buyer  pj  purchases object  qk  at price  πk ≥sk ,   her payoff will be  uj=αjk -πk  and the 

payoff of seller  qk  will be  vk=πk-sk.  The potential gains from trade between  j  and  k  

will be  uj+vk= αjk-sk.  We will denote by  αj  the vector of values αjk’s; the valuation 

matrix of the buyers  and the valuation vector of the sellers will be denoted by  α  and  s  

respectively. The buyer-seller market is then described by  M(α,s)≡(P,Q,α,s).  When  

each seller’s reservation price is  0  the corresponding model is the well known 

Assignment Game presented in the book of Roth and Sotomayor (1990), due to Shapley 

and Shubik(1972).  

An object  qk  is acceptable to buyer  pj  if and only if  αjk-sk≥0.  Thus, an object is 

not acceptable to a buyer if there is no feasible price at which the buyer wishes to buy 

the object. Set  a(s)jk≡αjk-sk   if  αjk-sk ≥0  and  a(s)jk≡0,  otherwise. We will use the 

notation  ∑j  for the sum over all  pj  in  P, ∑k  for the sum over all  qk  in  Q  and  ∑j,k  

for the sum over all  pj  in  P  and  qk  in  Q.  

 

Definition 1. A matching  for  M(α,s)  is a matrix  x = (xjk) of zeros and 

ones. A matching  x  for  M(α,s)  is feasible if it satisfies ( a) ∑j xjk ≤ 1  ∀qk∈

Q,  (b)∑k xjk ≤ 1   ∀pj∈P  and ( c) if  xjk=1   then  αjk-sk≥0.   

 

Conditions (a) and (b) state, respectively, that a feasible matching assigns an object 

to one buyer at most and a buyer to one object at most; condition  (c)  means that the 

object matched to a buyer is acceptable to her.  

 If  xjk=0  for all  qk∈Q  (respectively  pj∈P),  we say that  pj  (respectively  qk)  is 

unmatched. If  xjk=1,  we say that  pj  is matched to  qk  or  qk  is matched to pj.   

 

A matching  x  for  M(α,s)  is optimal if it is feasible and, for all feasible 

matchings  x’,    ∑j,k a(s)jk xjk ≥   ∑j,k a(s)jk  x’jk.  In addition,   if  pj  and  qk  

are both unmatched, then  qk  is not acceptable to  pj . 

 

This concept is illustrated by the following example. 

Example. Consider  P={p1,p2},  Q={q1,q2},  α1=(3,3),  α2=(1,2)  and  s=(3,0). 

Both objects are acceptable to  p1,  but  q1  is not acceptable to  p2. The optimal 

matching for  M(α,s)  matches  q2  to  p1  but leaves  q1  and  p2  unmatched. g 
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Definition 2. A feasible outcome  (u,v;x)  for  M(α,s) is a pair of vectors  

(u,v), with  u  in  Rm  and  v  in  Rn,  plus a feasible matching  x   such that  ∑j 

uj + ∑k vk=∑j,k a(s)jk.xjk.  If  (u,v;x)  is a feasible outcome then  (u,v)  is called 

feasible payoff. 

 

If  (u,v;x)  is a feasible outcome we say  (u,v)  and  x  are compatible with each 

other. The notion of stability is given by the following definition: 

  

Definition 3. The outcome  (u,v;x) is stable for  M(α,s) if  it is feasible and,  

for all  ( pj,qk)∈PxQ, (a) uj≥0,  vk≥0  (individual rationality) and (b) uj + vk ≥

a(s)jk. 

 

If  (u,v;x)  is stable for  M(α,s),  we say  (u,v)  is a stable payoff for  M(α,s). 

 

Remark 1.  It can be easily proved that if  (u,v;x) is stable for  M(α,s) then (c) 

uj+vk=a(s)jk  if  xjk=1  and (d) uj=0  for all unmatched  pj,  and  vk=0  for all unmatched  

qk.  On the other hand, every outcome that satisfies  (c)  and  (d)  for a feasible 

matching, is feasible for M(α,s).  Then, an outcome is stable if and only if it satisfies 

(a)-(d).g 

 

For the case where  s=(0,…,0),  Shapley and Shubik (1972) proved that the core of  

M(α,s)  is non-empty and equals the set of stable payoffs. They also showed that, for 

this market, there is a  P-optimal stable payoff such that all buyers (weakly) prefer it to 

every other stable payoff, and all sellers (weakly) prefer any other stable payoff to it, 

and there is a Q-optimal stable payoff with symmetric properties. Clearly, the same 

results apply to  M(α,s) for any reservation price vector  s. 

A feasible price vector  π  (feasible price, for short)  for market  M(α,s)  is a 

function from  Q  to  R,  such that  π k≡ π (qk)  is greater than or equal to  sk.  A feasible 

allocation for   M(α,s)  is a pair  (π,x),  where  π  is a feasible price and  x  is a feasible 

matching. The payoff vector of the buyers corresponding to a feasible allocation  (π,x)  

is feasibly defined:  uj=αjk-πk  if  xjk=1  and  uj=0  if  pj  is unmatched. 

The demand set of buyer  pj  at the feasible price  π  is the set:   
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D(pj,π)={qk∈Q; αjk - π k≥0  and αjk - π k≥αjt- π t  for all  qt∈Q}. 

 

Observe that if  qk∈D(pj,π)  then  αjk-sk≥0.  Thus, among all the acceptable objects 

that  pj  can  acquire at price π,  pj  demands those ones which maximize her payoff at 

the given prices.  

 

Definition 4. A feasible allocation  (π, x)  for  M(α,s) is a competitive 

equilibrium if  (a) for all pair  (pj,qk)  with  xjk=1, we have that  qk∈D(pj,π);  

(b) if  pj  is unmatched  then   αjk - π k≤0  ∀qk∈Q  and  (c) if  qk  is unmatched 

then  π k=sk.   

 

If  (π,x)  is a competitive equilibrium for  M(α,s),  π  will be called equilibrium 

price vector or simply equilibrium price and  x  will be called a competitive matching. 

In this case, we say that  x  is compatible with  π  and vice versa. Since  π k≥sk  for every  

qk,  it follows that the corresponding payoff vector  (u,π-s)  is feasible for  M(α,s).  It 

will be called competitive equilibrium payoff.  
 
 

Definition 5. The feasible allocation  (u*,v*)  is the P-optimal competitive 

equilibrium payoff if  u*j≥uj  for all stable payoff (u,v). The Q- optimal 

competitive equilibrium payoff  (u*,v*)  is symmetrically defined. 

 



 9

It is easy to verify that  (π,x)  is a competitive equilibrium for M(α,s)  if and 

only if  the corresponding competitive equilibrium payoff  (u,π-s)  is stable 

for  M(α,s).  

 

Thus, in M(α,s), the P-optimal competitive equilibrium payoff  (u*,v*)  is the P-

optimal stable payoff  and corresponds to the minimum equilibrium price  π*≡v*+s  (or 

P-optimal equilibrium price).  This is the equilibrium price vector that is at least as 

small in every component as any other equilibrium price vector.  Symmetrically, the  Q-

optimal competitive equilibrium payoff  (u*,v*)  is the Q-optimal stable payoff  and  

corresponds to the maximum competitive equilibrium price  π*≡ v*+s (or Q-optimal 

competitive equilibrium price). 

It is implied by Proposition 1* below that if  x  is an optimal matching and  π  is a 

competitive equilibrium price for M(α,s),  then  (π,x)  is a competitive equilibrium for 

M(α,s). Conversely, if  (π,x)  is a competitive equilibrium for M(α,s),  then  x  is an 

optimal matching for  M(α,s).   

The following results will be used in the next sections. 

 

Proposition 1* (Shapley and Shubik, 1972).  (a) If  x  is an optimal matching for 

market  M(α,s), then it is compatible with any stable payoff  (u,v)  for  M(α,s); (b) If  

(u,v;x)  is a stable outcome for  M(α,s),   then  x  is an optimal matching for  M(α,s). 

 

Proposition 2* (Demange and Gale, 1985).  Let  (u,v;x)  be a stable payoff for  M(α,s).  

Then, if  uj>0 (respectively vk>0),   pj  (respectively  qk)  is matched at any optimal 

matching for  M. 

 
Define  Vα,s(P,Q) ≡ max ∑RxS a(s)jk.xjk,  with the maximum to be taken over all 

feasible matchings  x  for  M(α,s).   

 

Proposition 3*  (Demange (1982), Leonard (1983)).  Let  (u*,v*)  and  (u*,v*)  be the P-

optimal and the  Q-optimal stable payoffs, respectively, for  M(α,s).   For   all  qk  in  Q,  

and for all  pj  in  P, 
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(a) v*k = Vα,s (P,Q)- Vα,s (P,Q-{qk})    

(b) v*k= Vα,s (P-{pj},Q) - Vα,s (P-{pj},Q-{qk})  if  xjk=1  and  v*k=0  if  qk  is not matched 

by  x. 

(c) u*j= Vα,s (P,Q)- Vα,s (P-{pj},Q) 

(d) u*j= Vα,s (P,Q-{qk}) – Vα,s (P-{pj},Q-{qk})  if  xjk=1  and  u*j=0  if  pj  is not matched 

by  x. 

 
3. COMPETITIVE EQUILIBRIUM MECHANISMS AND COMPETITIVE 

EQUILIBRIUM RULES 

 A competitive equilibrium mechanism for the buyer-seller market is a function 

that selects some specific competitive equilibrium allocation for every market  M(α’,s’).  

A competitive equilibrium mechanism can be used to define a competitive equilibrium 

rule  (π,x)  for a given market  M(α,s),  where  π  is a price rule and  x  is a matching 

rule.  The domain of  (π,x)  is the set of all possible inputs  M(P,Q,α’,s’)≡ M(α’,s’), 

where the sets  P  and  Q  are fixed, and whose “output” is the competitive equilibrium  

(π(α’,s’), x(α’,s’))  for the market  M(α’,s’). The corresponding payoff vector of the 

buyers is denoted by  u(α’,s’). Thus,  (u(α’,s’),π(α’,s’)-s’, x(α’,s’))  is the corresponding 

competitive equilibrium outcome. 

If  (π,x)  always produces  the  P-optimal (respectively,  Q-optimal) competitive 

equilibrium allocation for every input  M(α’,s’), it will be called  P-optimal 

(respectively,  Q-optimal)  competitive equilibrium rule.  

If a particular competitive equilibrium rule  (π,x)  is adopted for use in the market  

M(α,s),  it serves as outcome function in the strategic game  Γ(π,x),  where the set of 

players is the set of agents,  P  and  Q; the set of strategies for buyer  p  is the set of all  

m-vectors  α’p≥0;  the set of strategies for seller  q  is the set of all numbers  s’q≥0. The 

preferences of the players over the outcomes are determined by their true valuations  

(α,s).  The true payoffs  of buyer  pj and seller  qk  under the allocation  

(π(α’,s’);x(α’,s’)),  with respect to the market  M(α,s),  are, respectively:   

 

Uj(π(α’,s’); x(α’,s’))=αjk - π k(α’,s’)  if  x(α’,s’)jk=1  and  

Uj(π(α’,s’); x(α’,s’)) =0,  if  pj  is unmatched at  x(α’,s’). 

Vk(π(α’,s’); x(α’,s’))= π k(α’,s’)-sk  if  qk  is matched at  x(α’,s’)  and 

Vk(π(α’,s’); x(α’,s’))=0,  otherwise. 
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4. MAIN RESULTS 

As discussed in section 1, the Impossibility Theorem of Roth and Sotomayor 

(1990,1992) is a very weak result, since the conclusion need not hold for every market 

of the domain of the mechanism. If the market has only one competitive equilibrium, 

the Non-Manipulability Theorem, first proved by Demange (1982) and Leonard (1983), 

implies that it is a dominant strategy for every agent to tell the truth under any 

competitive equilibrium rule.  

This section proves the two Folk Theorems presented in section 1. The first one is a 

manipulability theorem which confirms that the phenomenon observed in the examples 

of Demange and Gale (1985) occurs in every buyer-seller market. The second one is a 

general impossibility theorem that applies to every market with more than one 

competitive equilibrium price. Both theorems are corollary of a more general result that 

we call General Manipulability Theorem. 

Theorem 1. (General Manipulability Theorem) Let (π,x) be any competitive 

equilibrium rule for market  M≡M(α,s). Let  Y∈{P,Q}. Suppose  (π(α,s); x(α,s)) is not a 

Y-optimal competitive equilibrium for M. Then, some agent in  Y is not playing his/her 

best response when  (α,s)  is selected. This agent is any   y∈Y  such that his/her payoff 

produced by  (π,x)  is different from his/her payoff under the  Y-optimal competitive 

equilibrium payoff for  M. 

Proof. The corresponding competitive equilibrium outcome when agents select  (α,s)  is    

(u’,v’;x’)≡(u(α,s),π(α,s)-s; x(α,s)).  Let  (u*,v*)  and  (u*,v*)  be the buyer-optimal 

stable payoff and the  seller-optimal stable payoff, respectively, for  M.  Since  (u’,v’;x’)  

is stable for  M,  Proposition 1* implies that  x’  is compatible with  (u*,v*)  and  (u*,v*).     

First case:  Y=P.  By hypothesis  u’≠u*.  Let  pj  be any buyer such that  u*j>u’j≥0. 

Then,  pj  is matched to some  qk  at  x’,  by Proposition 2*, and so αjk -u*j=v*k+sk.  

Also, for  some positive  λ,  u*j>u’j+ λ.                                  

Now define the buyers’ strategy profile  β  as follows: βrt=αrt,  for all (pr,qt)∈PxQ, 

with  pr≠pj;  βjt= αjt-(u’j+λ)  if  αjt-(u’j+λ)≥0  and  β jt =0  otherwise, for all  qt∈Q.   

Define the matrix  b(s)  by  b(s)rt= βrt-st  if    βrt-st≥0  and  b(s)rt=0,  otherwise.   

We are going to show that  Uj(π(β,s);x(β,s))>u’j.. To have this established we first 

note that, since  αjk-(u’j+λ)>αjk-u*j = v*k +sk ≥ 0,  then  βjk= αjk-(u’j+λ)  and  βjk 
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>v*k+sk,  so  b(s)jk>v*k.  Now we claim that  pj  is matched under any optimal matching 

for    M(β,s).  In fact, arguing by contradiction, suppose  pj  is unmatched under some 

optimal matching for  M(β,s).  Then,  Vα,s (P-{pj},Q) = Vβ,s (P,Q) ≥ b(s)jk + Vβ,s (P-

{pj},Q-{qk})>v*k+ Vβ,s (P-{pj},Q-{qk}).  Therefore,  v*k < Vα,s (P-{pj},Q) – Vα,s (P-{pj},Q-

{qk}),  which contradicts Proposition 3*-b). 

Then, let  qt  be the object matched to  pj  at  x(β,s).  We have that  βjt= αjt-(u’j+λ)= 

uj(β,s)+ πt(β,s),  so  π t(β,s))≤βjt. Thus,  Uj(π(β,s);x(β,s))=αjt- π t(β,s) ≥ αjt -βjt= u’j+λ

>u’j.  Hence,  pj  can improve her payoff by deviating from her sincere strategy and the 

proof of this case is complete. 

Second case: Y=Q. By hypothesis  v’≠v*.  Let  qk  be any seller such that  v*k>v’k. 

Then,  qk  is matched under  x’.  Also, for  some positive  λ,  v*k>v’k+ λ.  

Now, let  s’  be a strategy profile for the sellers, where  s’t=st  for all  qt≠qk  and  

s’k=v’k+ λ +sk. That is, under the profile of strategies  (α,s’),  qk  replaces his sincere 

strategy by  s’k  and the other players keep theirs. We will show that 

Vk(π(α,s’);x(α,s’))>v’k.  In fact, first note that  v*t+st≥s’t  for all  qt  implies that  

(v*+s,x’)  is a feasible allocation for  M(α,s’). Now use the competitivity of  v*+s in  

M(α,s),  and the fact that if  qt  is unmatched at  x’  then  v*t+st=st=s’t,  to see that  

(v*+s,x’)  is a competitive equilibrium for  M(α,s’).  Since  (v*k+sk)-s’k>0  it follows 

from Proposition 2* that  qk  is matched at any optimal matching for M(α,s’),  in 

particular  qk  is matched under  x(α,s’).  Hence  Vk(π(α,s’),x(α,s’))= π k(α,s’)-sk≥s’k-

sk=(v’k+λ)>v’k,  which completes the proof.  g 

 

That is, for any competitive equilibrium rule  (π,x),  if  (π(α,s),x(α,s))  is not the 

buyer (respectively, seller)-optimal competitive equilibrium for market  M(α,s), then, in 

the induced game  Γ(π,x), truthful behavior is not a dominant strategy for at least one 

buyer (respectively, seller). Consequently, when the buyer (respectively, seller)-optimal 

competitive equilibrium rule is used, some seller (respectively, buyer) can profitably 

misrepresent his/her valuations, assuming the others tell the truth.  

Another immediate consequence is that, for every market  M(α,s)  with more than 

one competitive equilibrium, there is no competitive equilibrium rule that gives to every 

agent the incentive to play his/her sincere strategy. Hence, we have proved the 

following results already stated in section 1.  
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Corollary 1. (Folk Manipulability Theorem) Let  Y∈{P,Q}. Suppose that 

the Y-optimal competitive equilibrium rule for  M(α,s)  is used.  If M(α,s) has 

more than one competitive equilibrium price, then some agent who does not 

belong to  Y is not playing his/her best response when  (α,s)  is selected .  

 

Manipulability Theorem. Suppose  M  has more than one competitive 

equilibrium price. If the buyer- optimal (respectively, seller-optimal) 

competitive equilibrium rule is used for  M, then there is some seller 

(respectively, buyer) who can profitably misrepresent his/her valuations, 

assuming the other agents tell the truth. 

 

Corollary 2. (Folk General Impossibility Theorem) If M(α,s) has more 

than one competitive equilibrium price, then, under any competitive 

equilibrium rule there is some agent who has incentive to misrepresent 

his/her valuations.  

The General Impossibility theorem plus Corollary 2 characterize the 

domain of the strategy-proof competitive equilibrium rules: 

Corollary 3. A competitive equilibrium rule for a given buyer-seller market  

M   is strategy-proof if and only if  the set of competitive equilibrium 

allocations of  M  is a singleton. 

  

5. CONCLUDING REMARKS 

The model treated in the previous sections is “unsymmetrical” in that a seller 

specifies only one number, his reservation price, while a buyer specifies a n-vector, her 

valuations for each of the objects. There are models, as the job assignment model, 

where sellers discriminate, specifying different reservation prices to different buyers. In 

this case, each seller  qk  specifies a vector of prices  πk =(π1k,…, πmk) and each buyer  pj  

demands the object of seller  qk  at prices  π  if  αjk- πjk≥0  and  αjk- πjk≥αjt- πjt  for all  

qt∈Q.  In this model it is more appropriated to think of sellers as being workers who are 

selling their services to employers.  

The job assignment model is a special case of a symmetrical and more general 
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model proposed in Demange and Gale (1985), where the utilities need not be linear. 

Here the preferences of the agents are given by utility functions:  Ujk(x)  denotes the 

utility to  pj  of being matched with  qk  and receiving a monetary payment of  x,  and  

Vjk(x)  denotes the utility to  qk  of being matched with  pj  and receiving a monetary 

payment of  x.  The functions  Ujk  and  Vjk  are continuous and strictly increasing from  

R  onto  R.  It is also assumed that for each  pj  and  qk  the utility of being unmatched is 

given by some numbers  rj  and  zk.  The notion of stability is the usual one.  

 

The outcome  (u,v;x)  is stable if for all  (pj,qk)∈PxQ  we have that (a) 

uj≥rj,  vk≥zk; (b)  (uj) +  (vk) ≥0; (c)  (uj) +  (vk)=0  if  xjk=1 

and  (d) uj=0 if  pj is unmatched at  x  and  vk=0  if  qk  is unmatched at  x. 

 

 The buyer-seller market we have treated here is the special case in which all 

reservation payoffs,  rj  and  zk,, equal  0  and  Ujk(-x)=αjk-x  and  Vjk(x)=x-sk. In the case 

in which the sellers discriminate the buyers we have that  Vjk(x)=x-sjk.   

A competitive approach for the model of Demange and Gale can be obtained 

here. If we think of the agents as being buyers and sellers, the price that  qk  should sell 

his object to buyer  pj  in order to get the payoff  vk  is  ρjk=  (vk).   

Let  ρk  denote the array of prices  ρjk  and let  ρ  denote the n-tuple  (ρ1,…, ρn).  

The feasibility condition requires that  Vjk(ρjk)≥zk  for all  qk∈Q.  Buyer  pj  would 

demand the object  qk  at prices  ρ  if   Ujk (-ρjk)≥rj  and  Ujk (-ρjk)≥Ujt(-ρjt)  for all  qt∈Q.  

The payoff of buyer  pj  if she purchased the object  qk  for  ρjk   would be  uj≡ Ujk (-ρjk)  

and the payoff of seller  qk  would be  vk≡Vjk(ρjk). At a competitive equilibrium  (ρ,y)  

every seller is indifferent between any two buyers. That is, although a seller may have 

two different prices for two different sellers, he gets the same payoff with both of them. 

Clearly,  (ρ,y)  is a competitive equilibrium if and only if  (u,v;y)  is a stable outcome. 

We say that  ρ*=(ρ*1,…, ρ*n)  is the seller-optimal equilibrium price if the 

corresponding payoff  (u*,v*)  is the seller-optimal stable payoff. The buyer-optimal 

equilibrium price ρ*=(ρ*1,…, ρ*n) is symmetrically defined. A competitive equilibrium 

rule is a function that for any stated preferences   (U,r;V,z)   produces a competitive 

equilibrium allocation  for the market  M=(P,Q, U,r;V,z).  

How would this greater generality affect our results? Actually, nothing needs to 

be changed in the statements of the theorems. In fact, our results hold for the general 
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continuous model. The only difference between the two models would be that in the 

linear case the reservation payoffs are always   0.  This causes the agents to restrict their 

strategies to their valuations. In the new model an agent can change his/her utility or 

reservation payoff or both. Thus, the proof of the General Manipulability Theorem 

should follow the lines of the second part of the proof presented in the previous section, 

with the necessary adaptation. Instead of the reservation price  sk,  agent  qk  would 

change his reservation payoff  zk  by stating  z’k= v’k+ λ. The linearity of the continuous 

functions is not used, so the arguments apply to the general competitive model. The 

formal proof is given below.  

We will use the following propositions, which are implied by Proposition 9.11 

and Theorem 9.8, respectively, from Roth and Sotomayor (1990,1992), due to Demange 

and Gale (1985).  

 

Proposition 4*.  Let  (u*,v*)  and  (u’*,v’*)  be the seller-optimal stable payoffs for  

M=(P,Q,U,r;V,z)  and  M’=(P,Q,U,r;V,z’),  respectively. If  z’≥z,  then, v’*k≥v*k  for all  

qk∈Q.  

 

Proposition 5*. Let  (u,v;x)  and  (u’,v’;x’)  be stable outcomes. If  vk>zk  then  qk is 

matched under  x  and  x’.  

 

Proof of Theorem 1 for the general competitive model. Let  M=(P,Q,U,r;V,z).  Let  

(u,v;y)  be the stable outcome corresponding to the competitive equilibrium  π(θ)  

produced when agents select  θ=(U,r;V,z).  Let  (u*,v*) be the seller-optimal stable 

payoff for  M  and let  π*  be the seller-optimal equilibrium price. Let  x*  be some 

compatible optimal matching. 

We will prove the result for one of the sides. The proof for the other side follows 

dually. Then, suppose  Y=Q.  By hypothesis  π(θ)≠π*,  so  v≠v* (use that the functions  

Vjk  are strictly increasing).  Let  qk  be any seller such that  v*k>vk≥zk. Then,  qk  is 

matched under  x*.  Also, for  some positive   λ,  v*k>vk+ λ. 

Now, let  (V,z’)  be a strategy profile for the sellers, where  z’t=zt  for all  qt≠qk  and  

z’k=vk+ λ. That is, under the profile of strategies  θ’=(U,r, V,z’),  qk  replaces his sincere 

strategy  (Vk,zk)  by (Vk,z’k)  and the other players keep theirs. We will show that the true 

payoff of  qk  under  (π(θ’),x(θ’))  is greater than  vk.  To see that, first note that by 
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Proposition 4*,  v’*k≥v*k>z’k,  where  (u’*,v’*)  is the seller-optimal stable payoff for  

M(θ’). Then,  v’*k>z’k, so, by Proposition 5*,  qk  is matched at any matching 

compatible with a stable payoff  for M’,  in particular  qk  is matched under  x(θ’).  

Hence  his true payoff under  (π(θ’),x(θ’))  is   vk(θ’)≥z’k=(vk+λ)>vk,  which completes 

the proof.  g 

 

Analogous results to the ones proved here were proved for the Marriage market 

(Roth and Sotomayor, 1990 and 1992) and for the College Admission market 

(Sotomayor, 2011).  

Demange and Gale (1985) analyze the strategic equilibrium of the game induced 

by the mechanism that produces the buyer-optimal stable payoff when the buyers 

always play their sincere strategies and the sellers keep fixed their utility function and 

only manipulate their reservation prices. The analysis of the case in which the 

mechanism produces any stable payoff and there is no restriction on the strategies 

selected by the agents is an issue which we intend to approach in future investigations.   
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