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Abstract:  

We approach the roommate problem by focusing on well-behaved matchings, which are those 
individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. 
We show that the set of stable matchings is non-empty if and only if no well-behaved and unstable 
matching is Pareto optimal among all well-behaved matchings. The economic intuition underlying 
this condition is that blocking can be done so that the transactions at any well-behaved and 
unstable matching need not be undone as agents reach the the set of stable matchings. We also give 
a sufficient condition on the preferences of the agents for the non-emptiness of the set of stable 
matchings. New properties of economic interest are proved. 
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ABSTRACT 

 We approach the roommate problem by focusing on well-behaved matchings, 

which are those individually rational matchings whose blocking pairs, if any, are formed 

with unmatched agents. We show that the set of stable matchings is non-empty if and 

only if no well-behaved and unstable matching is Pareto optimal among all well-behaved 

matchings. The economic intuition underlying this condition is that blocking can be done 

so that the transactions at any well-behaved and unstable matching need not be undone as 

agents reach the the set of stable matchings. We also give a sufficient condition on the 

preferences of the agents for the non-emptiness of the set of stable matchings. New 

properties of economic interest are proved. 
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INTRODUCTION 

 

The Roommate Problem is one of the three matching problems introduced by 

Gale and Shapley in their famous paper of 1962. There is a set  N  with 2n people who 

wish to be matched in pairs to be roommate in a college dormitory or partners in paddling 

a canoe. Each person ranks all the others in accordance with his/her preference for a 

roommate. This preference is assumed to be strict. Every person is acceptable to any other 

person. A matching is a bijection from  N  to  N  of order two. Therefore it can be 

identified with a set of pairs of agents so that every agent belongs to exactly one pair. A 

stable matching is a matching such that no two persons who are not roommates both 

prefer each other to their actual partners. The stability concept is equivalent to the core 

concept in this model. Gale and Shapley proved, through an example with four people, 

that the roommate problem may have no stable matching.  

Later the roommate model was generalized by allowing that  N  had any number 

of people, that the preferences did not need to be strict and that an agent might be 

unacceptable to other agents (Sotomayor (), … ). With this new formulation, the Marriage 

model could then be considered as a special case of the Roommate model (every man lists 

as unacceptable all the other men and every woman lists as unacceptable all the other 

women). 

The literature on the roommate model is very small, specially compared with its 

specific submodel. Only problems related to the existence of core outcomes has been 

treated.  

In this paper we present new results on the structure of the stable matchings for 

the roommate model, which have some analogue in the two sided matching models, and 

we also provide new conditions for the core existence.  

Our results are concentrated in two parts. The first part concerns the structure of 

the stable matchings, when these outcomes exist. We show that some properties that are 

characteristic of the structure of the stable matchings for the Marriage market and the 

College admissions market, as well as for the continuous one-to-one cases, do not depend 

on the two-sidedness of the matching as the core existence does. They not only carry over 
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the roommate-model, as well they can be obtained through the use of new techniques, 

which have in the “well-behaved matchings” their key mathematical tool. Well-behaved 

matchings are a version of the simple matchings, the concept introduced in Sotomayor 

(1996). These are certain individually rational matchings, such that none of the matched 

agents is member of a blocking pair. Well-behaved matchings exist even when stable 

matchings do not, since the matching where every one is unmatched is well-behaved. 

Clearly, every stable matching is well-behaved. 

The advantage of this approach is that it provides simple and short proofs that 

only use elementary combinatorial arguments. The proofs of all results use a kind of 

Decomposition Lemma, very similar to the Decomposition Lemmas for the Marriage 

model, due to Gale and Sotomayor (1985) and the continuous one-to-one matching model 

presented in Demange and Gale (1985). Basically we prove that  

i) there is a polarization of interests between the players involved in a 

partnership regarding a well-behaved matching and a stable matching. 

This property implies the existence of a polarization of interests between 

the players involved in a partnership regarding two stable matchings.  

ii) The matched players at a well-behaved matching are matched among 

themselves under any stable matching. Consequently, the set of matched 

players is the same under every stable matching. 

iii) The set of unmatched agents under any stable matching is contained in the 

set of unmatched agents under any well-behaved matching.  

iv)  The set of unmatched agents who are not part of any blocking coalition of 

a well-behaved matching remain unmatched at any stable matching. Then, 

the set of unmatched agents is the same in every stable matching.  

In the second part of this paper we address the conditions that guarantee the 

existence of stable matchings for the roommate model. Our results give an economic 

intuition about how blockings can be done by non-trading agents, so that the transactions 

need not be undone as agents approach the core.  

Intuitively, given an unstable and well-behaved matching  x,  it is always possible 

to obtain a new matching  z,  that is a Pareto superior of  x,  by doing the following: Keep 
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the partnerships formed under  x,  if any,  and add some new partnerships. This is always 

possible because  x  is unstable. Of course, these new partnerships are formed with 

blocking pairs of  x. The first result asserts that, if the set of stable matchings is non-

empty,  then matching  z  can be constructed so that it is stable.  

Therefore, when the set of stable matchings is non-empty, no unstable and well-

behaved matching can be Pareto optimal among all well-behaved matchings. 

In the other direction, suppose that given any unstable and well-behaved 

matching, there is a Pareto improvement of this matching that is well-behaved and keeps 

the partnerships done in the original matching. This is to say that the new matching 

extends the original one. It is intuitive that, if we start with any unstable and well-behaved 

matching, the sequence of well-behaved matchings, where each term extends the previous 

one, must converge, since it is finite and its terms are distinct, so it does not cycle.  

Furthermore, the limit of convergence must be a stable matching, for otherwise it would 

have a well-behave Pareto improvement. Our second theorem confirms such intuition: if 

every unstable and well-behaved matching can be extended to a well-behaved maching, 

the way described above, then the set of stable matchings is non-empty. 

The economic attractiveness of this condition relies on the fact that it reflects the 

agents’ optimal behavior (which one would only expect in the core outcomes) along the 

subsequent stages of a dynamic coalition formation process, in which the well-behaved 

matchings are the expected resulting outcomes from each stage. Basically, it is assumed 

that a coalition of players forms a number of partnerships only if the players involved 

believe that they will not have a better option in the future. If all agents’ beliefs are 

correct, there will not be blocking pairs involving players in the partnerships formed, so 

the matching at each step is well-behaved. In this procedure, starting with any well-

behaved maching, the pairs which form (if any) at a given stage will not dissolve in 

subsequent stages and are formed with non-trading agents of the previous stage. 

Therefore, only agents who are not trading at a given stage can be better off at a 

subsequent stage, by trading among them.  

Thus, new trades will occur at each stage until no transaction is able to benefit the 

agents involved or until that any new interaction requires that some of the agents involved 
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do not behave optimally. In the first case the core has been reached. In the second case, 

the core is empty.  In the example of Gale and Shapley (1962), the matching where every 

one is unmatched is the only well-behaved matching. Thus, if two players decide to form 

a partnership, the resulting outcome cannot be well-behaved, so at least one of the two 

players is not behaving optimally.  

The third result of this part gives a sufficient condition on the preferences of the 

agents for the non-emptiness of the set of stable matchings. It asserts that, if the 

preferences of the set of players that are part of some blocking pair of a given unstable 

and well-behaved matching form an even order cycle, such that for any term  jt of the 

cycle, jt+1  is  jt’s most preferred agent in the set and  jt-1  is  jt’s second most preferred 

agent in the set,  then it is possible to have an extension of the current matching. 

Consequently, if this condition holds for every unstable and well-behaved matching, then 

the set of stable matchings is non-empty. 

This paper is organized as follows. In section 2 we describe the model and present 

the preliminary definitions. Section 3 introduces the well-behaved matchings and proves 

several of their structural properties. Section 4 is devoted to the existence and non-

existence of stable matchings. Section 5 concludes the paper and presents some related 

works. 

 

2. DESCRIPTION OF THE MODEL AND SOME PRELIMINARIES 

 There is a finite set of players, N={1,2,…,n}.  Each player is interested in forming 

at most one partnership with players of  N  and has complete, transitive and strict 

preferences over the players in  N.  Hence, player  j’s  preference can be represented by an 

ordered list of preferences,  P(j),  on the set  N.  Player  k  is acceptable to  j  if  j prefers  

k  to himself/herself. Player  j  is always acceptable to  j. Thus,  P(j)  might be of the form 

P(j)=k, m, j, …, q 

indicating that  j  prefers  k  to  m,  m  to  himself/herself, and anyone else is unacceptable 

to  j.  

 The model can then be described by  (N,P),  where  P={P(1),…,P(n)}. 
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Definition 2.1. A matching  x for  (N,P) is a one-to-one correspondence from  N  onto 

itself of order two (that is,  x2(j)=j).  We refer to  x(j)  as the partner of  j  at  x.  

 

 The set of matchings for  (N,P)  will be denoted by  X. 

 If  x(j)=j  we say that  j  is unmatched at  x. Player  j  prefers matching  x  to 

matching  y  if and only if  he/she prefers  x(j)  to  y(j).  Therefore, we are assuming that  

player  j  cares about who he/she is matched with, but is not otherwise concerned with the 

partners of other players. 

 

Definition 2.2.  The matching  x  is individually rational if each player is acceptable to 

his or her partner.  

 

The key notion is that of stability. 

 

Definition 2.3. We say that the pair (j,k)  blocks a matching  x  if  j  and  k  prefer each 

other to their current partners. A matching  x  is stable if it is individually rational and is 

not blocked by any pair. If  x  is not stable we say that it is unstable. 

 

 It is a matter of verification that a matching is stable if and only if it is in the core. 

 

Definition 2.4. Agent  j  has an optimal behavior at matching  x  if he/she is matched at  

x  and is not part of any blocking pair of  x. A matching  x  is well-behaved if it is 

individually rational and every matched agent has an optimal behavior at  x. 

 

3. STRUCTURE OF THE SET OF STABLE MATCHINGS 

 

In this session we obtain some new and important properties of the stable 

matchings by using the structure of the well-behaved matchings.  

  The following result is a powerful lemma that enables us to derive all of our 

results.  
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Lemma 3.1 (Decomposition lemma). Let  x  be a well-behaved matching and let  y  be a 

stable matching. Let   T={jN; x(j)j},  Mx={jN; x(j) >j y(j)}  and  My={jT; y(j) >j 

x(j)}.  Then  x(Mx)= y(Mx)=My  and  x(My)=y(My)=Mx. 

Proof. All  j  in  Mx  are matched under  x,  since  x(j)>j y(j) j  j.  Analogously, all  j  in  

My  are matched under  y,  since y(j)>j x(j) j j.  If  j  is in  Mx  then  k=x(j)  is in  My,  for if 

not  j=x(k)>k y(k), due to the strictness of the preferences and the fact that  x(k)y(k),  

which contradicts the stability of  y.  On the other hand, if  k  is in  My  then  j=y(k)  is in  

Mx,  for if not  k=y(j) >j x(j),  due to the strictness of the preferences and the fact that  

x(j)y(j),  which implies that   (j,k)  blocks  x.  However,  k  is  in  T,  so  k  is matched 

under  x,  which contradicts the fact that  x  is well-behaved. Therefore,  x(Mx)My  and  

y(My)Mx,  so  Mxx(My)  and  Myy(Mx).  It follows that 

 |Mx|=|x(Mx)||My|=|y(My)||Mx|  and  |My||y(Mx)|=|Mx||x(My)|=|My| ,    

which implies  x(Mx)=My,  y(My)=Mx, y(Mx)=My  and  x(My)=Mx,  and the proof is 

complete. 

 

That is, if  x  is a well-behaved matching and  y  is a stable matching, then both  x  

and  y  map the set of people who prefer  x  to y  onto the set of people who prefer  y  to  x  

and  are matched at  x.  

An immediate consequence of the Decomposition Lemma reflects an opposition 

of interests between the players involved in a partnership regarding two stable matchings: 

 

 Theorem 3.1. Let  x  and y  be stable matchings. If  j  prefers  x  to  y  then  j  is matched 

to some  k  under  x  and to some  h  under  y. Furthermore, both  k  and  h   prefer  y  to 

x.2 

  

The following simple consequence of the Decomposition Lemma implies that the 

players matched at a well-behaved matching will never be unmatched at a stable 

                                                           
2 The polarization of interests between the two sides of the Marriage market along the whole core is a  

restriction of this result to that market (Knuth, 1976).  
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matching and will be matched among them at any stable matching. That is, the trading 

agents at a well-behaved matching always make their transactions under a stable 

matching within the same pool. 

 

Proposition 3.1. Let  x  be a well-behaved matching and let  y  be a stable matching. Let   

T={jN; x(j)j}. If  jT  then  y(j)j  and  y(j)T. Consequently, the set of matched 

agents is the same for every stable matching. 

Proof. Let  jT.  The first assertion is immediate if  x(j)=y(j).  Then, suppose  x(j)y(j). 

Using the notation of Lemma 3.1 we have that   jMxMyT.  If  jMx  then  y(j)My,  

so  y(j)j  and  y(j)T.  If  jMy  then y(j)Mx,  so  y(j)j  and  y(j)T.   Hence, in any 

case the first assertion follows. The second assertion follows from the fact that every 

stable matching is well-behaved. 

 

This proposition concurs to the following result, which concerns a set of players 

who are indifferent between all stable matchings. 

 

Proposition 3.2. Let  x  be a well-behaved matching and let  y  be a stable matching. 

Then, the set of unmatched agents under  y  is contained in the set of unmatched agents 

under  x.  

Proof. If  y(j)=j  and  jT then, by Proposition 3.1,  y(j)j,  contradiction.  

 

A simple consequence of Propositions 3.1 and 3.2 is the following: 

 

Theorem 3.2. Suppose the set of stable matchings is non-empty. Let  x  be a well-behaved 

matching. If  j  is unmatched at  x  and is not part of a blocking pair then  j  is unmatched 

at every well-behaved matching. Consequently, if  j  is unmatched at some stable 

matching, then j  is unmatched at every stable matching. 

Proof. If  x  is stable, the result follows from Proposition 3.2. Then suppose  x  is 

unstable. Let  y  be a stable matching. Proposition 3.1 implies that all matched players at  
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x  are matched among themselves at  y.  This means that, if  y(j)=k,  for some  kj, k  

should be unmatched at  x,  so  {j,k}  would block  x,  contradiction.  Then  j  is 

unmatched at  y and hence,  j  is unmatched at every well-behaved matching by 

Proposition 3.2. The other assertion follows from the fact that every stable matching is 

well-behaved.  

 

4. EXISTENCE OF STABLE MATCHINGS 

 

This session address the conditions that guarantee the non-emptiness of the set of 

stable matchings.  Theorem 4.1 implies that, when the set of stable matchings is non-

empty, the matched players at a well-behaved matching keep their partners under some 

stable matching.  

Theorem 4.2 demonstrates that the condition under which the matched players at 

an unstable and well-behaved matching keep their partners under some well-behaved 

matching, distinct from the original one, is necessary and sufficient for the non-emptiness 

of the set of stable matchings. Theorem 4.3 provides a new way of having such condition 

satisfied for a given unstable and well-behaved matching, by only using the preferences of 

the agents who are part of some blocking pair of the given outcome.  The corollary of 

Theorem 4.3 shows that if this new condition is satisfied for every unstable and well-

behaved matching then the set of stable matchings is non-empty.   

We will make use of the following definition. 

 

Definition 4.1. Let  x  be a well-behaved matching.  Let  T={jN; x(j)j}.  We say that 

matching  z  extends  x (or  z  is an extension of  x)  if  z  is a well-behaved matching,  

zx  and  z(j)=x(j)  for all  jT .  

 

Notation: Denote  U{xX ;  x  is unstable and well-behaved}. 

 

Theorem 4.1. Let  xU.   If the set of stable matchings is non-empty, then there exists a 

stable matching  z  that extends  x.  
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Proof. Let  y  be a stable matching. Let  T={jN; x(j)j}.  It follows from Proposition 3.1 

that all of  T  are matched among them under  y.  Then, we can construct the matching  z  

as follows:  z(j)=x(j)  if  jT;  z(j)=y(j)  otherwise. It is clear that  z  extends  x  (zx due 

to the fact that  xy,  given that  x  is unstable). It remains to show that  z  is stable. That  z  

is individually rational is immediate from the individual rationality of  x  and  y. To see 

that  z  does not have any blocking pair, take any pair  {j,k}. The fact that  x  is well-

behaved and  y  is stable implies that  (j,k) does not block  z  in the cases where  {j,k} T  

and {j,k} N-T .  Then, without loss of generality, suppose  kT  and jN-T. If  (j,k)  

blocks  z  then  j>k z(k}=x(k)  and  k>j z(j)=y(j)j j=x(j), so   (j,k)  blocks  x.  However,  k  

is matched at  x,  which contradicts the fact that  x  is well-behaved. 

 Hence, in any case,  {j,k}  does not block  z,  so  z  is stable and the proof is 

complete.  

  

For the statement and proof of Theorem 4.2 we need one more concept. 

 

Definition 4.2. Matching  x  is called well-behaved Pareto optimal matching (PO  for 

short) if it is well-behaved and there is no well-behaved matching  y  such that: 

(i)  all players weakly prefers  y  to  x, and 

(ii)  at least one player prefers y  to  x. 

 

 Therefore, if  x  is  PO  and  some player prefers a well-behaved matching  y  to  x,  

then there is some other player who prefers the opposite. The existence of such a 

matching  x  is guaranteed by the fact that the set of well-behaved matchings is non-empty 

and finite and the preferences are transitive.  

Clearly, if  x  is PO  then  x  cannot be extended by any well-behaved matching. 

Then, if every unstable and well-behaved matching has an extension, x  must be stable. 

This is the main argument for the proof of Theorem 4.2 below. 

  

Theorem 4.2. The set of stable matchings is non-empty if and only if every  xU  has an 

extension. 
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Proof. If the set of stable matchings is non-empty, the result follows immediately from 

Theorem 4.1. In the other direction, let  x  be a PO. We are going to show that  x  is 

stable. In fact, if  x  is unstable then, by hypothesis,  x  has an extension, which is absurd. 

 Hence  x  is stable and the proof is complete.  

 

 Corollary 4.1 follows immediately.  

 

Corollary 4.1. If the set of stable matchings is non-empty then a well-behaved Pareto 

efficient matching is stable. 

Proof. Let  x  be a PO matching. If  x  is unstable then, by Theorem 4.1,  x  has an 

extension, which is absurd.  

 

 For Theorem 4.3 we need the following definition. 

 

Definition 4.2. An  S-cycle of even order is a sequence  c=(j1, …,j2s), where  s  is some 

positive enteger such that  jt=Cht-1(S)  for all  t=2,…,2s  and  j1=Ch2s(S).   Furthermore,          

j2t-1=Ch2t(S-{j2t+1}) for all  t=1,…,s-1    and  j2s-1= Ch2s(S-{j1}). The cycle  c  is called an 

S-cycle of order 2s.     

 

That is, Cht(S)  is the most preferred agent for  jt  among the players in  S  and, if   

Cht(S)=k  then  Cht(S-{k}) is the second most preferred agent for  jt  among the players in  

S.  Thus, if say  c={j1, j2, j3, j4}  is an S-cycle of order  4  then  P(j1)=j2,…, P(j2)=j3, j1,…, 

P(j3)=j4, …, P(j4)=j1, j3,… 

 

Notation: Let  xU. Denote  S(x)  the set of agents who are part of some blocking pair at  

x. 

 

Theorem 4.3. Let  xU. Suppose   S(x)  has an S(x)-cycle of even order. Then  x  has an 

extension.  
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Prof. Suppose  x  has an S(x)-cycle of even order.  Set  c= (j1,…,j2s)  such cycle. 

Construct  y  as follows: y(j)=x(j)  for all  jN-S(x)  and  all  jS(x)-c; y(j1)=j2,  y(j3)=j4, 

…, y(j2s-1)=j2s.  We claim that  y  is an extension of  x.  In fact, by construction of  y  we 

have that  y  is an extension of  x, so we only need to show that  y  is well-behaved.  

Then, suppose by way of contradiction that  y  is not well-behaved. The definition of an 

S(x)-cycle and the fact that  x  is well-behaved imply that  y  is individually rational. Then  

y  has some  blocking pair  (p,q),  and one of the members, say  p,  is matched at  y.  

Given that  y  and  x  agree on  N-S(x) and  x  is well-behaved, we have that  { p,q}S(x).  

Then  pc  and  y(p)c.  We have two cases. 

1st case: p=j2t-1,  for  t{1,…,s}. Then,  y(p)=Chp(S(x)),  so  y(p) >p q.  Hence  (p,q)  does 

not block  y,  contradiction. 

2nd case: p=j2t,  for some  t{1,…,s}.  Then,  y(p)=Chp(S(x)-{j2t+1})  if  ts  and  

y(p)=Chp(S(x)-{j1})  otherwise. In any case,  if   p >q y(p)  then  q{jk; k=2r-1 for some  

r{1,…,s} }.  In particular  qj2t-1  and  qj2t+1,  so  y(p) >p Chp(S(x)-{j2t-1, j2t+1}) p q.  

Hence  y(p) >p q,  contradiction. 

 Hence  y  is an extension of  x  and the proof is complete.  

 

Corollary 4.2. Let  xU. Suppose that for every  xU,  S(x)  has an S(x)-cycle of even 

order. Then the set of stable matchings is non-empty. 

Proof. Theorem 4.3 implies that every  xU  has an extension. The result then follows 

from Theorem 4.2. .       

 

5. CONCLUDING REMARKS AND RELATED WORKS. 

A version of the concept of well-behaved matching for the Marriage model, as an 

individually rational matching where the woman (or the man) involved in a blocking pair 

is always single, was introduced in Sotomayor (1996) and called simple maching. In that 

paper, a non-constructive proof of the non-emptiness of the set of stable matchings is 

presented. The proof consists in demonstrating that the Pareto optimal and simple 

matching for the men must be stable. The same result is obtained by replacing women for 

men. 



 13 

 Similar concepts were introduced in Sotomayor (1999) for the discrete many-to-

many matching market with substitutable and non-strict preferences and in Sotomayor 

(2000), for the continuous Assignment game of Shapley and Shubik and for the unified 

two-sided matching model of Eriksson and Karlander (2000). For all these two-sided 

matching models, a non-constructive and simple proof of the non-emptiness of the set of 

pairwise-stable outcomes has been obtained. The main argument of these proofs is that 

the Pareto optimal simple outcome for one of the sides is pairwise-stable. 

Recently, Sotomayor (2005) has introduced the concept of simple allocation for 

the one-sided market (not matching market) of Shapley and Scarf (1974). There, a non-

constructive proof of the non-emptiness of the core has been obtained by proving that 

every Pareto optimal simple allocation is in the core. That paper remarks that such 

assertion does not apply to the counter example of Gale and Shapley for the roommate 

problem. This observation has then raised the question if such condition would be 

necessary for the existence of stable matchings for the roommate problem. The answer to 

this question is given in the present work: If the set of stable matchings is non-empty then 

every unstable simple matching has a simple extension. Given that a Pareto optimal 

simple matching canot be extended to a simple matching then it must be stable.  

In developing the theory to deal with simple matchings we obtained a sort of 

decomposition lemma that enabled us to derive other important results.  

Since Gale and Shapley (1962) the problem of existence of stable matchings for 

the roommate problem has been the subject of several research articles.  In Irvin (1985) 

an algorithm is presented to find a stable matching when the set of stable matchings is 

non-empty. Tan (1991) has identified a necessary and sufficient condition, stated in terms 

of preference restriction, for the existence of stable matchings for the roommate problem. 

Chung (2000) has identified a condition called  no odd rings that is sufficient, but not 

necessary, for the existence of stable matchings for this market. According to this author, 

this condition is quite abstract and may not have an economic interpretation.  

Differently, the condition presented here gives an economic intuition about how 

blockings can be done by non-trading agents, so that the transactions need not be undone 

when agents reach the core. At each stage, new interactions are done and none of them is 
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undone, so the core is reached after a finite number of interactions. The core is empty if 

there is a stage in which any new interaction requires that some of the agents involved do 

not behave optimally. 

While the results proved in this paper are not technically difficult, very intuitive, 

and very much in line with common well known findings in general matching literature, 

they can be proved from this new setting, not studied before, but potentially very 

important. These results are also interesting perse, and could be connected with work on 

network formation, and with some staff on general cooperative games. This paper 

provides for more understanding of the under-investigated one-sided matching model. 

 The approach developed here suggests that the concept of simple matching and 

the theory built here open a new way to study more general games.  
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