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ABSTRACT 

We consider two two-sided matching markets, where every agent has an amount 

of units of a divisible good to be distributed among the partnerships he forms and 

exchanged for money. Both markets have the same sets of feasible allocations but 

operate under distinct rules. However they are indistinguishable under their 

representation in the characteristic function form. The adequate and proposed 

mathematical model provides the foundation to characterize the cooperative equilibrium 

concept in each market. Setwise-stability is then shown not to be the general definition 

of stability. The connection between the cooperative structures of these markets and 

between the cooperative and competitive structures of each market is established, by 

focusing on the algebraic structure of the core, the set of cooperative equilibrium 

allocations and the set of competitive equilibrium allocations.  The results obtained and 

the methodology used in their proofs provide new and useful insights to the theory of 
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INTRODUCTION 

Two-sided matching markets where the structure of preferences is given by 

utility functions that are real and continuous in the money variable, denominated 

continuous two-sided matching models, have been particularly useful to model 

environments that can be treated cooperatively and competitively.2 In these markets the 

cooperative and the competitive structures can be analyzed altogether and compared to 

each other, which makes possible that the natural solution concepts – core, cooperative 

equilibrium and competitive equilibrium –  be characterized and correlated. 

The characterizations of the cooperative and the competitive equilibrium 

concepts and the connection between them are of great interest to economists and game 

theorists in the extent that they contribute to a better understanding of the fundamental 

similarities and differences between the cooperative and competitive structures of the 

market under study. This line of research has been developed since Shapley and Shubik 

(1962), through the continuous two-sided matching models that have been proposed.3  

The purpose of this work is to give continuity to this line of research. This is done 

through the analysis of two new continuous matching markets which are endowed with 

distinct market rules, but which are indistinguishable under their representation in the 

characteristic function form. The central interest of this work is to determine how these 

rules affect the cooperative structure and the mathematical modeling of these markets, 

creating distinct algebraic configurations for the respective solution sets. Along this 

paper we show that these markets present some peculiarities in their cooperative and 

competitive structures, not observed in the continuous matching models previously 

presented in the literature.  

Historically, the main characteristic of the one-to-one and many-to-one continuous 

matching models that have been studied in the literature is that the agents’ payoffs are 

one-dimensional, so they can be interpreted as resulting from negotiations in block 

(Shapley and Shubik (1972), Demange and Gale (1985), Kelso and Crawford (1982), 

Gul and Stacchetti (1999,2000), Sotomayor (2002)). The agents only care about their 

total payoffs. This assumption together with the continuity of the utility functions cause 

                                                 
2 As an example see Sotomayor (2007). 
3 An overview on the one-to-one continuous matching models can be found in Roth and Sotomayor 
(1990, 1992)  .  
 



the coincidence of the three solution sets, the core, the set o cooperative allocations and 

the set o competitive equilibrium allocations.  

The first continuous many-to-many matching model formally presented in the 

literature was introduced in Sotomayor (1992) and called multiple-partners assignment 

game.4 Since then it has been widely studied in several papers ( Sotomayor (1999-a, 

2007, 2009), Fagebaume, Gale and Sotomayor (2010)).  

 The multiple partners assignment game is obtained by incorporating quotas into 

the assignment game of Shapley and Shubik (1972). The quota of an agent 5 represents 

the maximum number of partnerships he can form. The agents can be interpreted as 

being buyers and sellers of indivisible goods. A buyer cannot acquire more than one 

item from the same seller.  For each buyer  pi  and seller  qj  there is a nonnegative 

number aij  representing the maximum amount of money buyer  pi  would consider 

paying for one of the identical objects owned by seller  qj.  This game is also adequate 

to model labor markets of heterogeneous firms and workers. In this case, the numbers  

aij  represent the productivity of worker  qj  in firm  pi. 

The main assumption of this model is that agents’ utilities are additively 

separable. This assumption makes possible that each agent receives a multi-dimensional 

payoff, one individual payoff corresponding to each trade performed. (Thus, if say,  

agent p  forms three partnerships then he gets a three-dimensional payoff). The 

negotiations are then pairwise and independent. This independence implies that an 

agent’s individual payoff in a given partnership is not affected if this agent or his 

partner breaks some of his agreements in other partnerships or adds new agreements to 

the pool, or leaves some of his partners. 

The multi-dimensionality of the individual payoffs in both sides of the market 

permits to deal with cooperative and competitive structures more game theoretically 

interesting than those provided by markets where the payoffs are one-dimensional or 

where the multiple-partnerships are restricted to only one of the sides of the market. In 

fact, the equivalence between the three solution sets mentioned above is lost in the 

multiple-partners assignment game. In this model, the concept of cooperative 

equilibrium for matching markets was viewed, by the first time, as a new concept, 

                                                 
4 Crawford and Knoer (1981) study a version of the assignment game of Shapley and Shubik (1972). The 
authors mention that their model can be extended to a many-to-many assignment game by introducing 
quotas into their one-to-one matching model. However they focus on the core concept, which 
characterizes the concept of stability in the one-to-one case, but not in the many-to-many case. 
5 For simplification, we will refer to an agent, a buyer and a seller as “he”. 



different from the core concept: The core of two-sided many-to-many matching markets 

contains the set of cooperative equilibrium allocations and may be different from this 

set (Sotomayor, 1992)6. Another result of the multiple partners assignment model is that 

the set of cooperative equilibrium allocations contains the set of competitive 

equilibrium allocations and may be different from this set (Sotomayor, 2007).  

The results reviewed above are illustrated in the following example. 

 

EXAMPLE 1. There are two firms  p1  and  p2  and two workers  q1  and  q2.  Both 

firms can hire both workers;  worker  q1  can take only one job and worker  q2  can take 

both jobs. The first row of matrix  a  is  (3,2)  and the second row is  (3,3).  Consider the 

allocation where  p1  hires both workers, gets  1  with each one of them and pays  2  to  

q1  and  1  to  q2;  p2  hires only worker  q2  at salary  2  and obtains the net profit of  1. 

Now observe that  p2  and  q1  could increase their gains by working together. Since the 

trades are independent,  p2  could keep its partnership with  q2. Then, for example, if  p2  

pays  2.5  to  q1  it will get  the total payoff of  1.5  instead of  1. Thus, in a cooperative 

environment, where agents can freely communicate with each other, we cannot expect 

to observe this allocation, because  q1  will not accept to receive  2  from  p1,  since he 

knows that  p2 can pay him more than 2. Therefore, this allocation cannot be regarded as 

a cooperative equilibrium. It is unstable. However, this allocation is in the core, since it 

is not blocked by any coalition. In fact, agents  p2  and  q1  don’t block the allocation 

because they are not able to increase their total payoffs by interacting only among 

themselves. They need more than 3 and they are able to get  3, at most. Buyer  p2 needs 

to keep his partnership with  q2, but coalition  {p2, q1, q2}  needs more than  6  to block 

the allocation and it is able to get  6, at most. On the other hand, the four agents only are 

able to get  8, at most, which they already have, so they do not form a blocking 

coalition. 

If, instead of paying a salary of 2 to  q1,  p1  pays him  3, the new allocation is 

stable (and so it is in the core), since  p2  cannot offer to  q1  more than 3.  However this 

allocation is not a competitive equilibrium allocation because buyer  p2  demands  q2  at 

price 1, not at price  2.g 

 
                                                 
6 Later, in Sotomayor (1999-b), the concept of cooperative equilibrium for the discrete many-to-many 
matching models with substitutable preferences was characterized as the concept of setwise-stability 
introduced in that paper. Setwise-stability was proved to be distinct from the concept of core and of 
strong core and stronger than this concept plus pairwise-stability.  



Another way to compare the three solution sets is to focus on their algebraic 

structure. In Sotomayor (1999-a), it is proved for the multiple-partners assignment 

model that the core is not a lattice  and that the set of cooperative equilibrium payoffs is 

a complete lattice under two partial order relations, not defined by the preferences of the 

agents. In spite of this, the extreme points of the lattices of cooperative equilibrium 

payoffs are the optimal stable payoffs for each side of the market.  

The algebraic structure of the set of competitive equilibrium allocations is 

treated in Sotomayor (2007), where it is proved that the set of competitive equilibrium 

allocations can be obtained by shrinking the set of cooperative equilibrium allocations 

through a function  f  which preserves the order. This function maps a cooperative 

equilibrium allocation to a feasible allocation obtained by reducing, to their minimum, 

the individual payoffs of each seller and by defining feasibly the payoffs of the buyers. 

The resulting allocation is still a cooperative equilibrium. It is also proved that the 

competitive equilibrium allocations are characterized as the cooperative equilibrium 

allocations in which the sellers do not discriminate the buyers. This characterization 

permits to identify the competitive equilibrium allocations with the fixed points of   f.  

Then, Tarski’s fixed point theorem (Tarski, 1955) implies that the set of competitive 

equilibrium allocations is a non-empty sub-lattice of the lattice of cooperative 

equilibrium allocations, establishing a link between the cooperative and competitive 

structures of the multiple partners assignment game. 

In the models proposed here, we modify the rules of the multiple partners 

assignment game: a buyer is allowed to acquire more than one unit of the good of a 

seller. Indeed, it is not required that the good is indivisible or that the quotas of the 

agents are integer numbers. Then, a buyer is also allowed to acquire less than one unit 

of the good of a seller. 

The basic model is called time-sharing assignment game. It can be obtained by 

incorporating time into the assignment game of Shapley and Shubik. Thus, there are two 

finite and disjoint sets of agents,  P  and  Q.  Every agent has a quota, given by a 

positive number, representing the amount of units of a divisible good  (e.g., labor time), 

which are to be distributed in any way he likes among the partnerships he forms. For 

each pair  (p,q) there is a non-negative number  apq,  representing the amount of income 

which  p  and  q  can generate if these players contribute one unit of labor time (u.l.t. for 

short) to this partnership.   



We assume that the whole agreement between  p  and  q  is broken once its terms 

with respect to the division of the income  apq  are changed. As for the terms on the 

contribution of labor time we distinguish two kinds of agreements. Under a rigid 

agreement,  if  p  or  q  breaks the agreement regarding the amount of labor, then the 

whole agreement, including the division of the income, must be nullified. The market 

where all agreements are rigid is called time-sharing assignment game with rigid 

agreements or rigid market, for short. A flexible agreement between  p  and  q allows 

either agent to decrease the number of u.l.t. he contributes to the partnership without 

breaking the agreement corresponding to the division of the income per u.l.t.. Therefore, 

any of the two agents is allowed to transfer part of his common labor time to some other 

current partnerships or to some new partnerships. The market where all agreements are 

flexible is called time-sharing assignment game with flexible agreements or flexible 

market, for short. We will be interested on the rigid market and on the flexible market. 

The flexible market is an auxiliary market which works as an analytical tool for the 

proofs of our results.7  

 However, the feasible allocations of the rigid and flexible markets do not inform 

if the agreements inside each partnership are rigid or flexible.  Consequently, the 

distinct rules of these markets yield the same set of feasible allocations, and so the two 

markets are indistinguishable under their representations in the characteristic function 

form. In the text it is presented an example (Example 2.2.1) where some deviation is 

allowed in the flexible market but it is not so in the rigid market. This causes some 

given allocation to be a cooperative equilibrium allocation for the rigid market and not 

to be so for the flexible market. Thus, the use of the characteristic function in modeling 

the rules of the rigid and the flexible markets seems to be inappropriate for the purpose 

of observing cooperative equilibrium allocations. 8 

                                                 
7 This kind of technique was also employed by Gale and Shapley (1962). These authors defined the 
marriage model to be used as a tool to prove the existence of stable matchings for the college admission 
market. 
8 This fact motivated the studies developed in Sotomayor (2012), whose main proposal is a mathematical 

model, called deviating function form, which allows defining a general concept of stability for all 

cooperative decision situations in which agents form coalitions and freely interact inside each coalition 

that is formed, by acting according to some established rules. 

 



The appropriate and proposed mathematical model is the deviation function form 

introduced in Sotomayor (2012). Once this foundation is laid out, it becomes possible to 

identify the cooperative equilibrium allocations in each market. 

A special case of this model, in which the goods are indivisible, was introduced 

in Thompson (1980). The author uses a non-standard definition of the core however: no 

agent discriminates any other agent in equilibrium (i.e., each seller sells all of his units 

for the same price and each buyer gets the same individual payoff in all of his trades).  

The model with the standard definition of the core was studied in Sotomayor (2002), 

where Thompson’s assumption is relaxed and the (continuous) time-sharing assignment 

game with one-dimensional payoffs is analyzed. Baiou and Balinski (2002) introduced 

the discrete case (ordinal preferences) under flexible agreements. The discrete flexible 

market was also studied in Alkan and Gale (2003 ) under more complex ordinal 

preferences.  

To date, however, no one has considered the two (continuous) time-sharing 

assignment games with multi-dimensional payoffs proposed here. They are genuinely 

new models. Their analysis approaches some of the main issues that arise in the study of 

matching problems, namely the characterization and existence of the core allocations, of 

the cooperative equilibrium allocations and of the competitive equilibrium allocations, 

as well as the correlation between the cooperative and the competitive structures, by 

focusing on the algebraic structure of the corresponding solution sets, lending new 

insights to the theory of two-sided matching markets.  

Since Gale and Shapley (1962) the cooperative equilibrium allocations in 

matching markets are called stable allocations. The general idea proposed in Sotomayor 

(2012), which is extended to non-matching games,  is that: The allocation  σ  is stable if 

there is no coalition  S  of players who can profitably deviate from  σ  by acting 

according to the rules of the game. Coalition  S  is called a deviating coalition.  

This idea contrasts with that of the core: The allocation  σ   is in the core if there 

is no coalition  S  of players who can profitably deviate from the given allocation by 

interacting only among themselves. Coalition  S   is called a blocking coalition.  

Then, it should be specified by the rules of the game if a coalition can or cannot 

do more than to merely interact among themselves.  

In order to characterize the cooperative equilibrium allocations in the rigid and 

in the flexible markets, we first define in section 2.3 two special cooperative solution 



concepts - setwise-stability and strong-stability - via two kinds of domination relations. 

Then, by using the representation of these two markets under the deviation function 

form defined in section 2.2, we characterize the cooperative equilibrium allocations for 

the rigid market as the setwise-stable allocations, and the cooperative equilibrium 

allocations for the flexible market as the strongly-stable allocations. The definition of 

these concepts implies that the core contains the set of setwise-stable allocations, which 

contains the set of strongly stable allocations. Examples presented in the text (sections 

2.2 and 2.3) show that these inclusions may be strict. 

The existence proof of cooperative equilibrium allocations provides a new 

technique, not used yet in the continuous matching models but very subtle: competitive 

equilibrium allocations are stable and always exist.  

The stability of the competitive equilibrium allocations for the multiple partners 

assignment game was obtained in Sotomayor (2007) through the characterization of the 

competitive equilibrium allocations as “the stable allocations which do not discriminate 

the buyers”. It turns out that, as it is viewed here, it is not the property of stability plus 

buyer-non-discrimination that characterizes the competitive equilibrium allocations in 

our models. In these models, the characterization of the competitive equilibrium 

allocations requires the additional property of being strongly-stable. The competitive 

equilibrium allocations are the strongly-stable allocations which do not discriminate 

the buyers. An example in section 4 illustrates a situation in which a stable allocation 

for the rigid market, which does not discriminate the buyers, is not a competitive 

equilibrium. Nevertheless, such inconsistency with the multiple-partners assignment 

model is indeed apparent. As consequence of our results, an allocation is stable for that 

model if and only if it has the strong-stability property, conveniently adapted. 

The main consequence of such characterization is that the cooperative structure 

of the flexible market can then be viewed as a bridge between the competitive and 

cooperative structures of the rigid model: the competitive equilibrium allocations are 

the stable allocations of the flexible market which do not discriminate the buyers. As a 

corollary, the competitive equilibrium allocations are stable in the rigid market and they 

are in the core. 

The property of strong-stability of the competitive equilibrium allocations 

naturally emerges from a non-obvious characterization of the set of strongly-stable 

allocations provided here. To understand the idea behind this characterization, consider 

the prices specified by a given feasible allocation. To fix ideas consider a feasible 



allocation where, say, buyer  p1,  with a quota of  5,  acquires  3  units of the good of  q1 

for  $5 per unit, and acquires 2 units of the good of  q2  for  $2 per unit.  Assume for 

simplicity that the goods are indivisible. Given the prices specified by the feasible 

allocation, the problem faced by  p1  is to choose a bundle with five units which gives 

him the highest total payoff. However there are some rules. If he wants to acquire some 

units of  q1  or  q2,  he must pay  $5 for the first three units of q1  and  2$  for the first 

two units of  q2. It turns out that, if the allocation is strongly-stable then the set of units 

assigned to  p1  by the feasible allocation  is in the set of bundles which might be 

selected by  p1. The allocation is strongly stable if and only if every buyer is assigned a 

bundle of his set of selected bundles. Then, under a strongly-stable allocation in which 

no seller discriminates any buyer, every buyer, taking as given the prices of the u.l.t. 

supplied by the sellers, is maximizing his total surplus. This is precisely how the 

concept of competitive equilibrium allocation is defined!  

Having proved that competitive equilibrium allocations are strongly-stable and do 

not discriminate the buyers, we address the existence problem. We show that the dual 

allocations, naturally derived from the dual solutions of the transportation problem 

conveniently defined, are the strongly-stable allocations in which no agent is 

discriminated, so they are competitive and always exist. Since every dual solution is 

compatible with any optimal assignment of the corresponding linear programming 

problem, it follows that every such dual allocation is compatible with any optimal labor 

time allocation. (This property is not, in general, shared with the allocations of the other 

sets). Then we get a stronger result: the core, the set of stable allocations for both 

markets and the set of competitive equilibrium allocations, compatible with any optimal 

labor time allocation, are also non-empty. 

In the Appendix II we define a demand correspondence which applies to the 

time sharing assignment game and to the assignment game. The competitive 

equilibrium for the resulting competitive market is called competitive equilibrium under 

non-discriminatory demand. The notion of demand correspondence used in the text is 

referred there as discriminatory demand. We show that the set of competitive 

equilibrium under non-discriminatory demand coincides with the set of dual allocations 

and, under the rules of the assignment game, the two sets of competitive equilibrium 

allocations coincide. This suggests that the equivalence between the dual allocations and 

the competitive equilibrium allocations under discriminatory demand is less robust to 

the introduction of time into the assignment game than the equivalence between the set 



of dual allocations and the set of competitive equilibrium allocations under non-

discriminatory demand.  

In section 5 we go beyond simple considerations provided by the set inclusion 

relation, and we also examine the connection between these solution sets, by focusing 

on their algebraic structure. As in the multiple-partners assignment game, the core is not 

a lattice. Nevertheless, the changes in the rules of the multiple partners assignment 

game affect the lattice property of the set of stable allocations and of the set of 

competitive equilibrium allocations.  None of these sets is a lattice in both markets.  

If we restrict the allocations to the same labor time allocation, we can define two 

partial order relations defined in the text, ≥P (defined by the P-agents)  and  ≥Q (defined 

by the Q-agents). The agents can compare their vectors of individual payoffs 

componentwise. Even in this case the core and the set of stable allocations for the rigid 

market are not always lattices. In spite of this, Example 5.1 in the text presents a 

situation in which the P-optimal core allocation and the P-optimal setwise-stable 

allocation exist. However, that polarization of interests between the two sides of the 

market,  presented in the multiple-partners assignment game when one compares the 

two optimal stable allocations, is not observed in the rigid market: The best setwise-

stable allocation for the P-agents is not the worst setwise-stable allocation for the Q-

agents.  Indeed, there is no setwise-stable money allocation that is the worst setwise-

stable money allocation for the  Q-agents in that model. 

 The central result of section 5 is that, given any optimal labor time allocation  x, 

the sets of strongly stable allocations and of competitive equilibrium allocations, 

compatible with  x,  are non-empty complete lattices. However, the changes in the rules 

of the multiple partners assignment game affect the algebraic structure of the set of 

stable allocations of the two markets in two different ways. In the rigid market, as 

mentioned above, while the set of stable allocations is not a lattice (even if restricted to 

the same labor time allocation), in the flexible market, this set splits into several non-

empty lattices, each one corresponding to an optimal labor time allocation. Such a 

structure does not guarantee the existence of the optimal stable allocations for each side 

of the flexible market, however, because the corresponding extreme points of these 

lattices may generate different total payoffs to the agents. 

A similar effect is caused on the set of competitive equilibrium allocations: this 

set also has a non-standard algebraic structure of a union of complete lattices.  Each of 

these lattices is a sub-lattice of the corresponding lattice of strongly-stable allocations. 



Nevertheless, in contrast with the set of strongly-stable allocations, each two of the 

lattices of competitive equilibrium allocations are in one-to-one correspondence through 

a function which preserves the total payoff of the agents. The extreme points of the first 

lattice are mapped to the corresponding extreme points of the other lattice. Thus, all 

suprema are P-optimal competitive equilibrium allocations if we use the partial order 

≥P, and they are Q-optimal competitive equilibrium allocations if we use the partial 

order ≥Q. Hence, there exist the P-optimal and the Q-optimal competitive equilibrium 

allocations.  

The existence of the optimal competitive equilibrium allocations for each side of 

the market has some implication of technical order, since it makes treatable, for our 

models, several problems of economic interest, whose solution involves the choice of 

only one convenient feasible allocation. This is, for example, the case of the 

comparative static problems caused by the entrance of new agents in the market and the 

stable allocation problems in a centralized market (we provide more details for these 

problems in section 6). 

We also show that the lattice property holds for the whole set of competitive 

equilibrium price vectors under the partial order  ≥Q  defined by the sellers. Indeed, this 

set is a complete lattice under the partial order defined by the total payoffs of the sellers. 

The lattice property, under ≥P  and  ≥Q,  also holds for the whole set of competitive 

equilibrium allocations under non-discriminatory demand defined in the Appendix II. 

This work is organized as follows. In section 2 we present the cooperative 

structure of the rigid and flexible markets. In sub-section 2.1 we describe the time-

sharing assignment market and give the preliminary definitions.  In sub-section 2.2 we 

present an example which illustrates that the nature of the agreements is a relevant 

information for the problem of modeling the rules of the game. The primitives of the 

mathematical model in the deviation function form are then presented. Sub-section 2.3 

defines the concept of cooperative equilibrium translated to the rigid and flexible 

markets. It defines the solution concepts of setwise-stability and strong-stability and 

establishes a set inclusion relation between the corresponding solution sets and the core. 

Some examples illustrate the strictness of this set inclusion relation. Then the 

cooperative equilibrium allocations are characterized as the setwise-stable allocations in 

the rigid market and as the strong-stable allocation in the flexible market. Two results 

related to the core are also proved. Section 3 presents the competitive framework. Sub-



section 3.1 describes the competitive market and sub-section 3.2 defines the competitive 

equilibrium concept. Section 4 addresses the existence problem. Section 5 concerns the 

algebraic-structure of the core, the set of cooperative equilibrium allocations in both 

markets and the set of competitive equilibrium allocations. It is also discussed the lattice 

property of the set of competitive equilibrium prices under two partial order relations.  

Final remarks and related work are presented in the last section. Appendix I provides 

the proofs of the results. Appendix II discusses the competitive market with non-

discriminatory demands.  

 

2. COOPERATIVE STRUCTURE OF THE TIME-SHARING ASSIGNMENT 

GAME  

2.1 THE MATCHING MARKET AND SOME PRELIMINARIES  

There are two finite and disjoint sets of agents,  P  with  m  elements and  Q  

with  n  elements, which we may think of as a set of buyers and a set of sellers, or a set 

of firms and a set of workers. We will describe the market in terms of buyers and 

sellers, who will sometimes be called P-agents and Q-agents, respectively. Generic 

agents of  P  and  Q  will be denoted by  p  and  q,  respectively.  

 Dummy-agents, denoted by  0,  will be included in both sides of the market for 

technical convenience. Set  P*≡P-{0}  and  Q*≡Q-{0}.  Each agent has a quota of units 

of labor time (e.g. man-hours) at his disposal, which he can distribute among the 

partnerships he forms in any way he likes. Each seller  q  supplies a quota of  s(q)∈R+  

units of labor time (u.l.t. for short) and each  buyer  p  cannot acquire more than his 

quota of  r(p)∈R+ u.l.t.. The quota  r(0)  of the dummy P-agent is equal to ∑q∈Q s(q)  

and the quota  s(0)  of the dummy Q-agent is equal to  ∑p∈P r(p).  We will assume that 

the reservation price of one u.l.t.  is zero for all sellers. For each pair  (p,q)∈PxQ  there 

is a nonnegative number  apq,  which is to be split between the partners in any way they 

agree. The number  apq  can be interpreted as the maximum amount of money  buyer  p  

would consider paying for one unit of labor time supplied by seller  q.  Then,  apq  is the 

gain from trade when one u.l.t. of seller  q  is sold to buyer  p. Thus, if seller  q  sells 

one u.l.t. to buyer  p  at price  wpq  then  p  will get the individual payoff of  upq=apq – 

wpq  and  q  will receive  wpq. The matrix of numbers  apq’s  will be denoted by  a, with  

ap0=a0q=0  for all  (p,q)∈PxQ.  The agents who are not dummies will some times be 



called real agents. We will denote by  r  and  s,  respectively, the sets of numbers  r(p)´s  

and  s(q)´s. 

The negotiations inside a partnership {p,q} must specify: 

(1) how the partners should divide the income  apq  they get per u.l.t. (so the 

agents’ payoffs are multi-dimensional , one individual payoff for each trade ) and  

(2) how much labor they should contribute to the partnership.  

Then an allocation specifies a money allocation and a labor time allocation, 

which are indexed according to the partnerships formed. 

We will assume that for a partnership  (p,q)  to be active both members must 

contribute the same positive amount of units of labor time and each agent should 

receive equal individual payoff per each u.l.t. he contributes to the partnership. This 

assumption is natural under our buyer-seller market interpretation: if a trade between a 

buyer and a seller  is performed then the number of units of labor time acquired by the 

buyer is equal to the number of units of labor time sold by the seller. Furthermore, all 

these u.l.t. are sold to the buyer for the same price and so the buyer gets the same 

individual payoffs with all of them. This market will be called time-sharing assignment 

game. 

For some purposes (e.g., for observing cooperative equilibria) the rules of the 

market should also specify the kind of agreement concerning the amount of labor time 

which is to be contributed to the partnership by its members. We consider two types of 

agreements on the contribution of the labor time. Under a rigid agreement,  if  p  or  q  

breaks the agreement regarding the amount of labor, then the whole agreement, 

including the division of the income, must be nullified. A flexible agreement between  p  

and  q allows either agent to decrease the number of u.l.t. he contributes to the 

partnership without breaking the agreement corresponding to the division of the income 

per u.l.t.. Therefore, any of the two agents is allowed to transfer part of his common 

labor time to some other current partnerships or to some new partnerships.  

The market where all agreements are rigid is called time-sharing assignment 

game with rigid agreements or rigid market, for short. The market where all agreements 

are flexible is called time-sharing assignment game with flexible agreements or flexible 

market, for short. We will be interested on the rigid market and on the flexible market. 

 The players seek to form sets of partnerships to distribute all their labor time. 

The obvious condition for feasibility is that all money generated by a partnership per 

u.l.t. is distributed among its members. Formally, 



 

Definition 2.1.1 A labor time allocation  is a real matrix  x=(xpq)(p,q)∈PxQ.  The labor 

time allocation  x  is feasible if 

(a)  ∑q∈Q xpq=r(p)  for all  p∈P*;  

(b)  ∑ p∈P xpq=s(q)  for all  q∈Q*. 

(c)   xpq≥0  for all pairs  (p,q)∈PxQ. 

 

The number  xpq (non-necessarily integer)  may be interpreted as the amount of 

labor time  p  and  q  work together. Note that  (a)  is an equation, not an inequality, 

because  p  can always contribute left over labor time to the partnership  (p,0). Similar 

observation applies to  (b).  

A feasible labor time allocation  x  is optimal if  

(d) ∑(p,q)∈PxQ apq xpq  ≥ ∑(p,q)∈PxQ apq x’pq,  for all feasible labor time allocations  x’.   

 
NOTATION: For the labor time allocation  x,  set  C(x)≡{(p,q)∈PxQ; xpq>0}.  If  (p,q)∈C(x)  we say 

that  (p,q) is active at  x  (or simply active, for short, when there is no confusion). We also say that  p  is 

matched to  q  or  q  is matched to  p  at  x.  For the labor time allocation  x  and  (p,q)∈PxQ,  set  

B(p,x)≡{q´∈Q; (p,q´)∈C(x)} and  B(q,x)≡{p´∈P; (p´,q)∈C(x)}.   

 

Definition 2.1.2. Given a labor time allocation  x,  a money allocation  (u,w)  

corresponding to   x   is a pair of non-negative real functions on  C(x).  It is feasible if  x  

is feasible and  

(e)   upq+wpq= apq  for all  (p,q)∈C(x).  

We say that  (u,w)  is compatible with  x  and vice-versa. The triple  (u,w;x)  is called a 

feasible allocation and we also say that it is compatible with  x.  

 

That is, (u,w;x)  is a feasible allocation if it satisfies  (a), (b), (c)  and (e). 

Condition  (e)  clearly implies that  up0=w0q=0  if  the corresponding partnerships are 

active. Observe that  upq  is not defined if  xpq=0.  If  xpq>0  we can also say that  p  and  

q  are matched to each other under  (u,w;x). 

 It is worth to point out that Definition 2.1.2 does not take into consideration the 

nature of the agreements, so both markets have the same set of feasible allocations. 

  



NOTATION: (i)We will denote by  ∑  the set of all feasible allocations.  A player compares two feasible 

allocations by comparing his total payoff in each allocation. The  p’s  total payoff and the  q’s  total 

payoff generated by  (u,w;x)  are given, respectively, by:  Up=∑q∈B(p,x) upqxpq  and  Wq=∑p∈B(q,x) wpqxpq.   

(ii) For every  p∈P  and  q∈Q  define  up(min)=min{upq; q∈B(p,x)}  and  wq(min)= min{wpq; p∈B(q,x)}. 
 

Definition 2.1.3. The feasible allocation  (u,w;x)  is P-non-discriminatory  if   

(f)  wpq=wq(min)  for all  (p,q)∈C(x).  

The feasible allocation  (u,w;x)  is Q-non-discriminatory   if  

(g)  upq=up(min)  for all  (p,q)∈C(x).  

The feasible allocation  (u,w;x)  is non-discriminatory if the payoff functions  u  and  w 

satisfy  (f)  and  (g). 

 

Definition 2.1.4. Let  S⊆P*∪Q*,  S≠φ. The feasible labor time allocation  x  is feasible 

for  S  if, for every  P-agent  p∈S  and every Q-agent  q∈S, [B(p,x)-{0}]⊆S  and [B(q,x)-

{0}] ⊆S. The feasible allocation (u,w;x) is feasible for  S  if  x  is feasible for  S. 

 

That is, under the assumptions above,  x  is feasible for  S  if no agent in this set 

interacts, at  x,  with real agents out of  S.  

For every  S⊆P*∪Q*  define  V(S)  as being the set of feasible allocations that 

are feasible for  S.  That is,  

(h) V(S)={(u,w;x)∈ Σ; x is feasible for  S}. 

We assume that  V(φ)=φ. 

Observe that this function  V  can be identified with the characteristic function of 

the market. This function does not take into consideration the nature of the 

agreements, so it is the same for both markets.  

For each  R⊆P*,  R≠φ,  and  T⊆Q*,  T≠φ,   the payoff  G(R∪ T)   of coalition  R∪ T   

is given by  

(i)        G(R∪ T)≡max {∑(p,q)∈RxT apq xpq;  x  is feasible for  R∪ T}. 

Define  G(S)=0  if  S⊆P*  or  S⊆Q*.  Also  G(φ)=0.  That is,  for all  S⊆P*∪Q*,  

G(S)  is the maximum income the players in  S  can get by themselves. According to this 

definition, a feasible labor time allocation  x  is optimal if and only if                      

G(P*∪ Q*)=∑(p,q)∈PxQ apq xpq. 

 



REMARK 2.1.1. From Definition 2.1.4, if (u,w;x)∈V(R∪T),  R⊆P*,  R≠φ,  T⊆Q*,  T≠φ, then the players 

of  R∪T  achieve their total payoff and fill their quota of labor time without any interaction with real 

players out of  R∪T.  The feasibility of  (u,w;x)  then implies that  ∑p∈R,q∈TUp+Wq = ∑(p,q)∈RxT  apq xpq. By 

(i),  ∑p∈R,q∈T (Up+Wq)≤ G(R∪T). In particular, since any feasible allocation  (u,w;x)  belongs to  

V(P*∪Q*),  ∑p∈P,q∈Q(Up +Wq) ≤ G(P*∪Q*),  for all feasible allocations  (u,w;x).  However, it is very 

easy to find an allocation that satisfies this expression and does not satisfy  (e), so it is not feasible. g 

 

Definition 2.1.5.  Let  E  be some non-empty set of feasible allocations. The feasible 

allocation  σ=(u , w ;x)∈E  is P- optimal for set  E  if   U p ≥ U'p  for all  p∈P  and all 

feasible allocations  (u',w';x’)  in  E.  Symmetrically, the feasible allocation  τ=(u , 

w ;x)∈E  is Q-optimal for set  E  if   W q ≥ W'q  for all  q∈Q  and all feasible 

allocations  (u',w';x’)  in  E. 

 

2.2. MATHEMATICAL MODEL: DEVIATION FUNCTION FORM 

The assumption that the utilities are additively separable propitiates market 

rules, according to which, agents in a coalition can renegotiate among themselves while 

keeping the whole terms of some current agreements with current partners outside the 

group. These rules are specified by the feasible allocations. However, the renegotiations 

inside a partnership take into consideration the nature of the agreements. The rules 

which control such renegotiations are not specified by the feasible allocations. Thus the 

two markets provide the same sets of feasible allocations, but different rules. Therefore, 

the feasible allocations do not fully model the rules of the two markets. It turns out that 

the information on the nature of the agreements is crucial for the purpose of observing 

cooperative equilibrium allocations, as we can see in the following example.  

 

Example 2.2.1. Consider  P={p1},  Q={q1, q2}, r(p1)=5=s(q1), s(q2)=1, a11=a12=3. 

Consider the allocation  σ=(u,w;x)  where  x11=5, x12=0, x02=1; u11=1, w11=2, w02=0. 

Then  U1=5,  W1=10  and  W2=0. This allocation is clearly feasible. 

   It is easy to verify that there is no way for  p1  to increase his total payoff by only 

trading with  q2.  In order to increase his total payoff,  p1  must trade with both sellers. If 

the rules of the market allow that the number of negotiated units of labor time in the 

partnership  {p1, q1} could be reduced to 4, while keeping the division of the income  

a11,  p1  and  q2  could reach the feasible allocation  σ´=(u´,w´;x´),  where  x´11=4<5=x11,  



x´12=1,  u´11=1,  u´12=2,  w´11=2,  w´12=1.  The total payoffs of  p1  and  q2  would be  

U’1=6>U1  and  W’2=1>W2,  respectively.  

Nevertheless, if such kind of reformulation of current agreements is not allowed by 

the rules of the market, then the agreement between  p1  and  q1  should be nullified and 

a new agreement between these two agents should be proposed. It is easy to see that 

there are no prices that can increase the current total payoffs of the three agents: if  q1  

receives more than  0  and  q2  receives more than  10  then  p1  will receive less than  5.  

 In sum, in a time-sharing assignment market operating in a cooperative 

environment, in which the agents can freely communicate to each other, if we do not 

know the kind of agreements that are allowed by the rules of the game, we cannot 

predict which allocations will or will not occur. The feasible allocation  σ  could be 

expected to occur in the rigid market but not in the flexible market. g   

  

 The natural question is then: How to model the rules of the game so that to 

capture the information on the nature of the agreements? 

As the example above illustrates, feasible allocation  σ  is a cooperative 

equilibrium allocation for the rigid market and it is not so for the flexible market. These 

conclusions cannot be obtained from the characteristic function  V, since there is no way 

to capture the nature of the agreements from  V.  Thus, the two markets are 

indistinguishable under their representation in the characteristic function form. This 

makes inadequate the use of the characteristic function in modeling the rules of the rigid 

and the flexible markets for the purpose of observing cooperative equilibrium 

allocations. 

The deficiencies inherent of the representation of these markets in the coalitional 

function form can be corrected with the use of the deviation function form. This is a 

mathematical model recently introduced in Sotomayor (2012) that can be used to 

represent a cooperative game of the sort we are treating here. The primitives of this 

model are the set of agents, the set of feasible allocations, and for each coalition  

S∈P*∪Q*  and for each feasible allocation σ,  the set  φσ(S)  of feasible allocations,  

called set of feasible deviations from  σ   via  S.  The feasible allocations express which 

decisions the players are allowed to take (rational decisions) and the feasible deviations 

from  σ  via coalition  S  reflect, in some sense, the actions that the players in  S  can 

take against  σ  and that are allowed by the rules of the game.   



It is natural to require that  φσ(φ)=φ  and that  φσ(S)⊇V(S)  for all  σ  and all  

coalition  S  of real players. Also, if  σ’∈ φσ(S),  then every player in  S  has at least one 

partner in  S∪{0}  under  σ’; if a player in  S  has a real partner under  σ’, out of  S, then 

this partner is also his partner at  σ ;  if  σ’  and  σ”  are feasible allocations which agree 

on the set of partners of  the agents belonging to  S,  then if  σ’∈φσ(S)  then σ’’∈φσ(S) 

(internal consistency).    

Thus, the players in  S  obtain a feasible deviation  σ´  from  the feasible 

allocation  σ  by modifying  σ  through actions allowed by the rules of the game that 

take into account the nature of the agreements.  Therefore, in the rigid market, the 

players in  S  can reach a feasible deviation  σ’   from  σ   by  
(1) breaking some of their agreements at  σ,  

(2) keeping those ones at  σ  which were not broken and  

(3) replacing the broken agreements at  σ   with a new set of agreements, which 

only involves agents in  S.  

Formally, 

 

Definition 2.2.1. Given a coalition  S⊆P*∪Q* and a feasible allocation  σ=(u,w;x),  

the feasible allocation  σ’=(u’,w’;x’)  is a feasible deviation from  σ  via  S  for the 

rigid market if  

(j) when  [p∈S  and  x’pq>0]  then  q∈S∪{0}  or  [x’pq=xpq  and  u’pq=upq]; when  

[q∈S  and  x’pq>0]  then  p∈S∪{0}  or [ x’pq=xpq  and  w’pq=wpq]; 

 (k) for every  p∈S,   there is some  q∈B(p,x’)  such that  [x’pq≠xpq  or  u’pq≠upq];  for 

every  q∈S,   there is some p∈B(q,x’)  such that  [x’pq≠xpq  or  w’pq≠wpq]. 

 

Condition  (j)  means that every player in  S  can keep some of his current 

agreements with partners out of  S,  and the new agreements are made with partners in  

S∪{0}; condition  (k)  adds that every player in  S  makes, at least, one new agreement. 

If   σ’  is a feasible deviation from  σ  via  S  we say that  S  is a deviating coalition. We 

denote by  )(S
Rφσ

  the set of all feasible deviations from  σ  via  S  in the rigid market. 

When agreements are flexible, a deviating coalition can do more than the rules 

specify when agreements are rigid. In fact, in the flexible market, there is one more 

action that the players in  S  can take to reach a feasible deviation   from  σ.  They can    



(2’) reformulate the terms of their current agreements (which were not dissolved and 

were not maintained) with respect to the time allocation (by reducing the number of 

u.l.t and keeping the terms on the division of the income  apq).  

Formally, 

 

Definition 2.2.2. Given a coalition  S⊆P*∪Q*  and a feasible allocation  σ=(u,w;x),  

the feasible allocation  σ’=(u’,w’;x’)  is a feasible deviation from  σ  via  S  for the 

flexible market if  

(l) when  [p∈S  and  x’pq>0]  then  q∈S∪{0}  or [ xpq≥x’pq  and   u’pq=upq];  when  

[q∈S  and  x’pq>0]  then  p∈S∪{0}  or [xpq≥x’pq  and  w’pq=wpq]; 

(m) for every  p∈S,   there is some  q  in B(p,x’)  such that  [x’pq>xpq  or  u’pq≠upq]; 

for every  q∈S,   there is some  p  in B(p,x’)  such that [x’pq>xpq  or  w’pq≠wpq]. 

 

We denote by  )(S
Fφσ

  the set of all feasible deviations from  σ  via  S  in the 

flexible market. 

By Definitions 2.2.1 and 2.2.2,  any feasible deviation from some  σ∈Σ  via 

some coalition  S  of real players for the rigid market is also a feasible deviation from  σ  

via  S  for the flexible market. Let  φR  (respectively,  φF)   be  the set of all feasible 

deviations from feasible allocations via some coalition for the rigid market 

(respectively, flexible market). The deviation function form of the time-sharing 

assignment game with rigid agreements is then given by  (P,Q,Σ,φR) and for the time-

sharing assignment game with flexible agreements is given by  (P,Q,Σ,φF).  

 

 2.3 COOPERATIVE EQUILIBRIUM: CONCEPT AND CHARACTERIZATION 

Since Gale and Shapley (1962), the cooperative equilibrium allocations in 

matching markets are called stable allocations. The general idea was proposed in 

Sotomayor (2012) and extended to non-matching games. Roughly speaking, a feasible 

allocation is stable if there is no coalition of players who can profitably and feasibly 

deviate from the given allocation by acting according to the rules of the game.  

This idea contrasts with that of core: A feasible allocation is in the core if there 

is no coalition of players who can profitably and feasibly deviate from the given 

allocation by interacting only among themselves.  



For the purpose of observing cooperative equilibria, the appropriate model is 

that given by the deviating function form presented in section 2.2. Once this foundation 

is laid out, we are able to characterize the cooperative equilibrium allocations of both 

markets.   

Translated to the rigid and flexible markets, we formally have: 

 

Definition 2.3.1. The feasible allocation  σ=(u,w;x)  is stable for the rigid 

(respectively, flexible) market if there is no coalition  S=R∪T≠φ,  with  R⊆P*  

and  T⊆Q*,  and a feasible allocation  σ’=(u’,w’;x’)  such that  

(i1) U’p>Up  ∀p∈R  and  W´q>Wq  ∀q∈T  and 

  (i2) σ’∈ )(S
Rφσ

  (respectively, )(S
Fφσ

 ). 

 If  σ  is not stable it is called unstable.   

 

The standard notion of domination relation is the following: 

 

Definition 2.3.2. The feasible allocation  σ´=(u´,w´;x´)  dominates the feasible 

allocation  σ=(u,w;x)  via coalition  S=R∪T≠φ,  with  R⊆P*  and  T⊆Q*,  if   

      (i1) U´p >Up  ∀p∈R  and  W´q>Wq  ∀q∈T  and 

     (i2) σ´∈V(S).  

 

That is, the feasible allocation  σ´ dominates the feasible allocation  σ  via 

coalition  S  if every player in  S  prefers  σ´ to  σ  and the players of coalition  S  reach 

allocation σ´ by  

1. breaking all their current agreements,  and  

2. replacing their current agreements with a new set of agreements, which only involves 

players in  S. 

Then the players in  S  can profitably deviate from allocation  σ  and obtain  σ´  

by interacting only among themselves. This is how a core allocation is defined. That is, 

 

Definition 2.3.3. A feasible allocation is in the core if it is not dominated by any other 

feasible allocation via some coalition. Such a coalition is called blocking coalition. 

 



The following two propositions will be useful. Proposition 2.3.1 gives a 

sufficient condition for a feasible allocation to be in the core. Proposition 2.3.2 asserts 

that every core allocation is individually rational. Consequently, every stable allocation  

for the rigid (respectively, flexible) market  is individually rational.  

 

Proposition 2.3.1.  Let (u,w;x)  be a feasible  allocation such that  

(n) ∑p∈R Up+ ∑q∈TWq ≥ G(R∪T),  for every   R⊆ P*  and  T⊆ Q*. 

Then,  (u,w;x)   is  in the core. 

 

Proposition 2.3.2.  If (u,w;x)   is in the core  then 

(o) Up≥0  for all  p∈P  and  Wq≥0  for all  q∈Q. 

 

In order to get a characterization of the stable allocations in the rigid and in the 

flexible markets, we define two special cooperative solution concepts: setwise-stability 

and strong-stability. These notions are defined via two kinds of domination relations. 

 

Definition 2.3.4. The feasible allocation  σ’=(u’,w’;x’)  quasi-dominates the feasible 

allocation  σ=(u,w;x)  via coalition  S=R∪T≠φ,  with  R⊆P*  and  T⊆Q*,  if 

(i1)  U’p > Up  ∀p∈R,  W’q>Wq  ∀q∈T  and 

(i2) if  p∈R  and  x’pq>0  then  q∈T∪{0}  or  [x’pq=xpq  and  u’pq=upq]; if  q∈T  

and  x’pq>0  then  p∈R∪{0}  or [ x’pq=xpq  and  w’pq=wpq].  

 

Definition 2.3.5.  A feasible allocation is setwise-stable if it is not quasi-dominated by 

any other feasible allocation via some coalition.  

 

Condition  (i1)  of Definition 2.3.4 implies  (k).  Thus, if a feasible allocation  

σ=(u,w;x)  is quasi-dominated by a feasible allocation  σ’=(u’,w’;x’)  via some 

coalition  S  then  (j)  and  (k)  are satisfied, so Definition 2.2.1 implies that   

σ’∈ )(S
Rφσ

. By Definition 2.3.1,  σ  is unstable for the rigid market. Conversely, if  σ  

is unstable for the rigid market then conditions  (i1)  and  (i2)  of Definition 2.3.1 imply 

conditions  (i1)  and  (i2)  of Definition 2.3.4,  so  σ  is not setwise-stable by Definition 



2.3.5. Therefore, the stable allocations for the rigid market are the setwise-stable 

allocations.   

 

Definition 2.3.6. The feasible allocation  σ’=(u’,w’;x’) strongly quasi-dominates the 

feasible allocation  σ=(u,w;x)  via coalition  S=R∪T≠φ,  with  R⊆P*  and  T⊆Q*,  if 

(i1)  U’p > Up  ∀p∈R,  W’q>Wq  ∀q∈T  and 

(i2) when  [p∈R  and  x’pq>0]  then  q∈T∪{0}  or [ xpq≥x’pq  and   u’pq=upq];  

when  [q∈T  and  x’pq>0]  then  p∈R∪{0}  or [xpq≥x’pq  and  w’pq=wpq]. 

 

Definition 2.3.7.  A feasible allocation is strongly-stable if it is not strongly quasi-

dominated by any other feasible allocation via some coalition.  

 

By Definition 2.3.7,  if a feasible allocation  σ=(u,w;x)  is not strongly-stable 

then it is strongly-quasi-dominated by a feasible allocation  σ’=(u’,w’;x’)  via some 

coalition  S.  Then, Definition 2.2.2 implies that  σ’∈ )(S
Fφσ

,  and so, by Definition 

2.3.1,  σ  is unstable for the flexible market. Conversely, if  σ  is unstable for the 

flexible market then conditions  (i1)  and  (i2)  of Definition 2.3.1 imply conditions  (i1)  

and  (i2)  of Definition 2.3.6,  so  σ  is not strongly-stable by Definition 2.3.7. Therefore, 

the stable allocations for the flexible market are the strongly-stable allocations.   

 

 Thus, we have proved the following proposition. 

 

Proposition 2.3.3. (i1) A feasible allocation is stable for the rigid market if and only if it 

is setwise-stable; (i2) a feasible allocation is stable for the flexible market if and only if 

it is strongly-stable. 

 

It is immediate from Definitions 2.3.2, 2.3.4 and 2.3.6 that domination implies 

quasi-domination, which implies strong quasi-domination. Thus, the core contains the 

set of setwise-stable allocations, which contains the set of strongly stable allocations. 

Equivalently, the core contains the set of stable allocations for the rigid market, which 

contains the set of stable allocations for the flexible market. Indeed, all these inclusions 

may be strict. In Example 2.2.1, allocation  σ=(u,w;x)  is setwise-stable and is not 



strongly stable. Example 2.3.1 below illustrates a situation in which some core-

allocation is not setwise-stable. Thus, the core may be bigger than the set of setwise-

stable allocations. 

 

Example 2.3.1. Consider  P={p1,p2}, Q={q1, q2}  r(p1)=r(p2)=s(q2)=2  and  s(q1)=1.  

The numbers  apq’s  are given by: a11=3,  a21=5,  a12=2,  a22=3. The nature of the 

agreements is arbitrary. Consider the allocation (u,w;x)  where  x11=0, x12=1,  x10=1, 

x21=x22=1,  x20=0  and  u12=1,  u10=0,  u22=1,  u21=3;  w12=1,  w21=2,  w22=2.  The 

corresponding total payoffs are  U1=1,  U2=4,  W1=2  and  W2=3. 

 The values of the coalitions are given by:  G(p1,q1)=3,  G(p1,q2)=4,  G(p2,q1)=5,  

G(p2,q2)=6,  G(p1,q1,q2)=5,  G(p2,q1,q2)=8,  G(p1,p2,q1)=5,  G(p1,p2,q2)=6,  

G(p1,p2,q1,q2)=10,  G(S)=0  if  S⊆P, or  S⊆ Q.  It is a matter of verification that  (n)  is 

satisfied. Proposition 2.3.1 then implies that  (u,w;x)  is in the core. However, (u,w;x) is 

not setwise-stable.  In fact, players  p1  and  q1  can increase their total payoffs if  p1  

keeps his agreement with  q2,  q1  breaks his agreement with  p2,  p1  and q1  work 

together 1 u.l.t. and receive for this labor, respectively,  0.5  and  2.5. g  

 

Examples 2.2.1 and 2.3.1 also illustrate that the interactions allowed among the 

members of a coalition, for the purpose of blocking an allocation, are not affected by the 

nature of the agreements. That is, both models have the same core. Of course, every 

blocking coalition is a deviating coalition for both, the rigid market and the flexible 

market, although the converse is not always true. As observed before, Example 2.2.1. 

illustrates that an allocation may be unstable under flexible agreements, stable under 

rigid agreements and so in the core of both markets.  

 
REMARK 2.3.1. A third model for the time-sharing assignment game can be obtained by assuming that 

agents negotiate in block with their whole set of partners and disregard the individual payoffs they could 

obtain in each individual transaction. Under these rules, an outcome  (U,W;x) would be a vector of total 

payoffs, one total payoff for each player, plus a labor time allocation. Within this context, the outcome  

(U,W;x)  is feasible if  ∑p∈P*, q∈Q*(Up +Wq) ≤ G(P*∪Q*). This model is studied in Sotomayor (2002). We 

will refer to it as the time-sharing assignment game with one-dimensional payoffs.  

It is easy see that the concept of core is the cooperative equilibrium concept for the time-sharing 

assignment game with one-dimensional payoffs. In fact, as it is shown in Sotomayor (2002), Definition 

2.3.3 is equivalent to require that  ∑p∈R Up+ ∑q∈TWq ≥ G(R∪S),  for every   R⊆ P*  and  T⊆ Q*,  and  

∑p∈P, q∈Q(Up +Wq) = G(P*∪Q*).  Therefore, the characteristic function  V  captures all details of the rules 



of the game that are relevant to the model. Then, V(S)  equals the set of the feasible deviations from  σ  

via  S,  for all  σ∈Σ  and all  S⊆P*∪Q*.  Hence, the core concept is equivalent to the cooperative 

equilibrium concept for that model. g 

 

3. COMPETITIVE STRUCTURE OF THE TIME-SHARING ASSIGNMENT 

GAME 

3.1 THE COMPETITIVE MARKET  

The cooperative market corresponds to situations in which an individual or 

group of individuals is working cooperatively toward the achievement of some well-

defined goal. In the competitive market, an individual or group of individuals is not 

only working toward different goals but are actually competing with each other. In this 

section we will analyze the competitive structure of the rigid and flexible markets. 

We will be assuming that all u.l.t. are supplied by the sellers. Therefore, to be 

well defined, the competitive market should specify the set of goods, the set of agents 

and the demand correspondence of each buyer. Every  seller wants to sell his units of 

labor to the buyers and all his units of labor have the same price (the sellers do not 

discriminate the buyers). In this context, the prices of the goods are not negotiated, but 

taken as given by the buyers who, according to their demand correspondences, demand 

a set of bundles of units of services which respects their quotas. The natural economic 

question is then to determine how should the goods be allocated to the buyers.  

The natural solution concept is called competitive equilibrium allocation, which, 

informally, is a feasible allocation under which the bundle of goods allocated to a buyer 

belongs to him demand set at the given prices and all units of labor with a positive price 

are sold.  

  We will illustrate these notions by using a simpler competitive market which is 

obtained when the goods are indivisible. In this case, every seller  q  supplies  s(q)  

identical objects. Denote by  Q0  the set of all objects in the Economy (including the 

null objects, which are the objects owned by the dummy seller). The prices of all objects 

in  Q0  are announced, so that the objects supplied by a given seller have the same price.  

The rules of the competitive market should specify how the demand set of a buyer at a 

given price vector is defined. We will assume that a buyer  p  will demand the bundles 

of  the r(p)  most preferred objects in  Q0 at prices  p.  These are the sets of  r(p) objects 

that maximize  p´s  total surplus among all subsets of  Q0  with  r(p)  objects,  assuming 

this total surplus is non-negative. Evidently, the objects of the demanded bundles by a 



buyer may produce distinct individual surpluses. The presence of the null objects in the 

Economy causes the demand set of a buyer to be non-empty, because he always has the 

option of demanding the null object so many times as needed to complete his quota.  

 We extend this notion to include the case where the goods are divisible. To do 

that, let a feasible assignment vector for  p  (or assignment vector for p,  for short ) be a  

vector of non-negative numbers  xp≡ (xpq)q∈Q   which satisfies  (a) and such that  xpq≤s(q)  

for all  q∈Q. The set of all feasible assignment vectors for  p  will be denoted by  Xp. 

Clearly, if  x  is a feasible labor time allocation then  xp  is a feasible assignment vector 

for  p,  for all  p∈P.   

A  vector  π∈Rn
+ is called feasible price vector or price vector, for short. That is, 

a price vector is a vector  π  of non-negative numbers, one coordinate for each seller, 

where  πq  is the price of each u.l.t. offered by seller  q.  

In the competitive market, buyers have preferences over feasible assignment 

vectors. Given a price vector  π, the preferences of agent  p  over feasible assignment 

vectors are completely described by  the numbers  apq’s. For any two assignment vectors 

for  p,  xp  and  x’p,   p  prefers  xp to  x’p  at prices  π  if  ∑q∈Q (apq-πq)xpq >∑q∈Q (apq-

πq)x’pq.  Agent  p  is indifferent between these two assignment vectors if  ∑q∈Q (apq-

πq)xpq = ∑q∈Q (apq-πq)x’pq.  The units of labor time supplied by  q  are acceptable to  p  at  

prices  π  if  apq-πq ≥0.  

Under the structure of preferences we are assuming, given a price vector π,  each 

buyer  p  is able to determine which assignment vectors he would most prefer. The set 

of such assignment vectors is called demand set of  p  at prices  π  and denoted by  

Dp(π).  That is,   

Dp(π)={xp∈Xp; ∑q∈Q(apq-πq)xpq ≥ ∑q∈Q(apq-πq)x’pq  ∀ x’p∈Xp}. 

Note that  Dp(π)  is never empty, because  p  has always the option of buying the  

assignment vector  xp,  with  xpq=0  for all  q≠0  and  xp0=r(p). Note also that, if  

xp∈Dp(π)  and  xpq>0  then the units of labor time offered by  q  are acceptable to  p.  

Another way to defining the demand set of a buyer is to consider that a buyer 

demands all vectors of u.l.t. that can be feasibly assigned to him and that maximize all 

his individual surpluses. This approach will be discussed in section 6. 

  



REMARK 3.1.1. If  xp∈Dp(π)  then   apq-πq≥ apt-πt  for all sellers  q  and  t  such that  xpq>0  and  xpt=0. 

In fact, define the feasible assignment vector  x’p,  where  x’pq*=xpq*  for all  q*∉{q,t},  x’pq=xpq-λ≥0,  

x’pt=λ,  where  λ>0.  Now use the definition of  Dp(π).g 

  

3.2. COMPETITIVE EQUILIBRIUM 

The natural solution concept for the competitive market is that of competitive 

equilibrium. 

 

Definition 3.2.1. The pair  (π,x)  is a competitive equilibrium if (i1)  π  is a price vector, 

(i2) x  is a feasible labor time allocation such that   xp  is in the demand set of  p  at 

prices  π,   for all  p∈P  and  (i3)  πq=0  if  x0q>0.  

 

If  (π,x)  is a competitive equilibrium then  π  is called a competitive equilibrium 

price vector ( or equilibrium price for short)  and we say that  π  is compatible with  x  

or  x  is compatible with  π.  Labor allocation  x  is called competitive whenever it is 

compatible with a competitive equilibrium price. The corresponding money allocation 

for the  Q-agents, that will also be denoted by  π, is defined by πpq=πq  for all  

(p,q)∈C(x). The corresponding money allocation for the P-agents is defined feasibly. 

The resulting feasible allocation  (u,π;x)  is called a competitive equilibrium allocation 

and (u, π)  is called a competitive equilibrium payoff.  

It follows from Definition 2.1.3 that a competitive equilibrium allocation is P-

non-discriminatory. Clearly, by the symmetry of the model, if we reverse the roles 

between buyers and sellers, we obtain that a competitive equilibrium allocation is Q-

non-discriminatory. 

 

4. THE EXISTENCE THEOREM 

This section addresses the existence problem of the cooperative equilibrium 

allocations for the rigid and flexible markets. We need some preliminaries. Consider the 

primal linear programming problem  (P1)  of finding a matrix  x=(xpq) which maximizes 

(A1)  ∑(p,q)∈PxQ apqxpq 

subject to: 

(A2)  ∑q∈Q* xpq ≤ r(p)  for all  p∈P*; 

(A3)  ∑ p∈P* xpq ≤ s(q)   for all  q∈Q*; 



(A4)  xpq≥0  for all  (p,q)∈P*×Q*, 

The dual problem (P1)*  is to find an  m-vector  y=(yp)p∈P*  and an  n-vector  z=(zq)q∈Q*  

which minimizes 

(B1)  ∑p∈P* r(p)yp  +  ∑q∈Q* s(q)zq 

subject to: 

(B2)  yp + zq≥ apq,  for all  (p,q)∈P*× Q*; 

(B3)  yp ≥0,  zq ≥0,  for all  (p,q)∈P*× Q*. 

Because we know that  (P1)  has a solution, we know that  (P*1)  must have an 

optimal solution9. By the Duality Theorem, for every solution  x  of  (P1)  and  (y,z)  of  

(P1*)  we have that   

 ∑p∈P* r(p)yp  +  ∑q∈Q* s(q)zq = ∑PxQ apqxpq = G(P∪Q). 

 Now, let  x*  be an optimal solution for the linear programming problem  (P1)  

and let  (y,z)  be an optimal dual solution. Then, by the Linear Programming 

Equilibrium Theorem or by the Complementary Slackness (see Gale, 1960),  we can 

conclude that 

(A) if  ∑q∈Q* x*pq < r(p)  then  yp=0; 

(B) if  ∑p∈P* x*pq < s(q)  then  zq=0; 

(C) if  x*pq=0  then  yp + zq ≥ apq; 

(D) if  x*pq>0  then  yp + zq = apq. 

Let  x  be a labor time allocation obtained from  x*  as follows: xpq=x*pq  if  

p∈P*  and  q∈Q*;  if   ∑q∈Q* x*pq =k<r(p)  for some  p∈P* (respectively,  ∑p∈P* x*pq 

=k<s(q)  for some  q∈Q*)  then set  xp0=r(p)-k  (respectively, x0q=s(q)-k).  Clearly,  x  is 

an optimal labor time allocation. Also, given any optimal labor time allocation we can 

derive an optimal solution for  (P1).  

For all  p∈P*  and  q∈Q* define  upq=yp  and  wpq=zq  if  xpq>0;  u0q= w0q=0  if  

x0q>0  and  up0=wq0=0  if  xp0>0. Then, by  (A)  and  (B)  up(min)=yp  and  wq(min)=zq  

for all  p∈P*  and  q∈Q*.  The resulting allocation  (u,w;x)  will be called dual 

allocation and  (u,w)  will be called dual money allocation. Then, dual allocations 

always exist. Furthermore, by construction, any dual money allocation is compatible 

with any optimal labor time allocation.   

                                                 
9 Thompson (1980) considers a model in which the core is defined as the set of dual solutions of P1.  

 



The existence proof of the stable allocations provides a new insight, not used yet 

in the continuous matching models: competitive equilibrium allocations always exist 

and are stable for both models. The stability of the competitive equilibrium 

allocations is the central result of this section (Theorem 4.6) and it is obtained via the 

characterization of these allocations as the strongly-stable allocations which do not 

discriminate the buyers (Theorem 4.5).  

We need the following definitions. 

 

Definition 4.1. The pair  (p,q)  is unsaturated with respect to the labor time allocation  

x (unsaturated, for short)  if  xpq<r(p)  and  xpq<s(q). 

  

 That is,  (p,q)  is unsaturated with respect to the labor time allocation  x if no 

player in  {p,q}   contributes all his labor time to the partnership. In particular, if  xpq=0  

then  {p,q}  is unsaturated. 

 
NOTATION: Let  (u,w;x)  be a feasible allocation. For every unsaturated pair  (p,q),  define  

up(q)(min)≡min{upr;  r∈B(p,x)-{q}}  and  w(p)q(min)≡min{wtq;  t∈B(q,x)-{p}}.  Thus, if  xpq=0,  up(q) 

(min)=up(min)  and  w(p)q(min)= wq(min). 

 

Definition 4.2.  The feasible allocation   (u,w;x)  is pairwise-strongly-stable  if it is 

feasible and  

 (p)  up(q)(min) + w(p)q(min) ≥ apq  for all unsaturated pair  (p,q)∈ PxQ. 

 

Theorem 4.5 involves two non-obvious characterizations of the pairwise-

strongly-stable allocations given by Lemmas 4.1 and 4.2, which are tied together in 

Theorem 4.3.  

   For a better understanding of these characterizations, consider a feasible 

allocation  (u,w;x)  and a labor time allocation  x´.  We can construct a  feasible 

allocation  (u´,w´;x´)  so that  each agent  q  maintains his individual payoffs in the 

partnerships where he decreases or keeps his labor time contribution; if  q  increases his 

labor time contribution in  (p,q)  then, he obtains, for each unit of additional labor time, 

the minimum individual payoff among all individual payoffs he obtains with partners 

other than  p.  Call  F  the set of such feasible allocations derived from  (u,w;x).  Of 

course,  (u,w;x)  is in  F. Also, if  p is distinct from  p´,  the feasible allocation in  F  that 



maximizes  p’s total payoff may be different from the feasible allocation in  F  that 

maximizes the total payoff of  p´.  However, Theorem 4.3 asserts that this is not the case 

if   (u,w;x)  is strongly-stable. Moreover,  (u,w;x)  is strongly-stable if and only if, for all  

p∈P,  Up=∑q∈B(p,x)upqxpq,  is the highest p’s total payoff that can be generated by some 

feasible allocation in  F.   

 

Theorem 4.3 (Characterization of the strongly-stable allocations). Let  (u,w;x)  be a 

feasible allocation. The following assertions are equivalent 

(i1) (u,w;x)  is strongly-stable; 

(i2) (u,w;x)  is pairwise-strongly-stable; 

(i3)  for all  p∈P  and feasible labor allocation  x’  we have that 

(*) Up ≥ ∑q∈B(p,x´)(apq-w´pq)x´pq, 

where  w´pqx´pq = wpqx´pq  if  xpq ≥ x´pq,  w´pqx´pq = wpqxpq + w(p)q(min)(x´pq-xpq)  if  

0<xpq<x´pq  and  w´pqx´pq= w(p)q(min)x´pq  if  0=xpq< x´pq. 

 

It is then immediate that: 

 

Corollary 4.4. Let  (u,w;x)  be an allocation that is feasible and P-non-discriminatory.  

Then (u,w;x)  is  strongly-stable  if and only if,  for all  p∈P  and feasible labor 

allocation  x’,  we have  

(**) Up ≥ ∑q∈B(p,x´)(apq-wpq)x´pq. 

 

Corollary 4.4 implies that, under a strongly-stable allocation that is P-non-

discriminatory, every buyer is maximizing his total payoff  by taking as given the prices 

of the u.l.t. supplied by the sellers. This is precisely how the concept of competitive 

equilibrium allocation is defined. Then, we have proved that the competitive 

equilibrium allocations are the strongly-stable allocations such that no Q-agent 

discriminates any P-agent. Formally, 

 

Theorem 4.5 (Characterization of the competitive equilibrium allocations). Let  

(u,w;x)  be a feasible allocation. Then  (u,w;x)  is a competitive equilibrium allocation if 

and only if it is strongly-stable and  wpq=wq(min) for all  (p,q)∈PxQ. 

 



The characterization given by Theorems 4.5 does not take into account the 

nature of the agreements. More specifically, the nature of the agreements, which 

generates distinct cooperative structures in the time-sharing assignment game with 

multi-dimensional payoffs, does not have any effect on the competitive structure treated 

here.   

By Theorem 4.5 and from the fact that every strongly-stable allocation is 

setwise-stable, the cooperative structure of the flexible market creates a bridge between 

the competitive and the cooperative structures of the time-sharing assignment game 

with rigid agreements: the competitive equilibrium allocations are also stable 

allocations under rigid agreements and they are in the core. Thus, we have proved 

Theorem 4.6 below.  

 

Theorem 4.6 (Stability of the competitive-equilibrium allocations). The competitive 

equilibrium allocations are stable in the rigid and in the flexible markets (and so they 

are in the core).  

 

However, the correlation between the cooperative and competitive structures is 

not the same in both markets. Example 4.1 illustrates that in the rigid market, the stable 

allocations which do not discriminate the buyers are not necessarily competitive. Thus, 

the fraction of the stable allocations that are competitive turns out to be smaller under 

rigid agreements than under flexible agreements.  

 

Example 4.1. (Example 2.2.1 continued) Consider  P={p1},  Q={q1, q2}, r(p1)=5=s(q1), 

s(q2)=1, a11=a12=3. The allocation  (u,w;x)  where  x11=5, x12=0, x02=1; u11=1, w11=2, 

w02=0  is clearly P-non-discriminatory. As it was viewed in Example 2.2.1,  (u,w;x) is 

setwise-stable and it is not strongly-stable. Then, by Theorem 4.5,  (u,w;x) is not a 

competitive equilibrium allocation. g 

  

This kind of correlation between the competitive equilibrium allocations and the 

stable allocations, in both markets, is also different from that kind found in the multiple-

partners assignment game. In that model the competitive equilibrium allocations can be 

created by “shrinking” the set of cooperative equilibrium allocations through an isotone 

function, which maps every stable allocation  (u,w;x)  to a competitive equilibrium 

allocation  (u´,w´;x)   where  w´pq=wq(min)  for all  (p,q)∈P×Q  and  u´ is feasibly 



defined. The set of competitive equilibrium allocations is characterized as being the set 

of fixed points of that function. Such characterization fails to hold in the flexible 

market, as we can see in the example below.  

  

Example 4.2. Consider  P={p1,p2},  Q={q1}, r(p1)=5=s(q1), r(p2)=1, a11=3,  a21=4. The 

allocation  (u,w;x),  where  x11=4,  x21=1,  x10=1;  u11=1,  u10=0,  u21=1,  w11=2,  w21=3,  

is clearly strongly-stable. However, the allocation  (u´,w´;x),  where  

w´11=w´21=2=min{2,3}, u´11=1, u´10=0,  u´21=2,  is not competitive since  p1  demands 

the whole amount of u.l.t. supplied by the seller. (Indeed this allocation is not in the 

core, since it is blocked by  {p1, q1}). g 

 

Lemma 4.7.  Let  (u,w;x)  be a strongly-stable allocation. Then  x  is an optimal labor 

time allocation. 

 

 Note that if  x  is an optimal labor time allocation and  (u,w;x´)  is a strongly 

stable allocation with  x´≠ x,  then  x  is not necessarily compatible with  (u,w).  This is 

because  u  and  w  are not indexed according to  x. 

 

Proposition 4.8. The set of non-discriminatory strongly-stable allocations coincides 

with  the set of dual allocations. 

 

Theorem 4.9 (Existence Theorem) The set of competitive equilibrium allocations, the 

set of stable allocations for the flexible market, the set of stable allocations for the rigid 

market and the core are always non-empty. 

 

Since any dual allocation is compatible with any optimal labor time allocation, 

we get the following stronger result.  

 

Theorem 4.10 (Strong Existence Theorem) Let  x  be an optimal labor time 

allocation. The set of competitive equilibrium allocations compatible with  x,  the set of 

stable allocations compatible with  x,  for the flexible and for the rigid models, and the 

set of core allocations compatible with  x are non-empty.  
 

5. ALGEBRAIC STRUCTURE OF THE SOLUTION SETS  



In this section we go beyond simple considerations provided by the set inclusion 

relation, and we also examine the connection between the three solution sets – core, the 

set of cooperative equilibrium allocations and the set of competitive equilibrium 

allocations - by focusing on their algebraic structure.  

Let  E(x)  be a non-empty subset of feasible allocations  (u,w;x),  compatible 

with the labor time allocation  x.  Given a feasible allocation in  E(x),  we can treat the 

array of individual payoffs of each player as a vector in some Euclidean space. We can 

then define a binary relation  ≥P  on  E(x)  as follows. If the feasible allocations  (u,w;x) 

and  (u’,w’;x)  belong to  E(x),  (u,w;x) ≥P (u’,w’;x)  if  upq≥u’ pq  for all  (p,q)∈C(x). 

Clearly,  ≥P  is reflexive and transitive.  If  (u,w;x) ≥P (u’,w’;x)  then the feasibility of the 

allocations implies that  wpq ≤ w’pq  for all  (p,q)∈C(x),  so the anti-symmetric property 

holds ( if (u,w;x) ≥P (u’,w’;x) and  (u’,w’;x) ≥P (u,w;x)  then  (u,w;x)=(u’,w’;x)).  

Therefore,  ≥P  defines a partial order relation  in  E(x). (Observe that the total payoffs 

do not define a partial order relation. However,  if  (u,w;x) ≥P (u’,w’;x)  then  U≥U’  and  

W’≥W). Symmetrically we define  ≥Q.  Now, let us define  (u*,w*;x)  and  (u*,w*;x)  as 

the money allocations in  E(x)  such that: 

u*≡u∨u’,  w* ≡w∧w’;  u*≡u∧u’,   w*≡w∨w’.  

That is, for all (p,q)∈C(x),  

(u1) u*pq=max{upq, u’pq},  w*pq=min{wpq, w’pq},  

(u2) u*pq=min {upq, u’pq}  and  w*pq=max{wpq, w’pq}.   

Then, by denoting the meet and joint operations under  ≥P  by ∨P  and  ∧P,  

respectively,  and  under  ≥Q  by  ∨Q  and  ∧Q,  respectively,  we can write:   

(v1) (u,w;x) ∨P (u’,w’;x)= (u,w;x) ∧Q (u’,w’;x)=(u*,w*;x)  and  

(v2) (u,w;x) ∨Q (u’,w’;x)= (u,w;x) ∧P (u’,w’;x)= (u*,w*;x).  

The set  E(x)  is a lattice under any of two partial orders defined above  if  

(u*,w*;x)  and  (u*,w*;x)  are in  E(x)  for every  (u,w;x)  and  (u’,w’;x)  in  E(x).  That 

is, every two points in  E(x)  have a supremum and an infimum in  E(x),  according to 

the partial order relation that is being used. The lattice is complete if every subset of it 

has a supremum and an infimum. (See Birkhoff , 1973). Therefore, a compact lattice is 

a complete lattice. 

Under these considerations, if  E(x)  is a complete lattice then there exist one and 

only one supremum and one and only one infimum of  E(x).  These two extreme 

points of  E(x)  have an important meaning for the model. Even though the total payoffs 



of the players do not define the partial order relations  ≥P and  ≥Q,   the maximal feasible 

allocation  under   ≥P  gives to each  P-agent a payoff vector that is greater, in each 

component, than any other payoff vector that he can obtain under a feasible allocation in  

E(x). Thus, this allocation gives to all  P-agents as much total payoff as under any other 

allocation in  E(x),  so it is the P-optimal allocation for  E(x).  Symmetrically, the 

maximal allocation  under   ≥Q  is the  Q-optimal allocation for  E(x).  (See Definition 

2.1.5). Moreover, the optimal allocation for one of the sides of the market gives to the 

agents belonging to the other side the lowest total payoff that can be generated by any 

allocation in  E(x).  That is,  if  (u , w ;x)   is P- optimal for  E(x)  and  (u , w ;x)  is Q- 

optimal for  E(x),  then, for all  (p,q)∈PxQ  and all  (u’,w’;x)∈E(x)    

( x1)  U p ≥ U’p  and  W q ≤W’q,       

(x2) U p ≤U’p  and  W q  ≥ W’q  

If the money allocations  (u,w)  and   (u’,w’)  correspond to different labor time 

allocations then, in general, it is no longer meaningful to consider,  say  max(u,u’),  

since  u  and  u’  are defined on different sets.  Therefore, in this section, we investigate 

the algebraic structure of the set of core allocations, of the set of cooperative 

equilibrium allocations of each market and of the set of competitive equilibrium 

allocations, when these allocations are compatible with a given optimal labor time 

allocation. Theorem 4.10 implies that these sets are always non-empty. 

Example 5.1 illustrates that the set of setwise-stable allocations and the set of 

core allocations, compatible with the same labor time allocation, are not always lattices. 

Consequently, the whole core and the whole set of setwise-stable allocations are not 

always lattices.  

 

Example 5.1. Consider  P={p1, p2},  Q={q1, q2},  r(p1)= r(p2)=2  and  s(q1)=1, s(q2)=3;  

a11=4,  a12=1,  a21=4.5  and   a22=1.5.  Let the allocations  (u,w;x)  and  (u’,w’;x) be 

given by (x11=x12=1,  x21=0,  x22=2);  (u11=1,  u12=1,  u22=1.5;  w11=3,  w12=0,  w22=0); 

(u’11=1.5,  u’12=0,  u’22=1; w’11=2.5,  w’12=1,  w’22=0.5).  It is a matter of verification 

that both allocations are in the core and are setwise-stable (use Proposition 2.3.1 to see 

that the allocations are in the core and then observe that if these allocations were quasi-

dominated by some feasible allocation via some coalition, then this coalition would be a 

blocking coalition, which is a contradiction). The supremum of the two allocations 

under  ≥P,  defined in  (u1),  is given by  u*11=1.5,  u*12=1, u*22=1.5, w*11=2.5,  w*12=0  



and  w*22 =0.  This allocation is not in the core because it is blocked by  {p2,q1,q2},  so it 

is not setwise-stable.  Hence, the set of core allocations and the set of setwise-stable 

allocations, compatible with  x,  are not  lattices. g  

 

Continuing Example 5.1, we show that the feasible allocation  (u,w;x)  is the P-

optimal core allocation and the P-optimal setwise-stable allocation corresponding to  x. 

Indeed,  (u,w;x)  is the P-optimal core allocation and the P-optimal setwise-stable 

allocation. However, this allocation is not the supremum under  ≥P  for the set of core 

allocations and for the set of setwise-stable allocations when these allocations are 

compatible with  x.   

 

Example 5.1 (continued) Consider the market of example 5.1 again. It can be seen that 

the feasible allocation  (u,w;x)  is the P-optimal setwise-stable allocation and the P-

optimal core allocation associated to  x. In fact, otherwise there would be some core 

allocation  (u”,w”;x)  such that  U”1>2.  (The total payoff of  p2  is already maximal,  

so  U”2 ≤ 3.)  Since the value of  x  is  8, then  U”1+U”2+W”1+W”2=8, and so we 

would have 

(1) U”2+W”1+W”2<6. 

On the other hand we must have 

(2) U”2+W”1≥4.5  and  U”2+W”2≥3, 

if not  (p2,q1)  or  (p2,q2)  blocks the allocation. By (1) and (2) we get  

(3) W”2<1.5  and  W”1<3. 

Then, by (1) and (3) it would be feasible that  (p2,q1)  and  (p2,q2)  be formed and  1 

u.l.t. be allocated to each partnership. Therefore {p2,q1,q2}  would block  (u”,w”;x),  

contradiction.  

It is not hard to show that  (u,w;x)  gives to the P-agents the highest total payoff 

among all core allocations. Then  (u,w;x)  is a P-optimal core allocation and a P-optimal 

setwise-stable allocation. However, (u,w;x)  is not greater than or equal to  (u’,w’;x)  

under  ≥P,  because  u11<u´11,    so the core and the set of setwise-stable allocations do 

not have a supremum under  ≥P. g 

 

Still using the market described in Example 5.1, we can see that the polarization of 

interests between the two sides of the market asserted in  (x1)  is not always observed in 

the rigid market: The best setwise-stable allocation for the P-agents is not the worst 



setwise-stable allocation for the Q-agents.  Indeed, there is no setwise-stable allocation 

that is the worst setwise-stable allocation for the  Q-agents. 

 

Example 5.1 (continued). Consider the market of Example 5.1 again.  We have that  

U1>U’1  and  U2>U’2  but  W1>W’1  and  W2<W’2.  Therefore,  (u,w;x)  is not the worst 

setwise-stable allocation for the Q-agents.  We claim that there is no setwise-stable 

allocation that is the worst setwise-stable allocation for the  Q-agents. In fact, otherwise 

there would be some setwise-stable money allocation  (u”,w”)  such that  W”2=0,  and  

W”1<3.  However,  U”2≤3  due to the fact that  (u,w;x)  is the P- optimal setwise-stable 

allocation. Therefore,  (u”,w”) would be blocked by  {p2,q1,q2}  (find   λ>0  so that 3-

λ>W”1.  Then give  3-λ  to  q1  and  λ/2  to  q2;  the payoffs of  p2  are defined feasibly), 

so this money allocation would not be in the core and so it would not be setwise-stable. 

The same analysis shows that there is no core allocation that is the worst core allocation 

from the point of view of the  Q-agents. g 

  

The sets of stable allocations of the rigid and flexible markets have distinct 

algebraic structures. Theorem 5.2 proves that the set of strongly-stable allocations, 

which are compatible with the same labor time allocation, is endowed with a complete 

lattice structure under both partial orders,  ≥P  and    ≥Q.  Thus, in the flexible market, 

the set of stable allocations splits into several non-empty lattices, each one 

corresponding to an optimal labor time allocation. Theorem 5.3 implies that the set of 

competitive equilibrium allocations also has a non-standard algebraic structure of a 

union of complete lattices.  Each of these lattices is a sub-lattice of the corresponding 

lattice of strongly-stable allocations.  

 

Lemma 5.1. Let  (u,w;x)  and  (u’,w’;x) be strongly-stable allocations. Then  (u*,v*;x)  

and  (u*,v*;x), defined in  (u1)  and  (u2),  are strongly-stable allocations.  

 

Theorem 5.2 (Algebraic structure of the set o strongly-stable allocations) Let  x  be 

an optimal labor time allocation. Then,  

a) the set of the strongly-stable allocations compatible with  x  is a complete lattice 

under both partial orders  ≥P    and  ≥Q;   

b) this set has a P-optimal and a Q-optimal allocations and  



c) properties (x1) and (x2) hold.  

 
NOTATION: Given the optimal labor time allocation  x,  denote by   A(x)  the set of competitive 

equilibrium allocations compatible with  x. 

 

Theorem 5.3 ((Algebraic structure of the set o competitive equilibrium allocations)  

Let  x  be an optimal labor time allocation. Then, 

a) the set  A(x)  is a complete lattice under both partial orders  ≥P  and  ≥Q;  

b) there always exist the P-optimal and Q-optimal competitive equilibrium allocations 

for  A(x)   and 

 c) properties (x1) and (x2) hold.  

 

Our next results prove that every two lattices of competitive equilibrium 

allocations are in one-to-one correspondence through a function which preserves the 

total payoff of the agents. The extreme points of the first lattice are mapped to the 

corresponding extreme points of the other lattice. Thus, the supremum of each lattice is 

a P-optimal competitive equilibrium allocation if we use the partial order ≥P, and it is a 

Q-optimal competitive equilibrium allocation if we use the partial order ≥Q.   

Define the function  fx’: A(x) →A(x’)  by  fx’(u,w;x)=(u’,w;x’)  where   u’  is 

defined feasibly. Proposition 5.4 implies that  fx’  is well defined and preserves the total 

payoffs of the agents.  

 

Proposition 5.4. Let  (u,w;x)  be  a competitive equilibrium allocation in  A(x) and let   

x’  be an optimal labor time allocation. Set  fx’(u,w;x)≡(u’,w’;x’). Then, (u’,w’;x’) is a 

competitive equilibrium allocation in  A(x’). Furthermore,  Up=U’p  for all  p∈P and  

Wq=W’q for all  q∈Q.  Symmetric results hold if we reverse the roles between  P  and  Q  

agents.  

 
REMARK 5.1 Proposition 5.4 plus Lemma 4.7 imply that there is a Cartesian product structure in the set 

of competitive equilibria: (w.x)  is a competitive equilibrium if and only if  w  is an equilibrium price and  

x  is an optimal labor time allocation. g 

 

The feasibility of the competitive equilibrium allocations implies that,  if   

(u,w;x)≠ (u’,w’;x)  then  w≠w’,  so  fx’(u,w;x) ≠ fx’(u’,w’;x).  Then,  fx’  is one-to-one. 



Clearly,  fx’  is onto  A(x’). Theorem 5.5 below asserts that  fx’  maps the extreme points 

of  A(x) into the corresponding extreme points of  A(x’). 

 

Theorem 5.5.  Let  (u,w;x)  be the P-optimal(respectively, Q-optimal) competitive 

equilibrium allocation for  A(x).  Let  x’  be any optimal labor time allocation. Then,  

fx’(u,w;x)  is the P-optimal(respectively, Q-optimal) competitive equilibrium allocation   

for  A(x’). 

 

By Theorem 5.6, below, the P-optimal  (respectively, Q-optimal) competitive 

equilibrium allocations of the lattices give to the players the same total payoff. Thus, the 

P-optimal (respectively, Q-optimal) competitive equilibrium allocation of any lattice is 

a P-optimal  (respectively, Q-optimal) competitive equilibrium allocation of the whole 

set of competitive equilibrium allocations.   

 

Theorem 5.6. Let  (u , w ;x)  and  (u ’, w ’;x’)  be the P-optimal competitive equilibrium 

allocations of  A(x)  and  A(x’),  respectively. Then,  U =U ’  and  W =W ’. 

 

Clearly, Theorem 5.6 also holds if the allocations are Q-optimal competitive 

equilibrium allocations or P-optimal (respectively, Q-optimal) strongly-stable and non-

discriminatory for  Q. 

 

It follows immediately from Theorems 5.3 and 5.6 that 

  

Corollary 5.7 There always exist P-optimal and Q-optimal allocations for the whole set 

of competitive equilibrium allocations.    

 

The algebraic structure of the set of competitive equilibrium allocations is 

distinct from that of the strongly-stable allocations. As it is illustrated in the example 

below, the algebraic structure of the set of strongly stable allocations does not guarantee 

the existence of  optimal stable allocations for each side of the flexible market. 

   

Example 5.2 (P-optimal allocations of two lattices of strongly-stable allocations 

generating different total payoffs for the P-agents). Consider the market where  P={p1, 



p2},  Q={q1, q2},  r(p1)=3, r(p2)=1,  s(q1)=2  and  s(q2)=2.  The matrix  a  is given by: 

a11=3,  a12=2,  a21=3,  a22=2. There are two optimal labor time allocations  x’  and  x”,  

where  x’11=2, x’12=1,  x’21=0,  x’22=1  and   x”11=1, x”12=2,  x”21=1,  x”22=0.  Consider 

allocation  (u’,w’; x’)  where  u’11=2, u’12=2,  u’22=2,   w’11 =1,  w’12=0,  w’22 = 0.  It is a 

matter of verification that  (u’,w’;x’)  is strongly-stable. On the other hand, allocation  

(u”,w”;x”),  where  u”11=3,  u”12=2,  u”21=2,  w”11=0,  w”21=1,  w”12=0,  is also 

strongly-stable. We claim that  (u’,w’;x’)  and  (u”,w”;x”)  are  P-optimal strongly-

stable allocations associated to  x’  and  x”,  respectively. In fact, observe that for every 

strongly-stable allocation  (u,w;x’)  we must have that  u22+w11≥a21=3  (this is because  

(p2,q1)  is unsaturated with respect to  x’). On the other hand  a22=2,  so  u22≤ 2.  Then,  

w11≥1,  so  u11≤ 2  by feasibility;  also,  u12+w12=2  implies  u12≤2.  Hence  (u’,w’;x’)  is 

the P-optimal strongly-stable allocation associated to  x’. For the other allocation 

observe that  (p1,q1)  is unsaturated with respect to  x”,  so for every strongly-stable 

allocation  (u,w;x”)  we must have that  u12+w21≥a11=3.  But  u12≤ 2  by feasibility, then  

w21≥1,  so  u21≤ 2.  Feasibility also implies that  u11≤ 3.  Hence  (u”,w”;x”)  is the P- 

optimal strongly-stable allocation associated to  x”. These two allocations generate the 

following total payoffs for the  P-agents:  U’1=6,  U’2=2;  U”1=7,  U”2=2. The total 

payoffs to  p1  are distinct.g 

 
REMARK 5.2. By Remark 5.1, any equilibrium price vector is compatible with any labor time 

allocation. Thus, given a labor time allocation  x,  the set of competitive equilibrium prices is the 

projection, on the space of the individual payoffs of the sellers, of the lattice of competitive equilibrium 

allocations compatible with  x,  so it is a lattice under    the partial order  ≥Q.  Then, there is one and only 

one P-optimal (respectively, Q-optimal) competitive equilibrium price. Consequently, among the 

competitive equilibrium price vectors there is a unique one that is at least as small in every component as 

any other competitive equilibrium price vector. It is called minimum competitive equilibrium price. The 

maximum competitive equilibrium price, with symmetrical properties, also exists.g 

 

REMARK 5.3. The preferences of the Q-agents also define the partial order relation  ≥*Q  in the set of 

competitive equilibrium prices:  w≥*Q w’  if and only if  Wq ≥W’q  for all  q. (observe that the anti-

symmetric property fails to hold for this binary relation when it is used in the set of competitive 

equilibrium allocations, so it does not define a partial order on this set). Clearly, the set of competitive 

equilibrium prices is a lattice under  ≥*Q.  More generally, the set of dual allocations is a lattice under 

both partial order relations  ≥*P  and  ≥*Q  defined as follows: (u,w;x) ≥*P (u’,w’;x’)  if and only if Up≥U’p  

for all  p∈P  and  (u,w;x) ≥*Q (u’,w’;x’)  if and only if Wq≥W’q  for all  q∈Q. g 

 



6. FINAL REMARKS AND RELATED WORK 

The continuous two-sided matching markets which have been presented in the 

literature can be viewed as generalizations of the assignment game of Shapley and 

Shubik (1972). The main feature of these markets is that they are endowed with both 

cooperative game and competitive market game structures and can be fully represented 

in the characteristic function form. The intuitive idea of cooperative equilibrium for 

these models, called stability since Gale and Shapley (1962), was formalized in 

Sotomayor (2012). It has been characterized as a refinement of the core concept, called 

setwise-stability (see Sotomayor, 1999-b). In the models with one-dimensional payoffs, 

setwise-stability is equivalent to the core concept.  In the multiple-partners game, due to 

the fact that the payoffs are multi-dimensional, setwise-stability is equivalent to the 

strong-stability concept, which is equivalent to the concept of pairwise-stability. The set 

of stable allocations is a proper subset of the core and it is always a non-empty complete 

lattice. Furthermore, the core is always non-empty, but it is not endowed, necessarily, 

with a lattice structure. The competitive approach supposes the market operating as an 

exchange economy. The concept of competitive equilibrium allocation is closely related 

to the traditional concept of equilibrium from standard microeconomic theory and it is 

an extension of the concept due to Gale (1960).10 The set of competitive equilibrium 

allocations is a non-empty sub-lattice of the lattice of stable allocations and it is 

characterized as the set of stable allocations in which no seller discriminates any buyer.  

In the present paper we introduced the continuous time sharing assignment game 

with multi-dimensional payoffs. The novelty is that this game is well defined for the 

purpose of observing core allocations or competitive equilibrium allocations, but it is 

incomplete if one wishes to observe cooperative equilibrium allocations. To be a 

complete model, the time-sharing assignment game with multi-dimensional payoffs 

requires that the rules specify the nature of the agreements inside each buyer-seller 

partnership. For our purposes it was simpler to work with two separate markets, the 

rigid market and the flexible market, defined according to the nature of the agreements. 

One peculiarity of these market games is that they have the same sets of feasible 

allocations, the same core and the same sets of competitive equilibrium allocations, 

which makes them indistinguishable under their representation in the characteristic 

function form. Nevertheless, they are endowed with different sets of cooperative 

                                                 
10 The concept of competitive equilibrium allocation for many-to-many matching models was introduced 
in Sotomayor (2007).  



equilibrium allocations. Therefore, unlike the previous matching models studied in the 

literature, these models cannot be fully represented in the characteristic function form. 

The adequate mathematical model for both markets is given by the deviation function 

form proposed in Sotomayor (2012).  

Having defined the concepts of dominance, quasi-dominance and strong-quasi-

dominance for the time-sharing assignment game, we identified three solution sets, the 

core, the set of setwise-stable allocations and the set of strongly-stable allocations, 

possibly distinct, each a super-set of the next. Surprisingly, the concept of setwise-

stability, viewed as a general definition of stability since Sotomayor (1999), does not 

capture the idea of stability in the flexible market.  This concept characterizes stability 

in the rigid market but not in the flexible market. The concept of stability for the 

flexible market is characterized by the concept of strong-stability, which is equivalent 

to the pairwise-strong-stability concept.  

Adapted to the assignment game and to the multiple-partners assignment game, 

the concepts of setwise-stability and strong-stability coincide and characterize stability. 

With the changes in the rules of the multiple-partners assignment game, incorporated 

into the time-sharing assignment game, setwise-stability comes up as a new solution 

concept, different from the core concept, from the strong-stability concept and from the 

pairwise-stability concept. It plays the role of an intermediate solution concept: the set 

of setwise-stable allocations may be smaller than the core and may be bigger than the 

set of strongly-stable allocations.  

From the technical point of view, the use of the competitive structure to prove 

the non-emptiness of the set of cooperative equilibrium allocations (Theorems 4.5 and 

4.6) provides new insights that can be applied to other models. This methodology is 

unusual in matching models and cannot be applied to the discrete matching markets. An 

open problem in the literature of matchings is to know if the core of the discrete many-

to-many matching model, with substitutable preferences, defined in Sotomayor (1999-

b), is always non-empty.  In that model it is not possible to define a related competitive 

market.  

The proof that the strongly-stable allocations, which do not discriminate the P-

agents, characterize the competitive equilibrium allocations when the buyers are the P-

gents is not trivial and it is the most ingenious part of this paper. The fact that the set of 

non-discriminatory strongly-stable allocations can be identified with the set of the dual 

solutions of the transportation problem conveniently defined is also not obvious. The 



dual solutions always exist, which leads to the existence theorem. On the other hand, 

every dual allocation is compatible with any optimal labor time allocation. A stronger 

result was then obtained: all three solution sets are not only non-empty, but the 

restriction of any of them to any optimal labor time allocation is also non-empty. 

From the conceptual point of view, the algebraic structure of the solution sets 

helps to better understand the correlation between the cooperative equilibrium 

allocations and the competitive equilibrium allocations, and lends new insights to the 

theory of two-sided matching markets. We showed that none of the solution sets is a 

lattice. The rules in each market generate distinct algebraic structures for the sets of 

cooperative allocations compatible with the same optimal labor time allocation. In fact, 

the lattice property only holds in the flexible market. However, we cannot guarantee the 

existence of the P-optimal and the Q-optimal stable allocations in either market. This 

sort of things is different in the set of competitive equilibrium allocations. This set is a 

union of non-disjoint sub-lattices of the corresponding lattices of strongly-stable 

allocations. Nevertheless, the P-optimal and the Q-optimal allocations for the whole set 

of competitive equilibrium allocations always exist.     

From the practical point of view, the existence of the P-optimal and the Q-

optimal competitive equilibrium allocations permits to treat situations in which we face 

the problem of choosing, for each market, some convenient stable allocation, which 

always exists and keeps its characteristics in every market. Consider, for example, the 

problem of investigating the effects on the agents’ payoffs caused by the entrance of 

new agents in a given two-sided matching market. This is a problem of economic 

interest that has been treated by several authors. The comparison between an arbitrary 

core point of the original market and an arbitrary core point after the entrance of these 

agents may be meaningless. The central issue of such a study is the choice of a stable 

allocation  x  in the original market, and a stable allocation  y  in the new market, such 

that  y  captures the effects caused on  x  by the entrance of the new agents in the 

market.  

The simplest way to select such allocations is to consider an allocation rule 

which applies before and after the entrance of the new agents. That is, these points 

should be such that after the entrance of the new agents in the market, the agents who 

were in the market can get allocation  y  by continuing to do the same sort of things they 

were doing to reach allocation  x.  



 In the literature, meaningful comparative static results of adding agents to 

matching markets have always been obtained under the assumption that agents are 

allocated according to one of the extreme points of the lattice of the stable payoffs. This 

is because these allocations always exist and can be obtained by means of some well 

known algorithms, which can be reproduced after the entrance of the new agents in the 

market. 

 In both time-sharing assignment markets, the set of stable allocations is not 

always a complete lattice, so we cannot guarantee the existence of the optimal-stable 

allocations. However, this is not a hindrance to get meaningful comparative static 

results in both rigid and flexible markets. For example, if agents are allocated according 

to some P-optimal competitive equilibrium allocation, the effect caused on this 

allocation by the entrance of agents in the market can be viewed if we compare any of  

the P-optimal competitive equilibrium allocations of the original market with any of the 

P-optimal competitive equilibrium allocations of the new market. In both models, these 

allocations always exist, they are stable and they preserve their characteristic of being 

the P-optimal competitive equilibrium allocations. 

Another application of our results is the design of an allocation mechanism 

which yields a stable allocation. The usual procedure in matching markets is to allocate 

the agents according to the P-optimal or Q-optimal stable allocations. Here again, the 

use of the optimal competitive equilibrium allocations makes the problem treatable. 

It can be easily verified that all results of the present paper could be obtained if 

we required that the numbers  r(p)’s,  s(q)’s  and  xpq’s  were integers. The market of 

buyers and sellers of indivisible goods, in which the quota of a seller is the number of 

identical objects he owns, the quota of a buyer is the maximum number of objects he 

can acquire and a buyer is allowed to purchase more than one item from the same seller 

fits well in this model. Within this context, the multiple-partners assignment game can 

be viewed as the time-sharing assignment game where each buyer can acquire one item, 

at most, from a seller.   

Some related work has been presented in the literature. Sotomayor (2010) has 

extended the time-sharing assignment game with rigid agreements to a non-matching 

coalitional game, in which players form coalitions of any size.  The concept of stability 

was identified with the appropriate version of the setwise-stability concept given here. It 

was proved in that paper that the core may be bigger than the set of stable allocations. 



It is well-known from Shapley and Shubik (1972) that the set of dual allocations 

for the assignment game coincides with the core and with the set of competitive 

equilibrium allocations. Inspired on this model, Thompson (1980) formulated a version 

of the time sharing assignment game with indivisible goods. This author believed that 

the equivalence between the dual allocations and the core observed in the assignment 

game persisted in his model and called “core” the set of dual allocations for his model. 

In Thompson’s model, the set of dual allocations is not the core, as usually defined. In 

the case in which the agents’ payoffs are one-dimensional, studied in Sotomayor (2002), 

or in the present case, where the agents’ payoffs are multi-dimensional, the core 

contains the set of dual allocations and may be bigger than this set.  

Shapley and Shubik also showed that the core and the set of competitive 

equilibrium allocations have the property of complete lattices and are given by the 

Cartesian product of the corresponding set of money allocations by the set of optimal 

matchings. The results presented in the previous sections make it evident that these two 

properties are not robust to the introduction of time into the assignment game. However, 

we showed in Appendix II, that it is possible to define another competitive market for 

the time-sharing assignment game (competitive market with non-discriminatory 

demand) whose set of competitive equilibrium allocations have the same characteristic 

properties as those of the assignment game: it coincides with the set of dual allocations, 

it has the lattice property and it is the Cartesian product of the set of competitive 

equilibrium money allocations by the set of optimal money allocations. This 

competitive market, when considered under the rules of the assignment game, coincides 

with the competitive market naturally defined for that model.  

A variation of the market with buyers and sellers of indivisible goods described 

above was obtained in Jaume et al (2007) by allowing that the objects of a seller may be 

distinct. These authors concentrated their analysis on the algebraic structure of the set of 

competitive equilibrium price vectors, rather than on the algebraic structure of the set of 

competitive equilibrium allocations. Their competitive equilibrium concept is closely 

related to that, presented in Appendix II, for the market with non-discriminatory 

demand. They prove that this set preserves the lattice structure that is observed in the 

previous models.  

Camiña (2006) studies the particular case in which a unique seller owns all 

objects, not necessarily identical, and each buyer wants to buy one object at most. This 

author shows that the set of core allocations is a non-empty complete lattice under the 



partial order defined by the preferences of the buyers and may be different from the set 

of competitive equilibrium allocations. 

Finally, we would like to emphasize that the study developed here raises a 

relevant issue which comes out when a new matching model is proposed: What is 

stability? Which feasible allocations are the cooperative equilibrium allocations? The 

deviation function form reinforces the idea that, given a stable allocation, no coalition 

can come with a preferred alternative, which can be obtained by feasible deviations 

from the given allocation. Such representation allows identifying the correct 

characterization of the stable allocations for the rigid and flexible markets. However, 

our results establish that setwise-stability is not the general characterization of the 

concept of stability. This fact suggests that a general concept that captures the intuitive 

idea of cooperative equilibrium in any matching model may even not exist.  

 

APPENDIX I: PROOFS 

Proposition 2.3.1.  Let (u,w;x)  be a feasible  allocation such that  

(n) ∑p∈R Up+ ∑q∈TWq ≥ G(R∪T),  for every   R⊆ P*  and  T⊆ Q*. 

Then,  (u,w;x)   is  in the core. 

Proof. If the feasible allocation  (u,w;x)  was dominated by some feasible allocation  

(u´,w´;x´)  via some coalition  R∪T, Definition 2.3.2-(i2) would imply that  

(u´,w´;x´)∈V(R∪T). By Remark 2.1.1,  ∑p∈R U´p+ ∑q∈TW´q ≤ G(R∪T).  Definition 

2.3.2-(i1) then would imply   ∑p∈R Up+ ∑q∈TWq < G(R∪T), which is a  contradictiong.  

 

Proposition 2.3.2.  If (u,w;x)   is in the core  then 

(o) Up≥0  for all  p∈P  and  Wq≥0  for all  q∈Q. 

Proof. This is immediate from the fact that if, say  Up<0  for some agent  p∈P,  then 

any feasible allocation that gives zero amount of money to  p  and allocates his quota of 

labor time to the dummy Q-agent, would  dominate (u,w;x) via coalition  S={p}. g 

 

The following lemmas are used to prove Theorem 4.3. Lemma 4.1 characterizes 

the pairwise-strongly-stable allocations as the feasible allocations where the total payoff 

of every buyer is a maximum among all feasible allocations in  F.  Then Lemma 4.2 

characterizes the stable allocations of the flexible market as the pairwise-strongly-stable 

allocations.  



 

Lemma 4.1. Let  (u,w;x)  be a feasible allocation. Then  (u,w;x)  is pairwise-strongly-

stable if and only if for all  p∈P  and feasible labor allocation  x’  we have that 

(*) Up ≥ ∑q∈B(p,x’)(apq-w’pq)x’pq, 

where  w’pqx’pq = wpqx’pq  if  xpq ≥ x’pq,  w’pqx’pq = wpqxpq + w(p)q(min)(x’pq-xpq)  if  

0<xpq<x’pq  and  w’pqx’pq= w(p)q(min)x’pq  if  x’pq>0  and  xpq=0. 

Proof. Suppose  (u,w;x)  is pairwise-strongly-stable but there is some feasible labor 

allocation  x’  and  p∈P  such that (*) is not satisfied. Then, 

(1)  Up < ∑q∈B(p,x’)(apq-w’pq)x’pq. 

Define  I={q∈Q; xpq ≥ x’pq>0},  J={q∈Q; xpq < x’pq}  and  K={q∈Q; xpq >0, 

x’pq=0}. 

Then,  ∑q∈I upqxpq +  ∑q∈J∩B(p,x) upqxpq  +  ∑q∈K upqxpq < ∑q∈I (apq-wpq)x’pq + 

∑q∈J(apq-w’pq)x’pq =  ∑q∈I upqx’pq + ∑q∈ J∩B(p,x) [(apq-wpq)xpq + (apq- w(p)q(min))(x’pq-xpq)] 

+  ∑q∈ J-B(p,x) (apq- w(p)q(min))x’pq =∑q∈I upqx’pq + ∑q∈J∩B(p,x)upqxpq +∑q∈J (apq- 

w(p)q(min))x’pq -∑q∈J∩B(p,x)(apq- w(p)q(min))xpq= ∑q∈I upqx’pq+ ∑q∈J∩B(p,x)upqxpq+∑q∈J(apq- 

w(p)q(min))(x’pq –xpq),  so 

(2)  ∑q∈I upq(xpq – x’pq) +  ∑q∈K upqxpq < ∑q∈J (apq- w(p)q(min))(x’pq-xpq). 

Now, let  upr=min{upq;q∈I∪K}.  Since   ∑q∈I(xpq – x’pq) = (r(p) - ∑q∈J∪K xpq) – 

(r(p)-∑q∈J x’pq)= ∑q∈J (x’pq - xpq) - ∑q∈K xpq    it follows that  upr∑q∈J (x’pq - xpq) = upr 

∑q∈I(xpq – x’pq) +upr∑q∈K xpq ≤  ∑q∈I upq(xpq – x’pq) + ∑q∈K upqxpq. 

By (2)  we have  

upr∑q∈J (x’pq - xpq) < ∑q∈J (apq- w(p)q(min))(x’pq-xpq). 

Then,  

∑q∈J(apq- w(p)q(min) – upr)(x’pq-xpq)>0,  so we must have  (apq- w(p)q(min) – upr) 

>0  for some  q∈J.  But  r≠q  because  r∈I∪K  and  q∈J.  Then  upr ≥  up(q)(min)  and  0< 

apq- w(p)q(min) – upr ≤ apq - w(p)q(min) - up(q)(min),  so  up(q)(min) + w(p)q(min)< apq,  

which contradicts the assumption that  (u,w;x)  is pairwise strongly-stable. Hence  (*)  is 

satisfied for all  p∈P  and feasible labor allocation  x’. 

 In the other direction, let   (p,q*)  be an unsaturated pair (with respect to  x). 

Then  xpq*<r(p)  and  xpq*<s(q*).  Set  upm ≡ up(q*)(min). Let   λ   be some positive 

number such that  xpm- λ ≥0,  xpq* + λ≤ r(p)  and  xpq* + λ≤ s(q*).  Consider a feasible 



labor time allocation  x’  such that  x’pq*= xpq* + λ,  x’pm =xpm- λ,   x’pk = xpk  for all  

k∉{q*,m}.  Then we have 

∑k∈B(p,x)-{q*,m} upkxpk + upmxpm + upq*xpq* =∑k∈B(p,x) upkxpk = Up  ≥ ∑k∈B(p,x)-{q*,m} 

(apk – wpk) xpk + (apm – wpm)(xpm - λ) + (apq*-wpq*)xpq* + (apq*-w(p)q*(min))λ,  where the 

weak inequality follows from  (*). 

Then,  λupm  ≥ (apq*-w(p)q*(min))λ  and hence   upm + w(p)q*(min)  ≥ apq*.  Then,  

up(q*)(min) + w(p)q*(min) ≥ apq*,  so  (u,w;x)  is pairwise-strongly-stable and the proof is 

complete.g 

 

By symmetry, this lemma holds if we reverse the roles between P-agents and Q-

agents. 

 

Lemma 4.2.  Let (u,w;x)  be a feasible allocation. Then  (u,w;x)  is strongly-stable if 

and only if it is pairwise-strongly-stable. 

Proof. Suppose  (u,w;x)   is strongly-stable. If  condition  (p)  did not hold for some 

unsaturated pair  (p,q),  then buyer  p  and seller  q  could increase their earnings by 

transferring part of their labor time from some other partnership to  {p,q}  (which is 

possible since  (p,q)  is unsaturated) and both players could profit from the increased 

earnings so obtained, which is absurd. 

In the other direction, suppose by contradiction that  (u,w;x)  satisfies  (p)  but it  

is not strongly-stable. This means that  (u,w;x)  must be strongly-quasi-dominated by a 

feasible allocation  (u*,w*;x*)  via some coalition  R∪T≠φ,  with  R⊆P  and  T⊆Q. By  

Definition 2.3.6 – (i1),  we have that 

(1)  Up < ∑q∈B(p,x*) u*pq x*pq, for all  p∈R   and  Wq< ∑p∈B(q,x*) w*pq x*pq, for all  q∈T.                  

Set  A≡{(p,q)∈C(x*);  p∈R  or  q∈T},   D≡{(p,q)∈C(x*);  p∈R ,  q∈T  and  

xpq=0} and  E≡{(p,q)∈C(x*);  p∈R ,  q∈T  and  xpq>0}. 

Adding up  (1)  yields 

(2)  ∑p∈RUp  <∑p∈R∑q∈B(p,x*) u*pq x*pq   and  ∑q∈T Wq < ∑q∈T ∑p∈B(q,x*)w*pq x*pq.                             

Definition 2.3.6 – (i2)  implies that  [xpq ≥x*pq  and  upq=u*pq]   for all  (p,q)∈A  

with  q∉T  and  [xpq ≥x*pq  and   wpq =w*pq]    for all  (p,q)∈A  with p∉R.   Then,  

(3)   ∑ q∉T ∑p∈R∩ B(q,x*)  u*pq x*pq +  ∑ p∉R ∑q∈T∩ B(p,x*)  w*pq  x*pq   

= ∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   upqx*pq + ∑p∉R  ∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq.   

From (2)  and  (3)  we get 



∑p∈RUp + ∑q∈T Wq < [∑p∈R∑q∈T∩ B(p,x*) u*pq x*pq + ∑q∈T ∑p∈R∩ B(q,x*)  w*pq x*pq]  

+ [∑ q∉T ∑p∈R∩ B(q,x*)  u*pq x*pq +  ∑ p∉R ∑q∈T∩ B(p,x*)  w*pq x*pq] = [(∑p∈R∑q∈T∩ B(p,x*) - 

B(p,x) u*pq x*pq + ∑q∈T ∑p∈R∩ B(q,x*) - B(q,x) w*pq x*pq)  + (∑p∈R∑q∈T∩ B(p,x*) ∩ B(p,x) u*pq x*pq + 

∑q∈T ∑p∈R∩ B(q,x*) ∩B(q,x) w*pq x*pq)]  + [∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   upqx*pq + ∑p∉R  ∑q∈T∩ 

B(p,x*) ∩ B(p,x)  wpqx*pq]= 

(4)  ∑(p,q)∈D (u*pq   + w*pq )x*pq  + ∑(p,q)∈E (u*pq +w*pq) x*pq  + ∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   

upqx*pq + ∑p∉R  ∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq.   

The feasibility of  (u*,w*;x*)  implies that condition (e) is satisfied, so the 

expression in  (4)  is equal to 

∑(p,q)∈D  apq x*pq +  ∑(p,q)∈E apq  x*pq + ∑ q∉T  ∑p∈R∩ B(q,x*)∩ B(q,x)   upqx*pq +  

∑p∉R  ∑q∈T∩ B(p,x*) ∩ B(p,x)  wpqx*pq.   

From (p) and from the fact that all  (p,q)∈D  are unsaturated, it follows that  

∑(p,q)∈D apq x*pq ≤ ∑(p,q)∈D (up(q)(min) +  w(p)q(min)) x*pq .  From definition of  E  we have 

that  ∑(p,q)∈E apq  x*pq =  ∑(p,q)∈E (upq +wpq) x*pq.  Then, 

(5)  ∑p∈RUp + ∑q∈T Wq < ∑(p,q)∈D (up(q)(min) +  w(p)q(min)) x*pq + ∑(p,q)∈E (upq +wpq) 

x*pq +  ∑ q∉T  ∑ p∈R∩ B(q,x*)∩ B(q,x) upqx*pq + ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq.     

We now have that for every  p∈R, 

∑q∈T∩B(p,x*)-B(p,x) x*pq +  ∑q∈T∩B(p,x*)∩B(p,x) x*pq +  ∑ q∈B(p,x*)∩B(p,x)-T x*pq = r(p)=   

∑ q∈B(p,x) - B(p,x*) xpq +  ∑q∈T∩B(p,x)∩B(p,x*) xpq +  ∑q∈B(p,x)∩B(p,x*)-T xpq, so   

∑q∈T∩B(p,x*)-B(p,x) x*pq = ∑ q∈B(p,x) - B(p,x*) xpq + ∑q∈T∩B(p,x)∩B(p,x*) ( xpq – x*pq) + 

∑q∈B(p,x*)∩B(p,x)-T (xpq -  x*pq ). Using that  up(q) (min)= up(min)  for  all  q∈T-B(p,x)  we 

have 

(6) ∑q∈T∩B(p,x*)-B(p,x)up(q) (min) x*pq = ∑q∈T∩B(p,x*)-B(p,x) up (min) x*pq =∑ q∈B(p,x) - B(p,x*) 

up (min) xpq + ∑q∈ T∩B(p,x)∩B(p,x*) up (min)  ( xpq – x*pq) + ∑ q∈B(p,x*)∩B(p,x)-T up(min)(xpq -  

x*pq ) ≤ ∑ q∈B(p,x) - B(p,x*) upq xpq + ∑q∈T∩B(p,x)∩B(p,x*) upq ( xpq – x*pq) +  ∑ q∈B(p,x*)∩B(p,x)-T upq 

(xpq -  x*pq ) 

Symmetrically, for every  q∈T  we have that 

(7) ∑ p∈R∩B(q,x*)-B(q,x) w(p)q(min)x*pq ≤ ∑ p∈B(q,x)-B(q,x*) wpqxpq + ∑p∈R∩B(q,x*)∩B(q,x) 

wpq(xpq – x*pq) +  ∑p∈B(q,x*)∩B(q,x)-R wpq(xpq-x*pq).   

Adding up (6) and (7) yields 

∑(p,q)∈D (up(q)(min)+w(p)q(min)) x*pq ≤ [∑p∈R∑ q∈B(p,x) - B(p,x*) upq xpq + ∑p∈R ∑q∈ 

T∩B(p,x)∩B(p,x*) upq ( xpq – x*pq) + ∑p∈R ∑ q∈B(p,x*)∩B(p,x)-T upq (xpq -  x*pq )] + [∑q∈T ∑ p∈B(q,x)-



B(q,x*) wpqxpq) +  ∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) wpq( xpq – x*pq) + ∑q∈T ∑p∈B(q,x*)∩B(q,x)-R wpq(xpq-

x*pq)]= [(∑p∈R∑ q∈B(p,x) - B(p,x*) upq xpq+∑p∈R ∑q∈ T∩B(p,x)∩B(p,x*) upq xpq + ∑p∈R ∑ 

q∈B(p,x*)∩B(p,x)-T upq xpq)] + [(∑q∈T ∑ p∈B(q,x)-B(q,x*) wpqxpq +∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) wpqxpq +  

∑q∈T ∑p∈B(q,x*)∩B(q,x)-R wpqxpq)] – [∑p∈R ∑q∈T∩B(p,x)∩B(p,x*) upqx*pq + ∑p∈R ∑ q∈B(p,x*)∩B(p,x)-T 

upqx*pq + ∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) wpq x*pq  + ∑q∈T ∑p∈B(q,x*)∩B(q,x)-R wpqx*pq] = ∑p∈RUp + 

∑q∈T Wq  - [∑p∈R ∑q∈T∩B(p,x)∩B(p,x*) upq x*pq + ∑q∈T ∑p∈R∩B(q,x*)∩B(q,x) wpq x*pq] –             [∑ 

q∉T  ∑ p∈R∩ B(q,x*)∩ B(q,x)upqx*pq + ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq]   = ∑p∈RUp + ∑q∈T Wq -

∑(p,q)∈E (upq +wpq) x*pq- ∑ q∉T  ∑ p∈R∩ B(q,x*)∩ B(q,x) upqx*pq - ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) 

wpqx*pq . Then,   

∑(p,q)∈D (up(q)(min)+w(p)q(min)) x*pq ≤∑p∈RUp + ∑q∈T Wq -∑(p,q)∈E (upq +wpq) x*pq- 

∑ q∉T  ∑ p∈R∩ B(q,x*)∩ B(q,x) upqx*pq - ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq ,  so   

∑p∈RUp + ∑q∈T Wq ≥∑(p,q)∈D (up(q)(min)+w(p)q(min)) x*pq +  ∑(p,q)∈E (upq +wpq) x*pq 

+ ∑ q∉T  ∑ p∈R∩ B(q,x*)∩ B(q,x) upqx*pq + ∑p∉R  ∑ q∈T∩ B(p,x*) ∩ B(p,x) wpqx*pq,  which contradicts  

(5).  Hence  (u,w;x)  is strongly-stable. g 

 

 It follows immediately from these two lemmas that: 

 

Theorem 4.3. Let  (u,w;x)  be a feasible allocation. The following assertions are 

equivalent 

(i1) (u,w;x)  is strongly-stable; 

(i2) (u,w;x)  is pairwise-strongly-stable; 

(i3)  for all  p∈P  and feasible labor allocation  x’  we have that 

(*) Up ≥ ∑q∈B(p,x´)(apq-w´pq)x´pq, 

where  w´pqx´pq = wpqx´pq  if  xpq ≥ x´pq,  w´pqx´pq = wpqxpq + w(p)q(min)(x´pq-xpq)  if  

0<xpq<x´pq  and  w´pqx´pq= w(p)q(min)x´pq  if  0=xpq< x´pq. 

 

The proof of the existence theorem uses Theorem 4.5 and Proposition 4.8, which 

needs Lemma 4.7 below. For simplicity of  notation, in what follows, we will use some 

times  ∑P,  ∑Q,  ∑PxQ  to denote, respectively,  ∑p∈P,  ∑q∈Q,  ∑(p,q)∈PxQ,  and so on.. 
  

Lemma 4.7.  Let  (u,w;x)  be a strongly-stable allocation. Then  x  is an optimal labor 

time allocation. 



Proof.  Let  x’  be any feasible labor time allocation. For all  (p,q)∈P×Q,  let  Δpq= xpq – 

x’pq.  We must show 

 (1)  ∑PxQ apq Δpq ≥ 0. 

Define  T≡{(p,q)∈C(x);  xpq-x’pq≥0},  T*≡{(p,q)∈C(x);  xpq-x’pq <0},  T(p)≡{q; (p,q)∈T},  

T*(p)≡{q; (p,q)∈T*},  T(q)≡{p; (p,q)∈T}  and  T*(q)≡{p; (p,q)∈T*}.   Then, 

(2) ∑ q∈T(p) Δpq + ∑ q∈T*(p) Δpq =0  for all  p∈P  and  ∑ p∈T(q) Δpq +  ∑ p∈T*(q) Δpq =0  

for all  q∈Q,  by feasibility of  x  and  x’. Set   

(3) up≡ min{ upq; q∈T(p)}  and  wq≡ min{ wpq; p∈T(q)}.   

Then,   ∑C(x) apq Δpq = ∑T apq Δpq + ∑T* apq Δpq = ∑T( upq + wpq) Δpq + ∑T* apq Δpq 

= ∑P ∑q∈T(p) upq Δpq + ∑Q∑p∈T(q) wpq Δpq + ∑T* apq Δpq≥ ∑P up∑ q∈T(p) Δpq +  

+∑Q wq∑ p∈T(q) Δpq + ∑T* apq Δpq= - ∑P up∑ q∈T*(p) Δpq -  ∑Q wq∑ p∈T*(q) Δpq + ∑T* apq Δpq  

= ∑T* - (up + wq) Δpq  + ∑T* apq Δpq=  ∑T* (apq - (up + wq)) Δpq,  where the third last 

equality follows from  (2). 

Now, let  (p,q)∈T*.  We have  xpq < x’pq,  so  xpq<r(p) and  xpq< s(q)  and then  

(p,q)  is unsaturated.  From  (3)  up=upm  for some  m∈T(p)  and  wq= wkq  for some  

k∈T(q),  so  m≠q  and  k≠ p  because  (p,q)∈T*,  so  up≥up(q)(min)  and  wq≥w(p)q(min).  

By strong stability,   (apq - (up(q)(min) + w(p)q(min))) ≤ 0,  so  apq-(up+wq)≤0.  We also 

have  Δpq<0.  Therefore,  ∑T* (apq - (up + wq)) Δpq≥0  and so  (1)  is proved.g  

 

 Note that if  x  is an optimal labor time allocation and  (u,w;x´)  is a strongly 

stable allocation with  x´≠ x,  then  x  is not necessarily compatible with  (u,w).  This is 

because  u  and  w  are not indexed according to  x. 

 

Proposition 4.8. The set of non-discriminatory strongly-stable allocations coincides 

with  the set of dual allocations. 

Proof. Let  (u,w;x)  be a dual allocation. The definition of  u  and  w  implies that  

(u,w;x)  is non-discriminatory. This allocation is feasible by  (D)  and by the 

construction of  (u,w;x). Property  (p)  is implied by  (C)  and  (D). Theorem 4.3 then 

implies that  (u,w;x)  is strongly-stable.  

Conversely, let  (u,w;x)  be  a non-discriminatory strongly-stable allocation. 

Define  (y,z)  such that  yp=up(min)  and  zq=wq(min)  for all  p∈P  and  q∈Q.  Then  

(1) upq=up(min)=yp  and  wpq=wq(min)=zq  for all  (p,q)∈C(x).                        



Lemma 4.7 implies that  x  is an optimal labor time allocation, so it is an optimal 

solution of  (P1). Theorem 4.3 implies that (p) is satisfied, so  yp+zq≥apq  if  xpq=0.  On 

the other hand, from (1)  it follows that  yp + zq=apq  if  xpq>0.  Therefore,  (B2)  is 

satisfied.  The feasibility of (u,w;x)  implies both:  (y,z)  minimizes (B1)  and  (B3)  is 

satisfied.  Hence  (u,w;x)  is a dual allocation and the proof is complete. g 

 

Theorem 4.9. The set of competitive equilibrium allocations, the set of stable 

allocations for the flexible market, the set of stable allocations for the rigid market and 

the core are always non-empty. 

Proof. By Theorem 4.6, it is enough to show that the set of competitive equilibrium 

allocations is non-empty. Theorem 4.5 implies that the set of competitive equilibrium 

allocations contains the set of non-discriminatory strongly-stable allocations. 

Proposition 4.8 shows that this set is precisely the set of dual allocations, so it is always 

non-empty by the Duality Theorem. Hence, the set of competitive equilibrium 

allocations is always non-empty, and the proof is complete. g  

 

 For the proof of Theorem 5.2 we need Lemma 5.1. 

 

Lemma 5.1. Let  (u,w;x)  and  (u’,w’;x) be strongly-stable allocations. Then  (u*,v*;x)  

and  (u*,v*;x), defined in  (u1)  and  (u2),  are strongly-stable allocations.  

 Proof. It is clear that  (u*,w*;x)  is feasible. Also,  u*p(q)(min) ≥ up(q)(min), u*p(q)(min)  

≥u’p(q)(min)  and  w*(p)q(min) = min{w(p)q(min),w’(p)q(min)} (suppose  wp’q= 

w(p)q(min)=min{w(p)q(min),w’(p)q(min)}.  Then, wp’q ≤ wp”q  and  wp’q ≤ w’p”q  for all  

p”∈B(q,x)-{p},  so  wp’q ≤ w’p’q,  so  w*p’q=wp’q  ≤ w*p”q  for all  p”∈B(q,x)-{p},  and then  

w*(p)q(min)= w(p)q(min)).  Suppose  {p,q}  is unsaturated and  w*(p)q(min)=w(p)q(min).  

We have that  u*(p)q(min) + w*(p)q(min)= u*p(q)(min) + w(p)q(min)≥ up(q)(min) + w(p)q(min) 

≥apq  from  strong stability of  (u,w;x).  Then,  u*(p)q(min) + w*(p)q(min) ≥apq  for all 

unsaturated pair  {p,q}.  Hence (u*,w*;x)  is strongly-stable. With symmetric arguments 

to those used above, it can be shown that  (u*,w*;x)  is also strongly-stable.■ 

 

Theorem 5.2. Let  x  be an optimal labor time allocation. Then,  

a) the set of the strongly-stable allocations compatible with  x  is a complete lattice 

under both partial orders  ≥P    and  ≥Q;   

b) this set has a P-optimal and a Q-optimal allocations and  



c) properties (x1) and (x2) hold.  

Proof. a) It is immediate from Lemma 5.1 and the fact that the strongly-stable money 

allocations compatible with  x  is a compact set of some Euclidean space; b) and  c)  

follow from  a). ■ 

 

Theorem 5.3. Let  x  be an optimal labor time allocation. Then, 

a) the set  A(x)  is a complete lattice under both partial orders  ≥P  and  ≥Q;  

b) there always exist the P-optimal and Q-optimal competitive equilibrium allocations 

for  A(x)   and 

 c) properties (x1) and (x2) hold.  

Proof. It is immediate from Theorem 5.2, due to the fact that competitive equilibrium 

allocations are strongly-stable, and the meet and joint of two allocations that are non-

discriminatory for one of the sides are still non-discriminatory for that side. g 

 

Proposition 5.4. Let  (u,w;x)  be  a competitive equilibrium allocation in  A(x) and let   

x’  be an optimal labor time allocation. Set  fx’(u,w;x)≡(u’,w’;x’). Then, (u’,w’;x’) is a 

competitive equilibrium allocation in  A(x’). Furthermore,  Up=U’p  for all  p∈P and  

Wq=W’q for all  q∈Q.   

Proof. Theorem 4.5 implies that   (u,w;x)  is a  P-non-discriminatory strongly stable 

allocation. Then, from Corollary 4.4, we have that  Up≥∑q∈B(p,x’)(apq-wpq)x’pq   for all  

p∈P. Therefore,   

(1)            Up≥U’p  for all  p∈P. 

By definition of  fx’,  w’=w  and  u’  is feasibly defined, so  Wq=W’q for all  q∈Q  and  

(2)  (u’,w’;x’)  is feasible and P-non-discriminatory.  

By  (1)  and the feasibility of the two allocations we get that 

(3)        ∑PxQ apqxpq = ∑PUp + ∑Q Wq ≥ ∑PU’p + ∑Q W’q =∑PxQ apqx’pq. 

Since   x’  is optimal we must have equality in  (3), so equality in  (1). Then,  U=U’  

and, by Corollary 4.4,   

(4) U’p  ≥ ∑q∈B(p,x”)(apq-wpq)x”pq   for all  p∈P and feasible labor time allocation  x”. 

  It follows from (2) and (4) that Corollary 4.4 applies for  (u’,w;x’),  so  (u’,w;x’)  is P-

non- discriminatory strongly stable. Theorem 4.5 then implies that  (u’,w;x’)   is 

competitive.  Hence  fx’(u,w;x)∈A(x’)  and the proof is complete.g 

 



Theorem 5.5.  Let  (u,w;x)  be the P-optimal(respectively, Q-optimal) competitive 

equilibrium allocation for  A(x).  Let  x’  be any optimal labor time allocation. Then,  

fx’(u,w;x)  is the P-optimal(respectively, Q-optimal) competitive equilibrium allocation   

for  A(x’). 

Proof. We are going to show the first assertion. The second one follows dually. Then 

set   fx’(u,w;x)≡(u’,w;x’)∈A(x’). Let  (u”,w”;x’) be in  A(x’) and set  

fx(u”,w”;x’)≡(u*,w”;x)∈A(x).  Proposition 5.4 and the P-optimality of  (u,w;x)  imply 

that  U’p=Up≥U*p=U”p  for all  p∈P,  so  U’p ≥U”p  for all  p∈P. Hence, (u’,w;x’)  is 

the P-optimal competitive equilibrium allocation for  A(x’),  which completes the proof. 

g 
 

Theorem 5.6. Let  (u , w ;x)  and  (u ’, w ’;x’)  be the P-optimal competitive equilibrium 

allocations of  A(x)  and  A(x’),  respectively. Then,  U =U ’  and  W =W ’. 

Proof. By Theorem 5.5,  fx´ (u , w ;x)= (u ’, w ’;x’). Now use the definition of  fx’  and 

Proposition 5.4.g 

 

APPENDIX II: COMPETITIVE MARKET WITH NON-DISCRIMINATORY 

DEMANDS 

In this section we define a demand correspondence which applies to the 

assignment game and to the time-sharing assignment game. The resulting competitive 

market will be called competitive market with non-discriminatory demands. The 

competitive market defined in section 3.1 will be referred here as competitive market 

with discriminatory demands.  

Specifically, in the competitive market with non-discriminatory demands,  each 

seller  q  supplies  s(q)  u.l.t. of type  q  (we identify seller  q  with the type of the u.l.t. 

supplied by him).  Then the set of all types can be denoted by  Q.  The prices of all 

types are announced. Buyers have preferences over the u.l.t. supplied by the sellers at 

the given prices. Buyer  p  will demand bundles of types of u.l.t. that are feasible for 

him (that respect his quota). Furthermore, in any demanded bundle, every type whose 

number of units in the bundle is positive maximizes p’s individual surpluses.  

Under a competitive equilibrium the bundle of goods allocated to buyer  p  is a 

feasible assignment vector for  p and it belongs to the demand set of the buyer at the 

given prices. Thus, for the purpose of analyzing competitive equilibria, there will be no 



loss in restricting the demand set of a buyer to bundles of goods that are feasible 

assignment vectors for the buyer.  

Therefore, in the competitive market with non-discriminatory demands, given a 

price vector  π,  each buyer  p∈P*  will demand the feasible assignment vector  xp  if, 

for all  q∈Q  with  xpq>0,  and for all  q´∈Q,  we have that  (apq-πq) ≥ (apq´-πq´). Thus, 

buyer  p  will get equal surpluses with all  q∈Q  with  xpq>0.   

Set  ND p(π)  the demand set of buyer  p∈P*  at prices  π  in the competitive 

market with non-discriminatory demands.  That is, 

NDp(π)≡{xp∈Xp; (apq-πq) ≥ (apq´-πq´)  ∀ q∈Q  with  xpq>0  and  q´∈Q }. 

From this definition, if  xp∈NDp(π)  and  xp0>0  then buyer  p  gets a zero 

individual surplus with all  q∈Q  with  xpq>0. In this case, (apq-πq)≤ 0  for all  q∈Q. 

Therefore, if buyer  p  gets a positive surplus with some  q∈Q,  then we must have that  

xp0=0  for all  xp∈NDp(π). In this case, if the amount of units of the types which 

maximize p’s individual surpluses is not enough to fill the quota of buyer  p,  the set  

NDp(π)  will be empty.  

  
REMARK A.1. Clearly,  NDp(π) ⊆ Dp(π). Thus, every competitive equilibrium for the competitive 

market with non-discriminatory demands is a competitive equilibrium for the competitive market with 

discriminatory demands. Furthermore, if  xp∈Dp(π)  and  (apq-πq) = (apq´-πq´),  ∀ q, q´∈Q  with  xpq>0  and  

xpq´>0,  then  xp∈NDp(π). Therefore, if a competitive equilibrium for the competitive market with 

discriminatory demands is a non-discriminatory allocation, then the allocation is a competitive 

equilibrium for the competitive market with non-discriminatory demands.  

It is also clear that under the rules of the assignment game,  for all p∈P*,  xpq∈{0,1}  for all  

q∈Q  and  ∑q∈Q xpq=1  for all  p∈P*. Then, NDp(π) = Dp(π)≠φ  in that market.g   

 

Clearly, both competitive markets coincide in the assignment game. However, 

from our previous results and Theorem A.1 below, we can conclude that the 

equivalence observed in the assignment game between the set of dual allocations and 

the core, as well as that between the set of dual allocations and the set of competitive 

equilibrium allocations under discriminatory demands, is less robust to the introduction 

of time into the assignment game than the equivalence between the set of dual 

allocations and the set of competitive equilibrium allocations under non-discriminatory 

demands. In the time-sharing assignment game, the set of dual allocations coincides no 

longer with the core or the set of competitive equilibrium allocations under 



discriminatory demands. But it still is the set of competitive equilibrium allocations 

under non-discriminatory demands. 

 

Theorem A.1. Let σ  be a feasible allocation. Then  σ   is a competitive equilibrium 

allocation for the market with non-discriminatory demands if and only if it is a dual 

allocation. 

Proof. In fact, it follows from Remark A.1 and Theorem 4.5 that if   σ  is a competitive 

equilibrium allocation for the competitive market with non-discriminatory demands 

then it is strongly-stable and no Q-agent discriminates any P-agent. Since, at  σ,  each 

buyer receives the same payoffs at all individual trades, we have that σ  is a non-

discriminatory strongly-stable allocation, and so it is a dual allocation by Proposition 

4.8. Conversely, if σ  is a dual allocation then it is a non-discriminatory strongly-stable 

allocation by Proposition 4.8, then it is P-non-discriminatory strongly-stable and so 

Theorem 4.5 implies that it is a competitive equilibrium allocation for the market with 

discriminatory demands. Since  σ  is a non-discriminatory allocation, it follows from 

Remark A.1 that σ  is also a competitive equilibrium allocation for the market with non-

discriminatory demands. Then, the competitive equilibrium allocations for the market 

with non-discriminatory demands are precisely the dual allocations. g 

 

Hence, in the time-sharing assignment game, the equivalence between dual 

allocations and competitive equilibrium allocations is preserved in the competitive 

market with non-discriminatory demands and it is not in the competitive market with 

discriminatory demands.   

  

Theorem A.2.  The set of competitive equilibrium money allocations for the market 

with non-discriminatory demands is a complete lattice under   ≥P  and  ≥Q. 

Proof. The set of dual allocations is the intersection of the set of P-non-discriminatory 

strongly-stable allocations with the set of Q-non-discriminatory strongly-stable 

allocations. Theorem 5.3 implies that the restriction of these two sets to a given optimal 

labor time allocation are complete lattices. Then, the set of dual allocations compatible 

with an optimal labor time allocation is the intersection of two complete lattices, so it is 

also a complete lattice. As remarked before, the dual money allocations are compatible 

with any optimal labor time allocation. Then,  ≥P  and  ≥Q  are also partial orders for the 



set of dual money allocations. (Observe that these binary relations are not partial orders 

for the set of dual allocations, since they do not satisfy the anti-symmetric property).   

Hence, the whole set of dual money allocations is a lattice under  ≥P  and  ≥Q.  g 

 

Therefore, the complete lattice property of the core money allocations and of the 

set of the competitive equilibrium money allocations under discriminatory demands, 

observed in the assignment game, is less robust to the introduction of time into that 

model than the lattice property of the set of the competitive equilibrium money 

allocations under non-discriminatory demands.  

Theorem A.3 asserts that the competitive equilibrium allocations under non-

discriminatory demands are given by the Cartesian product of the corresponding set of 

money allocations by the set of optimal labor time allocations. Then this property 

applied to the assignment game is more robust to the introduction of time into that 

model than the property concerning the competitive equilibrium allocations under 

discriminatory demands.  

 

Theorem A.3. Let  (u,w;x)  be a competitive equilibrium allocation under non-

discriminatory demands. Then,  

(a) x  is an optimal labor time allocation, and 

(b) if  x´ is an optimal labor time allocation, then  (u,w;x´)  is a competitive 

equilibrium allocation under non-discriminatory demands.  

Proof. (a) follows from Lemma 4.7, Proposition 4.8  and Theorem A.1. For part (b) 

uses Theorem A.1 and the fact that every dual solution of P1* is compatible with any 

optimal solution of P1. g 
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