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1 Introduction

Heterogenous search cost is one of the classic factors that can be used to rationalize price dispersion

of homogenous products. See the seminal work of Stigler (1964). Various empirical models of search

have been proposed and applied to numerous problems in economics depending on data availability.

Hong and Shum (2006, hereafter HS) show that search cost distributions can be identified from the

price data alone. The innovation of HS is very useful since price data are often readily available, for

instance in contrast to quantities of products supplied or demanded.

We consider an empirical search model with non-sequential search strategies. HS show the quan-

tiles of the search cost in such model can be estimated without specifying any parametric structure.

Although there has been more recent empirical works that extend the original idea of HS to estimate

more complicated models of search1, there are still interests in the identification and estimation of the

simpler search model nonparametrically. For examples, Moraga-González, Sándor and Wildenbeest

(2013) show how data from different markets can be used to identify the search cost distribution over

a larger support and Blevins and Senney (2014) consider a dynamic version of the search model we

consider here.

The main insight from HS is that the equilibrium condition can be summarized by an implicit

equation relating the price and its distribution, parameterized by the proportions of consumers

searching different number of sellers. The latter can be used to recover various quantiles of the

search cost distribution. Two main features of the equilibrium condition that lead to an interesting

econometric problem are: (i) it imposes a continuum of restrictions since the mixed strategy concept

leads to a continuous distribution of price in equilibrium; and, (ii) the observed price distribution is

only defined implicitly and cannot be solved out in terms of terms of price and the parameters of

interest.

In this paper we make two main methodological contributions that complement existing estima-

tion procedures and make the empirical search model more accessible to empirical researchers.

First, when there are data from a single market, we provide an estimator for the quantiles on

the cumulative distribution (cdf) of the search cost that is simple to construct and easy to perform

inference on. Our estimator uses all information imposed by the equilibrium condition. We show

under very weak conditions that our estimator is consistent and asymptotically normal at a para-

metric rate. We also show the distribution of our estimator can be approximated consistently by

a standard nonparametric bootstrap. The ease of practical use is the distinguishing feature of our

estimator compared to the existing ones in nontrivial ways. Its simplest version can be obtained by

1E.g. see Hortaçsu and Syverson (2004), De los Santos, Hortaçsu and Wildenbeest (2012), and Moraga-González,

Sándor and Wildenbeest (2012)).
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defining the distance function using the empirical measure that leads to a nonlinear least squares

problem that can be implemented on STATA.

Second, when there is access to data from multiple markets, we propose a two-step sieve estimator

that pools data across markets and estimate the cdf of the search cost as a function over a larger

support. Single market data can only be used to identify a limited number of quantiles. Our

sieve estimator provides a systematic way to combine quantiles from different individual markets.

Any estimator in the literature can be used in the first stage, not necessarily the one we propose.

The second stage estimation resembles a nonparametric series estimation problem with generated

regressor and regressand. We provide the uniform rate of convergence for the sieve estimator. Since

we know the rate of convergence of quantiles from each individual market, the uniform rate using

pooled data can be used to quantify the cost of interpolation across markets.

For estimation HS takes a finite number of quantiles, each one to form a moment condition

using the equilibrium restriction written in terms of quantiles, and develop an empirical likelihood

estimator that has desirable theoretical properties such as effi ciency and small finite sample bias (e.g.

see Owens (2001) and Newey and Smith (2004)). However, a finite selection from infinitely many

moment conditions may have implications in terms of consistent estimation and not just effi ciency

(Dominguez and Lobato (2004)). Some preliminary algebra suggests such issue may be relevant in the

model of search under consideration. But at the same time, with finite data, it is also not advisable

to use arbitrary many moment conditions for empirical likelihood estimation or any other optimal

GMM methods due to the numerical ill-posedness associated with effi cient moment estimation; see

the discussion in Carrasco and Florens (2002). Particularly, a well-known problem with the empirical

likelihood objective functions is they typically have many local minima, and the method is generally

challenging to program and implement; see Section 8 in Kitamura (2007). Indeed HS also report some

numerical diffi culties in their numerical work; in their illustration they choose the largest number of

quantiles that allow their optimization routine to converge.2

Partly motivated by the numerical issues associated with HS’s approach, Moraga-González and

Wildenbeest (2007, hereafter MGW) propose an inventive way to construct the maximum likelihood

estimator by manipulating the equilibrium restriction. They suggest the likelihood procedure is easier

to compute and, importantly, is also effi cient. However, the numerical aspect in terms of the imple-

mentation of their estimator remains non trivial. The diffi culty is due to the fact that the probability

density function (pdf) of the price is defined implicitly in terms of its cdf, the latter in turns is only

known as a solution of a nonlinear equation imposed by the equilibrium. This leads to a constrained

likelihood estimation problem with many nonlinear constraints. A naïve programming approach to

2Hong and Shum (2006) illustrate their procedure using online price data of some well-known economics and

statistics textbooks.
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this optimization problem is to directly specify a nested procedure requiring an optimization routine

on both the inner and outer loop, where the inner step searches over the parameter space and the

outer step solves the nonlinear constraints. A more numerically effi cient alternative may be possible

by using constrained optimization solvers with algorithms that deal with the nonlinear constraints

endogenously. See Su and Judd (2012) for a related discussion and further references.3

We take a different approach that is closely related to the asymptotic least squares estimation

described in Gourieroux and Monfort (1995).4 Asymptotic least squares method, which can be

viewed as an alternative representation to the familiar method of moment estimator, is particularly

suited to estimate structural models as the objective functions can often be written to represent

the equilibrium condition directly. For examples see the least squares estimators of Pesendorfer and

Schmidt-Dengler (2008) and Sanches, Silva and Srisuma (2014) in the context of dynamic discrete

games.5 However, the statistical theory required to derive the asymptotic properties of our estimator

in this paper is more complicated than those used in the dynamic discrete games cited above since

here we have to deal with a continuum of restrictions instead of a finite number of restrictions. We

derive our large sample results using a similar strategy employed in Brown and Wegkamp (2002), who

utilize tools from empirical process theory to derive analogous large sample results for a minimum

distance estimator defined from a criterion based on a conditional independence condition due to

Manski (1983).

The estimator we propose focuses on the ease of practical use but not effi ciency. However, there

are at least two obvious ways to improve on the asymptotic variance of our estimator. As alluded

above, the equilibrium restriction can also be stated as a continuum of moment conditions. Therefore

an effi cient estimation in the GMM sense can be pursued by solving an ill-posed inverse problem

along the line of Carrasco and Florens (2000).6 It is arguably even simpler to aim for the fully

effi cient estimator. For instance we can perform a Newton Raphson iteration once, starting from our

easy compute estimate, using the Hessian from the likelihood based objective function proposed by

MGW. Then such estimator will have the same first order asymptotic distribution as the maximum

likelihood estimator (see Robinson (1988)). But there is no guarantee the more effi cient estimator

will perform better than the less effi cient one in finite sample.

3An important feature for the search model under consideration is that the number of constraints is large and

grows with sample size while many familiar structural models, such as those associated with dynamic discrete decision

problems and games, have fixed and relatively small number of constraints.
4For a general description of asymptotic least squares estimation see chapter 9 in Gourieroux and Monfort (1995).
5Pesendorfer and Schmidt-Dengler (2008) also illustrate how a moment estimator can be cast as an asymptotic

least squares estimator.
6Also see a recent working paper of Chaussé (2011), who is extending the estimator of Carrasco and Florens (2000)

to a generalized empirical likelihood setting.
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When the data come from a single market, an inevitable limitation of the identifying strategy in

HS is that only countable points of the distribution of the search cost can be identified. Particularly

there is only one accumulation point at the lower support of the cost distribution. In order to identify

higher quantiles of the cost distribution, and possibly its full support, Moraga-González, Sándor and

Wildenbeest (2013) suggest combining data from different markets where consumers have the same

underlying search distribution. They provide conditions under which pooling data sets can be used

for identification. They suggest that interpolating data between markets can be diffi cult. Instead

propose a semi-nonparametric maximum likelihood estimator for the pdf of the search cost. Its cdf,

which is often a more useful object for stochastic comparison, can then be obtained by integration.

However, their semi-nonparametric maximum likelihood procedure is complicated as it solves a highly

nonlinear optimization problem with many parameters. They show their estimator can consistently

estimate the distribution of the search cost where the support is identified but do not provide the

convergence rate.7

Building on the semi-nonparametric idea, we propose a two-step sieve least squares estimator for

the cdf of the search cost. The estimation problem involved can also be seen as an asymptotic least

squares problem where the parameter of interest is an infinite dimensional object instead of a finite

dimensional one. We show that sieve estimation is a convenient way to systematically combine data

from different markets. It can be used in conjunction with any aforementioned estimation method,

not necessarily with the minimum distance estimator we propose in this paper. In the first stage

an estimation procedure is performed for each individual market. In the second stage we use the

first-step estimators as generated variables and perform sieve least squares estimation. Our sieve

estimator is easy to compute as it only involves ordinary least squares estimation. We provide the

uniform rate of convergence for our estimator. The ability to derive uniform rate of convergence is

important as it gives us a guidance on the cost of estimation the entire function compared to at just

some finite points, which we know to converge at a parametric rate within each market.

The large sample property of our sieve estimator is not immediately trivial to verify. In practice

our second stage least squares procedure resembles that of a nonparametric regression problem with

generated regressors and generated regressands. There has been much recent interest in the econo-

metrics and statistics literature on the general theory of estimation problems involving generated

regressors in the nonparametric regression context (e.g., see Escanciano, Jacho-Chávez and Lewbel

(2012, 2014) and Mammen, Rothe and Schienle (2012, 2014)). Problems with generated variables on

both sides of the equation seem less common. Furthermore, the asymptotic least squares framework

generally differs from a regression model. We are not aware of any general results for an asymptotic

7Details can be found in the supplementary materials to Moraga-González, Sándor and Wildenbeest (2013), avail-

able at, http://qed.econ.queensu.ca/jae/2013-v28.7/moraga-gonzalez-sander-wildenbeest/.
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least squares estimation of an infinite dimensional object. However, our problem is somewhat simpler

to handle relative to the cited works above since our generated variables converge at the parametric

rate rather than nonparametric. We obtain the asymptotic result for our sieve estimator under the

framework that the data have a pooled cross section structure. Our approach to derive the uniform

rate of convergence is general and can be used in other asymptotic least squares problems.

We conduct a small scale Monte Carlo experiment to compare our minimum distance estimator

with other estimators in the literature. Then we illustrate our procedures using real world data. We

estimate the search costs using online odds, to construct prices, for English football leagues matches

in the 2006/7 and 2007/8 seasons. There is an interesting distinction between the two seasons that

follows from the United Kingdom (UK) passing of a well-known legistration that allows bookmakers

to advertise more freely after the 2006/7 season has ended. We consider the top two English football

leagues: the Premier League (top division) and the League Championship (2nd division). We treat

the odds for matches from each league as coming from different markets. We find that the search

costs generally have fallen following the change in the law as expected.

We present the model in Section 2, and then we define our estimator and briefly discuss its relation

to existing estimators in the literature. Section 3 gives the large sample theorems for our estimator

that uses data from a single market. Section 4 assumes we have data from different markets; we

define our sieve estimator for the cdf of the search cost and give its uniform rate of convergence.

Section 5 is the numerical section containing a simulation study and empirical illustrations. Section

6 concludes. All proofs can be found in the Appendix.

2 Model, Equilibrium Restrictions and Estimation

The empirical model in HS relies on theoretical result of Burdett and Judd (1983). The model

assumes there are continuums of consumers and sellers. Consumers are heterogenous, differing by

search costs drawn from some continuous distribution with a cdf, G. Sellers have identical marginal

cost, r, and sell the same product; they only differ by the price they set. Each consumer has an

inelastic demand for one unit of the product with the value v and, since search is costly, her optimal

strategy is to visit the smallest number of sellers given her beliefs on the price distribution sellers use.

In a symmetric mixed strategy equilibrium each seller sets a price that maximizes its expected profit

given the consumers’search strategies, and the distribution of prices set by the sellers is consistent

with the consumers’ beliefs. Since the number of sellers observed in the data is often small we

assume there are K < ∞ sellers. An equilibrium continuous price distribution, as the symmetric

equilibrium strategy employed by all firms, is known to exist for a given set of primitives (G, v, r,K);

see Moraga-González, Sándor and Wildenbeest (2010). We denote the cdf of the equilibrium price
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distribution by F . The constancy of the seller’s equilibrium profit is our starting point:

Π (p, r) = (p− r)
K∑
k=1

kqk (1− F (p))k−1 s.t. Π (p, r) = Π (p′, r) for all p, p′ ∈ SP , (1)

where SP =
[
p, p
]
is the support of Pi for some 0 < p < p <∞, and qk is the equilibrium proportion

of consumer searching k times for 1 ≤ k ≤ K. Once {qk}Kk=1 are known, they can be used to recover

the quantiles of the search cost distribution from the identity:

qk =


1−G (∆1) ,

G (∆k−1)−G (∆k) ,

G (∆K−1) ,

for k = 1

for k = 2, . . . , K − 1

for k = K

, (2)

where∆k = E [P1:k]−E [P1:k+1] and E [P1:k] denotes the expected minimum price from drawing prices

from k− i.i.d. sellers, which is identified from the data. For further details and discussions regarding
the model we refer the reader to HS, MGW and also Moraga-González, Sándor and Wildenbeest

(2010).

The econometric problem of interest in this and the next sections is to first estimate {qk}Kk=1 from

observing a random sample of equilibrium prices {Pi}Ni=1, and then use them to recover identified

points of the search cost distribution: {(∆k, G (∆k))}K−1
k=1 . First note that we can concentrate out

the marginal cost by equating Π (p, r) and Π
(
p, r
)
,

r (q) =
pq1 − p

∑K
k=1 kqk

q1 −
∑K

k=1 kqk
. (3)

Following HS, the equilibrium condition for the purpose of estimation can be obtained from equating

from Π (p, r) = Π (p, r) for all p. In particular, this relation can be written as

p = r (q) +
(p− r (q)) q1∑K

k=1 kqk (1− F (p))k−1
for all p ∈ SP . (4)

Before we introduce our estimator we now briefly explain how the equations above have been used

for estimation in the literature.

Empirical Likelihood (Hong and Shum (2006))

Since Pi has a continuous distribution the inverse of F , denoted by F−1, exists so that p =

F−1 (F (p)) for all p. Note that equation (4) is equivalent to

F (p) = F

(
r (q) +

(p− r (q)) q1∑K
k=1 kqk (1− F (p))k−1

)
.
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Then choose finite V quantile points, {sl}Vl=1, so that sl ∈ [0, 1] is the sl-th quantile. HS develop an

empirical likelihood estimator of q based on the following V moment conditions:

h (q; sl) = E

[
sl − I

[
Pi ≤ r (q) +

(p− r (q)) q1∑K
k=1 kqk (1− sl)k−1

]]
for l = 1, . . . , V ,

where I [·] denotes an indicator function. Clearly one needs to choose V ≥ K − 1, where the minus

one comes from the restriction
∑K

k=1 qk = 1.

In theory we would like to choose as many moment conditions as possible. However, there are

practical costs and implementation issues in finite sample as explained in the Introduction. At the

same time, in principle, choosing too few moment conditions can lead to an identification problem.

We illustrate the latter point in the spirit of the illustrating examples in Dominguez and Lobato

(2004).

Suppose K = 2, and we use q2 = 1 − q1, so r (q) =
pq1−p(q1+2(1−q1))

−2(1−q1)
. For any s0 ∈ [0, 1], the

moment condition becomes:

E

[
s0 − 1

[
Pi ≤

(p− r) q1

q1 + 2 (1− q1) (1− s0)
−
(
p− p

)
q1 − 2p (1− q1)

2 (1− q1)

]]
,

then for some p0 that satisfies s0 = F (p0), q1 must satisfy

p0 =

(
p+

pq1−p(q1+2(1−q1))

2(1−q1)

)
q1

q1 + 2 (1− q1) (1− F (p0))
−
(
p− p

)
q1 − 2p (1− q1)

2 (1− q1)
.

By multiplying the denominators across and re-arranging the equation above, by inspection, it is

easy to see we have an implicit function T (q1, p0, F (p0)) = 0 such that, for every pair (p0, F (p0)),

T (q1, p0, F (p0)) is a quadratic function of q1. However this suggests there are potentially two distinct

values for q1 that satisfy the same moment condition for a given s0, in which case it may not be

possible give have a consistent estimator for q1 based on one particular quantile.

More generally, when K > 2, each sl leads to an equation for a general ellipse in RK−1 whose level

set at zero can represent the values of proportions of consumers that satisfy the moment condition

associated with each quantile level sl.8 Therefore, with any estimator based on (4), one may be

inclined to incorporate all conditions for the purpose of consistent estimation.

Maximum Likelihood (Moraga-González and Wildenbeest (2007))

Let the derivative of F , i.e. the pdf, by f . By differentiating equation (4) and solve out for f ,

the implicit function theorem yields:

f (p) =

∑K
k=1 kqk (1− F (p))k−1

(p− r (q))
∑K

k=2 k (k − 1) qk (1− F (p))k−2
for all p ∈ SP . (5)

8A natural restriction for a proportion can be used to rule out any complex value as well as other reals outside

[0, 1].
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MGW suggest a maximum likelihood procedure based on maximizing, with respect to q, the following

likelihood function:

f̃ (q; p) =

∑K
k=1 kqk

(
1− F̃ (q; p)

)k−1

(p− r (q))
∑K

k=2 k (k − 1) qk

(
1− F̃ (q; p)

)k−2
for p ∈ SP , (6)

where F̃ (q; p) is restricted to satisfy equation (4). In practice supposed the observed prices are

{Pi}Ni=1. Then for each candidate q′, and each i, F̃ (q′;Pi) can be chosen to satisfy the equilibrium

restriction by imposing that it solves: 0 = Pi − r (q′) − (p−r(q′))q′1∑K
k=1 kq

′
k(1−F̃ (q′;Pi))

k−1 . However, it may not

be a trivial numerical task to fully respect equation (4). Particularly F̃ (q′;Pi) generally does not

have a closed-form expression and is only known to be a root of some (K − 1)−order polynomial.
Such polynomial always have multiple roots. The multiplicity issue can be migitated by imposing

constraints that F̃ (q0;Pi) must be real and take values between 0 and 1, and it must be non-

decreasing in Pi.

Minimum Distance

We propose to use the equilibrium condition directly to define objective functions, rather than

posing it as (a continuum of) moment conditions. In particular, in contrast to HS, we use equation (4)

without passing the equilibrium restriction through the function F . This approach can be seen as a

generalization of the asymptotic least squares estimator described in Gourieroux and Monfort (1995)

when there is a continuum of restrictions. It will be also convenient to eliminate the denominators

to rule out any possibilities of division near zero that may occur if q1 is close to 0 and p approaches

1. We first substituting in for r (q), from (3), then equation (4) can be simplified to:(
K∑
k=1

kqk (1− F (p))k−1

)(
(p− p) q1 −

(
p− p

) K∑
k=1

kqk

)
= q1

((
p− p

) K∑
k=1

kqk

)
.

Next we concentrate out qK in the above equation by replacing it with 1−
∑K−1

k=1 qk, which leads to

the following restriction:

0 = q1

((
p− p

)(
K −

K−1∑
k=1

(k −K) qk

))
(7)

−

 K
(

1−
∑K−1

k=1 qk

)
(1− F (p))K−1

+
∑K−1

k=1 kqk (1− F (p))k−1

×((p− p) q1 −
(
p− p

)(
K −

K−1∑
k=1

(k −K) qk

))
.

this must hold for all p ∈ SP .
Note that the equation above can be re-written as a polynomial in q−K ≡ (q1, . . . , qK−1), which

is always smooth independently of F . In contrast to the moment condition considered in HS has q
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inside the unknown function F ; using the empirical cdf to construct the objective function in the

latter case introduces non-smoothness in the estimation problem.

3 Estimation with Data from a Single Market

We use the equilibrium restiction (7) to define an econometric model {m (·, θ)}θ∈Θ so that m (·, θ) :

SP → R, where for all p ∈ SP :

m (p, θ) = θ1

((
p− p

)(
K −

K−1∑
k=1

(k −K) θk

))
(8)

−

 K
(

1−
∑K−1

k=1 θk

)
(1− F (p))K−1

+
∑K−1

k=1 θk (1− F (p))k−1

×((p− p) θ1 −
(
p− p

)(
K −

K−1∑
k=1

(k −K) θk

))
,

and θ = (θ1, . . . , θK−1) is an element in the parameter space Θ = [0, 1]K−1. We assume the model is

well-specified so that m (p, θ) = 0 for all p ∈ SP when θ equals q−K . Given a sample {Pi}Ni=1, we

define the empirical cdf as:

FN (p) =
1

N

N∑
i=1

1 [Pi ≤ p] for all p ∈ SP .

We then define mN (p, θ) as the sample counterpart of m (p, θ) where F is replaced by FN . And we

propose a minimum distance estimator based on

min
θ∈Θ

∫
(mN (p, θ))2 µN (dp) ,

where µN is a sequence of positive and finite, possibly random, measures. Note that the randomness

that drives our estimator comes only from the sample counterpart of F so that mN is always smooth

in θ.

We now define respectively the limiting and sample objective functions, and our estimator:

MN (θ) =

∫
(mN (p, θ))2 µN (dp) ,

M (θ) =

∫
(m (p, θ))2 µ (dp) ,

θ̂ = arg min
θ∈Θ

MN (θ) .

We shall denote the probability measure for the observed data by P, and the probability measure
for the bootstrap sample conditional on {Pi}Ni=1 by P∗. In what follows we use

a.s.→,
p→ and d→ to

denote convergence almost surely, in probability, and in distribution respectively, with respect to P
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as N → ∞. We let a.s.
∗
→ ,

p∗→ denote convergence almost surely and in probability respectively, with

respect to P∗.

We adopt the same data generating environment as in HS and MGW.

Assumption A1. {Pi}Ni=1 is an i.i.d. sequence of continuous random variables with bounded pdf

whose cdf satisfies the equilibrium condition in (4).

Let θ0 denote q−K . We now provide conditions for our estimator to be consistent and asymptot-

ically normal.

Assumption A2. (i) m (Pi, θ) = 0 almost surely if and only if θ = θ0; (ii) µN almost surely

converges weakly to a non-random finite measure µ that dominates the distribution of Pi;9 (iii)∫
∂
∂θ
m (p, θ0) ∂

∂θ>
m (p, θ0)µ (dp) is invertible.

A2(i) is the point-identification assumption on the equilibrium condition. It is generally diffi cult

to provide a more primitive condition for identification in a general nonlinear system of equations, e.g.

see the results in Komunjer (2012) for a parametric model with finite unconditional moments. Our

equilibrium condition presents a continuum of identifying restrictions. A2(ii) allows us to construct

objective functions using random measures or otherwise, the domination condition ensures identifi-

cation of θ0 is preserved. Examples for measures that satisfy A2(ii) include the uniform measure on

SP , and a natural candidate for a random measure is the empirical measure from the observed data.
For the latter it is suffi cient if the class of functions under consideration is µ−Glivenko-Cantelli,
which can be verified using the methods discussed in Andrews (1994) and Kosorok (2008). A2(iii)

assumes the usual local positive definiteness condition that follows from the Taylor expansion of the

derivative of M around θ0.

Theorem 1 (Consistency). Under Assumptions A1, A2(i) and A2(ii), θ̂ a.s.→ θ0.

Theorem 2 (Asymptotic Normality). Under Assumption A1 and A2,

√
N
(
θ̂ − θ0

)
d→ N

(
0, H−1ΣH−1

)
, such that

Σ = Var

(
2

∫
η (p)B (F (p))µ (dp)

)
, (9)

H = 2

∫
∂

∂θ
m (p, θ0)

∂

∂θ>
m (p, θ0)µ (dp) , (10)

9Let D be a space of bounded functions defined on SP . We say µN almost surely converges weakly to a µ

if
∫
ϕ (p)µN (dp)−

∫
ϕ (p)µ (dp)

a.s.→ 0 for every ϕ ∈ D.
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where B (F (p)) and η (p) are defined in Appendix (see equations (16) and (19) respectively).

Given the regular nature of our criterion function, we obtain a root−N consistency result as

expected. The asymptotic variance of θ̂ is also tractable. Although both H and Σ can be consistently

estimated using their sample counterparts, it can be a cumbersome task (especially for Σ). We suggest

a more convenient method for inference based on resampling instead. Our next result shows the Efron

nonparametric bootstrap can be used to imitate the distribution of θ̂ stated in Theorem 2.

Let {P ∗i }
N
i=1 denote a random sample drawn from the empirical distribution from {Pi}Ni=1. For

some positive and finite measure µ∗N , let M
∗
N (θ) =

∫
(m∗N (p, θ))2 µ∗N (dp), where m∗N (p, θ) is defined

in the same way as mN (p, θ) but based on the bootstrap sample instead of the original data set. We

can then construct a minimum distance estimator using the bootstrap sample:

θ̂
∗

= arg min
θ∈Θ

M∗
N (θ) . (11)

In addition we require is that µ∗N has to be chosen in a similar manner to µN . The following statements

are made conditioning on {Pi}Ni=1.

Assumption A3. µ∗N almost surely converges weakly to µN .

Theorem 3 (Bootstrap Consistency). Under Assumptions A1 to A3,
√
N
(
θ̂
∗
− θ̂
)
converges in

distribution to N (0, H−1ΣH−1) in probability.

Theorem 3 ensures that nonparametric bootstrap can be used to consistently estimate the distri-

bution of
√
N
(
θ̂ − θ0

)
. Subsequently we can perform inference on θ0 via bootstrapping.

By construction θ̂ is the estimator for q−K . Then a natural estimator for qK is θ̂K ≡ 1−
∑K−1

k=1 θ̂k.

The large sample properties of θ̂K and the ability to bootstrap its distribution follow immediately

from applications of various versions of the continuous mapping theorem.

Corollary 1 (Large Sample Properties of θ̂K). Under Assumptions A1 and A2: (i) θ̂K
a.s.→ qK;

(ii) for some real σK > 0:
√
N
(
θ̂K − qK

)
d→ N (0, σ2

K); and with the addition of Assumption A3,

let θ̂
∗
K = 1−

∑K−1
k=1 θ̂

∗
k where θ̂

∗
is defined as in (11), then

√
N
(
θ̂
∗
K − θ̂K

)
converges in distribution

to N (0, σ2
K) in probability.

We state our Corollary 1, and subsequent Corollaries, without proof. The consistency result

follows from Slutzky’s theorem. The distribution theory can be explicitly derived by the delta-

method. Finally, the consistency of the bootstrap follows from the continuous mapping theorem.

The validity of these smooth transformation results are standard, e.g. see Kosorok (2008). For
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the purpose of practical inference, in this paper we are less concerned with the precise form of the

asymptotic variance since all quantities of interest can be consistently bootstrapped.

We now turn to the distribution theory for the estimators of {∆k}K−1
k=1 and {G (∆k)}K−1

k=1 . Recall

that ∆k = E [P1:k]−E [P1:k+1], so one candidate for ∆̂k is simply its empirical counterpart. However,

in order to apply the same type of argument used for Corollary 1, it will be more convenient instead

to refer to an alternate identity that can be obtained from an integration by parts as shown in MGW

(see equations 7 and 8 in their paper):

∆k =

∫ 1

z=0

w (z; q) [(i+ 1) z − 1] (1− z)i−1 dz, for k = 1, . . . , K − 1 where (12)

w (z; q) =
q1 (p− r (q))∑K
k=1 kqk (1− z)k−1

+ r (q) , for z ∈ [0, 1] .

In what follows we define ∆̂k as the feasible version of ∆k in the above where w (·; q) is replaced by

w(·; θ̂) (and with θ̂K in place of qK). The main appeal of this estimator is that ∆̂k is necessarily a

smooth function of θ̂. For {G (∆k)}K−1
k=1 , simple manipulation of equation (2) leads to:

G(∆1) = 1− q1, (13)

G(∆2) = 1− q1 − q2,
... =

...

G(∆K−1) = 1− q1 − . . .− qK−1.

The above system of equations can also be found in HS (equation A6, pp. 273). We define Ĝ (∆k)

by replacing q by θ̂, which is also a smooth function of θ̂. Therefore the consistency and asymptotic

distribution, as well as validity of the bootstrap, for {∆̂k}K−1
k=1 and {Ĝ(∆k)}K−1

k=1 can be obtained

trivially.

Corollary 2 (Large Sample Properties of {∆̂k}K−1
k=1 ). Under Assumptions A1 and A2: (i)

∆̂k
a.s.→ ∆k for all k = 1, . . . , K − 1; (ii) for some positive definite matrix Ω∆:

√
N
(
∆̂−∆

)
≡
√
N


∆̂1 −∆1

...

∆̂K−1 −∆K−1

 d→ N (0,Ω∆) ;

and with the addition of Assumption A3, let {∆̂∗k}K−1
k=1 be defined using equation (12) where w (z; q)

is replaced by w(z; θ̂
∗
) and θ̂

∗
is defined in (11), then

√
N
(
∆̂∗ − ∆̂

)
converges in distribution to

N (0,Ω∆) in probability.
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Corollary 3 (Large Sample Properties of {Ĝ (∆k)}K−1
k=1 ). Under Assumptions A1 and A2: (i)

Ĝ (∆k)
a.s.→ G (∆k) for all k = 1, . . . , K − 1; (ii) for some positive definite matrix ΩG:

√
N
(
Ĝ−G

)
≡
√
N


Ĝ(∆1)−G (∆1)

...

Ĝ (∆K−1)−G (∆K−1)

 d→ N (0,ΩG) ;

and with the addition of Assumption A3, let {Ĝ∗ (∆k)}K−1
k=1 be defined using equation (13) where θ is

replaced by θ̂
∗
, which is defined in (11), then

√
N
(
Ĝ∗ − Ĝ

)
converges in distribution to N (0,ΩG)

in probability.

4 Pooling Data from Multiple Markets

In this section we show how data from different markets can be combined to estimate G. When

the data come from a single market, we can only identify and estimate the cost distribution at

finite cut-off points, {(∆k, G (∆k))}K−1
k=1 , since there is only a finite number of sellers that consumers

can search from (see Proposition 1 in Moraga-González, Sándor and Wildenbeest (2013, hereafter

MGSW)). Even if we allow the number of firms to be infinite, since ∆k is decreasing in k and

accumulates at zero, we would still not be able to identify any part of the cost distribution above

∆1 (see the discussion in HS). One solution is to look across heterogenous markets. Proposition 2 in

MGSW provides a suffi cient set of conditions for the identification of G over a larger part, or possibly

all, of its support based on using the data from different markets that are generated by consumers

who endow the same search cost distribution of consumers but may differ in their valuations of the

product, and the number of sellers and pricing strategy may also differ across markets.

MGSW suggest a semi-nonparametric method based on maximum likelihood estimation to esti-

mate G in one piece instead of combining different estimates of G across markets in some ad hoc

fashion.10 However, it is actually quite simple to use estimates from individual markets to estimate

G nonparametrically. Here we describe one method based on using a sieve in conjunction with a

simple least squares criterion.

Suppose there are T independent markets, where for each t we observe a random sample of

prices {P t
i }

Nt

i=1 with a common distribution described by a cdf F
t that is generated from the prim-

itive (G, pt, rt, Kt). For each market t we can first estimate {qtk}
Kt

k=1 and use equation (2) to es-

timate {G (∆t
k)}

Kt

k=1, where {qtk}
Kt

k=1 and {∆t
k}

Kt

k=1 are the equilibrium proportions of search and

the corresponding cut-off points in the cost distribution. Proposition 2 in MGSW provides con-

ditions where G can be identified on SC =
[
C,C

]
, where C = limT→∞ inf1≤t≤T ∆t

1 ≤ ∞ and

10They actually estimate the pdf of the search cost. It is then integrated to get the cdf.
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C = limT→∞ sup1≤t≤T ∆t
1 ≤ ∞. In particular the degree of heterogeneity across different markets

determines how close SC is to the full support of the cost distribution.
Recall from (13) that each G (∆t

k) is expressed only in terms of {qtk}
Kt

k=1, particularly for each t

we have:

G(∆t
1) = 1− qt1, (14)

G(∆t
2) = 1− qt1 − qt2,
... =

...

G(∆t
Kt−1) = 1− qt1 − . . .− qtKt−1.

We define the squared Euclidean norm of the discrepancies for this vector of equations when G is

replaced by any generic function g that belongs to some space of functions G by:

ψt
(
Wt, g

)
=

Kt−1∑
k=1

((
1−

k∑
k′=1

qtk′

)
− g(∆t

k)

)2

,

where Wt = (qt1, . . . , q
t
Kt−1,∆

t
1, . . . ,∆

t
Kt−1). By construction ψt (Wt, G) = 0. We can then combine

these functions across all markets and define:

ΨT (g) =
1

T

T∑
t=1

ψt
(
Wt, g

)
. (15)

The key restriction for us is that ΨT (G) = 0. There are other distances that one can choose to define

ψt, and also different ways to combine them across markets. We choose this particular functional

form of the loss function for its simplicity. Particularly ΨT is just a sum of squares criterion that is

similar to those studied in the series nonparametric regression literature (e.g. see Andrews (1991) and

Newey (1997)) when
{

1−
∑k

k′=1 q
t
k′

}Kt−1,T

k=1,t=1
and {∆t

k}
Kt−1,T
k=1,t=1 are treated as regressands and regressors

respectively. By using series approximation to estimate G our estimator is an example of a general

sieve least squares estimator. An extensive survey on sieve estimation can be found in Chen (2007).

Before proceeding further we introduce some additional notations. For any positive semi-definite

real matrix A we let λ (A) and λ (A) denote respectively the minimal and maximal eigenvalues of

A. For any matrix A, we denote the spectral norm by ‖A‖ = λ
(
A>A

)1/2
, and its Moore-Penrose

pseudo-inverse by A−. We let G to denote some space of real-valued function defined on SC . We
denote sieves by {GT}T≥1, where GT ⊆ GT+1 ⊆ G for any integer T . For any function g in GT ,
or in G, we let |g|∞ = supc∈SC |g (c)|. For random real matrices Vn and positive numbers bn, with

n ≥ 1, we define Vn = Op (bn) as limς→∞ lim supn→∞ Pr [‖Vn‖ > ςbn] = 0, and define Vn = op (bn) as

limn→∞ Pr [‖Vn‖ > ςbn] = 0 for any ς > 0. For any two sequences of positive numbers b1n and b2n,
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the notation b1n � b2n means that the ratio b1n/b2n is bounded below and above by positive constants

that are independent of n.

Sieve Least Squares Estimation

We start with the infeasible problem where we assume to know {Wt}Tt=1. We estimate G

on SC using a sequence of basis functions {glL}Ll=1 that span GT , where glL : SC → R for all

l = 1, . . . , L with L being an increasing integer in T , and L is short for L(T ). We use gL (c) to denote

(g1L (c) , . . . , gLL (c))> for any c ∈ SC , and g =
(
gL (∆1

1) , . . . , gL
(
∆1
K1−1

)
, . . . , gL

(
∆T

1

)
, . . . , gL

(
∆T
Kt−1

))>
.

Let ι denote a
∑T

t=1 (Kt − 1)−vector of ones, and y = ι−
(
q1

1, . . . ,
∑K1−1

k=1 q1
k, . . . , q

T
1 , . . . ,

∑KT−1
k=1 qTk

)>
.

Then the least squares coeffi cient from minimizing the sieve objective function is:

β̃ =
(
g>g

)−
g>y.

We denote our infeasible sieve estimator for G by G̃, where

G̃ (c) = gL (c)> β̃.

However, we do not observe {Wt}Tt=1. Our feasible sieve estimator can be constructed in two steps.

• First step: use the estimator proposed in the previous section we obtain Ŵt = (q̂t1, . . . , q̂
t
Kt−1, ∆̂

t
1,

. . . , ∆̂t
Kt−1) for every t.

• Second step: replace (g,y) by (ĝ, ŷ) where the latter quantities are constructed using {Ŵt}Tt=1

instead of {Wt}Tt=1. We define our sieve least squares estimator by:

Ĝ (c) = gL (c)> β̂, where

β̂ =
(
ĝ>ĝ

)−
ĝ>ŷ.

Numerically our feasible estimation problem is identical to the estimator from a nonparametric

series estimation of a regression function when the regressors and regressands used are based on

{Ŵt}Tt=1. Notice, however, our sieve estimator is fundamentally different to a series estimator of a

regression function since we have no regression error and the only source of sampling error (variance)

comes from the generated variables we obtain from individual market in the first step.

We now state some assumptions that are suffi cient for us to derive the uniform rate of convergence

of Ĝ.

Assumption B1. (i) For all t = 1, . . . , T , Pt = {P t
i }

Nt

i=1 is an i.i.d. sequence of N
t random

variables whose distribution satisfies the equilibrium condition in (4), where (F t, pt, rt, Kt) is market
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specific; (ii) Pt and Pt′ are independent for any t 6= t′; (iii) The analog of Assumption A2 holds for

all markets.

Assumptions B1(i) and B1(iii) ensure that
∥∥∥Ŵt −Wt

∥∥∥ = Op

(
1/
√
N t
)
for all t as N t →∞. We

impose independence in B1(ii) between markets for simplicity. In principles the recent conditions

employed in Lee and Robinson (2014) to derive the uniform rates of series estimator under a weak

form of cross sectional dependence can also be applied to our estimator.

Assumption B2. (i) {Kt}Tt=1 is an i.i.d. sequence with some discrete distribution with support

K =
{

2, . . . , K
}
for some K <∞; (ii) {∆t}Tt=1 is an independent sequence of random vectors such

that ∆t =
(
∆t

1, . . . ,∆
t
Kt−1

)
is a decreasing sequence of reals, where each variable has a continuous

marginal distribution defined on SC for all t. Furthermore, for any t 6= t′ such that Kt = Kt′, ∆t
k

and ∆t′
k have identical distribution.

Assumption B2 consists of conditions on the data generating process that ensure any open interval

in SC is visited infinitely often by {∆t}Tt=1 as T →∞. This allows the repeated observations of data
across markets to nonparametrically identify G on SC . Note that the size of ∆t is random since

Kt is a random variable, so that {∆t}Tt=1 (and thus {Wt}Tt=1) is an i.i.d. sequence. On the other

hand, conditional on {Kt}Tt=1, {∆t}Tt=1 is an independent sequence but it does not have an identical

distribution across t. In addition ∆t
k and ∆t

k′ are neither independent nor have identical distribution

for a given t. Therefore {∆t
k}

Kt−1,T
k=1,t=1 is a K−dependent process due to the independence across t.

Assumption B3. (i) For K = 2, . . . , K,

min
1≤k≤K

λ
(
E
[
gL
(
∆t
k

)
gL
(
∆t
k

)> |Kt = K
])

> 0, and

max
1≤k≤K

λ
(
E
[
gL
(
∆t
k

)
gL
(
∆t
k

)> |Kt = K
])

< ∞;

(ii) There exists a deterministic function ζ (L) satisfying supc∈SC
∥∥gL (c)

∥∥ ≤ ζ (L) for all L such that

ζ (L)4 L2/T → 0 as T → ∞; (iii) For all L there exists a sequence βL = (β1, . . . , βL) ∈ RL and
some α > 0 such that ∣∣G− gL>βL∣∣∞ = O

(
L−α

)
.

Assumption B3 consists of familiar conditions from the literature on nonparametric series estima-

tion of regression functions, e.g. see Andrews (1991) and Newey (1997). B3(i) implies that redundant

bases are ruled out, and that the second moment matrices are uniformly bounded away from zero

and infinity for any distribution of ∆t
k under consideration. The bounding of the moments from

above and below is also imposed in Andrews (1991), who consider independent but not identically
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distributed sequence of random variables. Assumption B3(ii) controls the magnitude of the series

terms. Since G is bounded, the bases can be chosen to be bounded and non-vanishing in which case

it is easy to see from the definition of the norm that ζ (L) = O(
√
L). Some examples for other rates

of ζ (L), such as those of orthogonal polynomials or B-splines can be found in Newey (1997, Sections

5 and 6 respectively). Assumption B3(iii) quantifies the uniform error bounds for the approximation

functions. For example if G is s−times continuously differentiable and the chosen sieves are splines
or polynomials, then it can be shown α = s.

Assumption B4. For the same ζ (L) as in B3(ii): (i) for all L and l = 1, . . . , L, glL ∈
GT is continuously differentiable and supc∈SC

∥∥∂gL (c)
∥∥ ≤ ζ (L) for all L, and ∂gL (c) denotes(

d
dc
g1L (c) , . . . , d

dc
gLL (c)

)>
; (ii) ζ (L) = o

(√
NT

)
as T →∞, where NT denotes min1≤t≤T N

t.

Assumption B4 imposes some smoothness conditions that allow us to quantify the effect of using

generated variables obtained from the first-step estimation. B4(i) assumes the bases of the sieves to

have at least one continuous derivative that are bounded above by ζ (L). This is a mild condition

since most sieves used in econometrics are smooth functions with at least one continuous derivative,

even for piece-wise smooth functions where differentiability can be imposed at the knots; see Section

2.3 in Chen (2007) for examples. B4(ii) ensures the upper bound of the basis functions and their

derivatives does not grow too quickly over any 1/
√
NT neighborhood on SC. Note that 1/

√
NT is the

rate that max1≤t≤T

∥∥∥Ŵt −Wt
∥∥∥ converges to zero.

Theorem 4 (Uniform rates of convergence of Ĝ). Under Assumptions B1 - B4, as NT and T

tend to infinity: ∣∣∣Ĝ−G∣∣∣
∞

= Op

(
ζ (L)

[
ζ (L)N

−1/2
T + L−α

])
,

The additive components of the convergence rate of
∣∣∣Ĝ−G∣∣∣

∞
come from two distinct sources.

The first is the variance that comes from the first stage estimation and the latter is the approximation

bias from using sieves. The order of the bias term is just the numerical approximation error and is

the same as that found in the nonparametric series regression literature. The convergence rate for

our variance term is inherited from the rates of the generated variables, which is parametric with

respect to NT . Our estimator has no other sampling error. This is due to the fact that, unlike in

a regression context, Wt is completely known when {qtk}
Kt−1
k=1 is known hence there is no variance

component associated with regression error. The intuition for the expression ζ (L)N
−1/2
T is simple.

This term effectively captures the rate of convergence of the difference between the feasible and

infeasible least squares coeffi cients of the sieve bases. In particular the difference can be linearized
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and well approximated by the product between derivatives of the basis functions and the sampling

errors of the generated variable, which are respectively bounded by ζ (L) and N−1/2
T .

The leading term for the uniform convergence rate of Ĝ depends on whether the sampling error

from generated variables across different markets is larger or smaller than the numerical approxima-

tion bias. If ζ (L)N
−1/2
T = o (L−α), then the effect from first stage estimation is negligible for the

rate of convergence of the sieve estimator. If, on the other hand the reciprocal relation holds, then

the dominant term on the rate of convergence comes from the generated variables.

The uniform rate of convergence in Theorem 4 quantifies the magnitude for the errors we incur

from fitting a curve since the sampling error from point estimation from each market is at most

N
−1/2
T . However, the asymptotic distribution theory for a sieve estimator of an unknown function

is often diffi cult to obtain and general results are only known to exist in some special cases. We

refer the reader to Section 3.4 of Chen (2007) for some details. The development of the distribution

theory for our estimator of G is beyond the scope of this paper.

5 Numerical Section

The first part of this section reports a small scale simulation study to compare our point estimator

with the other estimators in the literature in a controlled environment. The second part illustrates

our proposed estimator using online betting odds data.

5.1 Monte Carlo

Here we adopt an identical design to the one used in Section 4.3 of MGW, where they study the

small sample properties of their estimator and that of HS. In particular the consumers’search costs

are drawn independently from a log-normal distribution with location and scale parameters set at

0.5 and 5 respectively. The other primitives of the model are: (p, r,K) = (100, 50, 10). We solve for

a mixed strategy equilibrium and take 100 random draws from the corresponding price distribution,

which can be interpreted as observing a repeated game played by the 10 sellers 10 times. We refer the

reader to MGW for the details of the data generation procedure that is consistent with an equilibrium

outcome as well as other discussions on the Monte Carlo design.

We simulate the data according to the description above and estimate the model 1000 times.

We report the same statistics as those in MGW. We estimate the parameters using our minimum

distance estimator and are able to replicate the maximum likelihood results in MGW. We focus

our discussion on our estimator and MGW’s since the latter has been shown to generally perform

favorably relative to the empirical likelihood estimator. The comments provided by MGW in this
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regard are also applicable for our estimator and can be found in their paper. In particular our Tables

1 and 2 can be compared directly with their Tables 3(a) and 3(b) respectively. We also provide

analogous statistics associated with the estimator for the cdf of the search cost evaluated at the

cutoff points in Table 3.

Parameter MLE MDE

True Mean St Dev MSE Mean St Dev MSE

r (q) 50 48.384 4.276 20.896 49.535 3.112 9.900

q1 0.37 0.413 0.111 0.014 0.378 0.114 0.013

q2 0.04 0.043 0.019 0.000 0.039 0.014 0.000

q3 0.03 0.033 0.038 0.001 0.024 0.021 0.001

q4 0.03 0.025 0.046 0.002 0.021 0.028 0.001

q5 0.03 0.025 0.066 0.004 0.027 0.031 0.001

q6 0.02 0.038 0.096 0.009 0.031 0.031 0.001

q7 0.02 0.041 0.110 0.012 0.029 0.027 0.001

q8 0.02 0.050 0.131 0.018 0.025 0.024 0.001

q9 0.02 0.059 0.141 0.022 0.020 0.019 0.000

q10 0.42 0.274 0.239 0.079 0.404 0.158 0.025

Table 1: Properties of maximum likelihood (MLE) and minimum distance (MDE) estimators for

r (q) and q1, . . . , q10.

Parameter MLE MDE

True Mean St Dev MSE Mean St Dev MSE

∆1 8.640 8.481 0.472 0.248 8.539 0.539 0.300

∆2 5.264 5.139 0.204 0.057 5.215 0.221 0.051

∆3 3.484 3.394 0.155 0.032 3.455 0.183 0.034

∆4 2.428 2.365 0.151 0.027 2.408 0.184 0.034

∆5 1.756 1.714 0.145 0.023 1.742 0.177 0.031

∆6 1.309 1.281 0.134 0.019 1.299 0.163 0.027

∆7 0.999 0.982 0.122 0.015 0.992 0.148 0.022

∆8 0.779 0.770 0.110 0.012 0.775 0.132 0.018

∆9 0.619 0.614 0.098 0.010 0.616 0.118 0.014

Table 2: Properties of maximum likelihood (MLE) and minimum distance (MDE) estimators for

∆1, . . . ,∆9.

20



Parameter MLE MDE

True Mean St Dev MSE Mean St Dev MSE

G (∆1) 0.630 0.631 0.117 0.014 0.587 0.111 0.014

G (∆2) 0.592 0.589 0.125 0.016 0.544 0.120 0.017

G (∆3) 0.559 0.561 0.128 0.016 0.511 0.123 0.018

G (∆4) 0.531 0.544 0.138 0.019 0.486 0.131 0.019

G (∆5) 0.505 0.523 0.160 0.026 0.462 0.145 0.023

G (∆6) 0.482 0.493 0.195 0.038 0.423 0.175 0.034

G (∆7) 0.460 0.456 0.226 0.051 0.382 0.207 0.049

G (∆8) 0.440 0.413 0.252 0.064 0.332 0.226 0.063

G (∆9) 0.422 0.378 0.265 0.072 0.274 0.239 0.079

Table 3: Properties of maximum likelihood (MLE) and minimum distance (MDE) estimators for

G (∆1) , . . . , G (∆9).

Tables 1 and 2 contain the true mean and standard deviation of various parameters for each

estimator as reported in MGW,11 in addition we include the mean square errors for the ease of

comparison between our results and theirs (that include the empirical likelihood estimator). We

provide the same statistics for the estimator of the cdf evaluated at the cutoff points in Table

3. Our estimator performs comparably well with respect to the maximum likelihood estimator.

Particularly our estimator generally has smaller bias, but also higher variance. However, there is no

dominant estimator with respect to the mean square errors, at least for this design and sample size.

Our estimator appears to generally perform better for the parameters in Table 1. The maximum

likelihood estimation is better for those in Table 2. The results are more mixed for Table 3.

5.2 Empirical Illustration

Background and Data

Gambling in the UK is regulated by the Gambling Commission on behalf of the government’s

Department for Culture, Media and Sport under the Gambling Act 2005. Besides the moral duty

to prevent the participation of children and the general policing against criminal activities related

to gambling in the UK, another main goal of the Act is to ensure that gambling is conducted in a

fair and open way. One crucial component of the Act that has received much attention in the media

11The numerical results showing consistency of the bootstrap for our estimator is available upon request.
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takes place in September 2007, which permits gambling operators to advertise more widely.12 Its

intention is to raise the awareness for the general public about potential bookmakers in the market

in order to increase the competition between them.

In this section we illustrate the use of our estimators proposed in earlier parts of the paper. We

assume the search model described in Section 2 serves as a (very) crude approximation of the true

mechanism that generates the prices that we see in the data.13 We focus on the booking odds set

at different bookmakers for the top two professional football leagues in the UK, namely the Premier

League and the League Championship, for the 2006/7 and 2007/8 seasons. We consider the odds

for what is known as a “2x1 bet”, where there are three possible outcomes for a given match: home

(team) wins, away wins or they draw. We construct the price for each bookmaker from the odds we

observe. Since the odd for each event is the inverse of its perceived probability, we define our price

from each bookmaker as: 1/(home-win odd) + 1/(draw odd) + 1/(away-win odd). The sum of theses

probabilities always exceeds 1 since consumers never get to play a fair game. This excess probability

represents what is called the bookmaker’s overround. The higher the overround, the more unfair and

expensive is the bookmaker’s price.

We obtain the data from http://www.oddsportal.com/, which is an open website that collects

data from the main online bookmakers from a number of different events. In the tables and figures

below, we use PL and LC to respectively denote Premier League and League Championship, and

06/07 and 07/08 respectively for the 2006/7 and 2007/8 seasons. We begin with Table 4 that gives

some summary statistics on the data.

12Gambling operators have been able to advertise on TV and radio from 1st of September 2007. Previ-

ously the rules for advertising for all types of gambling companies, including casinos and betting shops have

been highly regulated. Traditional outlets for advertising are through magazines and newspapers, or other

means to get public attention such as sponsoring major sporting events. Further information on the back-

ground and impact of the Gambling Act 2005 can be found in the review produced by the Committees of Ad-

vertising Practice at the request by the Department for Culture, Media and Sport, http://www.cap.org.uk/News-

reports/~/media/Files/CAP/Reports%20and%20surveys/CAP%20and%20BCAP%20Gambling%20Review.ashx
13We highlight three underlying assumptions of the theoretical model. First, products are homogeneous. Second,

consumers perform a non-sequential search. Third, each consumer purchases only one unit of the product. In the

context of betting it is not unreasonable to assume products are homogeneous as consumers are only interested in

making monetary profit. Our prices are based on online odds therefore non-sequential search strategy may also provide

a reasonable approximation of consumers’behavior who conduct search online. However, assuming each consumer

only purchases one unit, in this case translating to everyone having the same wager, is not realistic; also experienced

and organized bettors often bet on multiple matches at the same time.
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Group Matches Bookmakers Overrounds

Mean Median St Dev Mean Median St Dev

PL 06/07 380 21.58 22 2.93 9.55 9.90 2.09

PL 07/08 380 35.24 36 2.25 8.45 8.48 2.36

LC 06/07 557 20.62 21 2.19 11.13 11.14 1.09

LC 07/08 557 28.10 29 3.59 10.36 10.71 2.02

Table 4: Summary statistics on the data from different leagues and seasons.

We partition the data into four product groups. One for each league and season. The numbers

of bookmakers we observe vary between matches as occasionally odds for some bookmakers have not

been collected. The average overrounds between the two seasons indicate that prices have fallen after

the change of law. Relatedly, we also see an increase in the average number of bookmakers as well.14

For each group we take the number of sellers to be the average number of bookmakers (rounded

to the nearest integer). We treat the observed price for every match as a random draw from an

equilibrium price distribution. We assume the distribution of the consumers’search cost to be the

same for both leagues within each season. Our main interest is to see if there is any evidence the

distribution of the search costs differ between the two seasons.

Single Market

We provide four sets of point estimates. One for each group using the estimator described in

Section 3. For the following tables, the bootstrap standard errors are reported in parentheses.

Group K q̂1 q̂2 q̂K r(q̂) p p

PL 06/07 23 0.77 0.21 0.01 80.36 100.09 118.99

(0.03) (0.02) (0.00) (2.20)

PL 07/08 36 0.40 0.55 0.05 96.40 100.04 125.62

(0.10) (0.08) (0.00) (1.13)

LC 06/07 22 0.67 0.30 0.03 97.51 105.03 118.04

(0.10) (0.08) (0.00) (4.78)

LC 07/08 29 0.20 0.73 0.07 97.87 101.23 159.30

(0.11) (0.10) (0.01) (0.98)

Table 5: Estimates of search proportions, selling costs and range of prices

14The total number of bookmakers for the 2006/7 season is 32, and for the 2007/8 season is 40.
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Over 90% of consumers search at most twice for every product group. Other proportions of con-

sumers’search that are not reported are very close to zero. It is very noticeable that the proportions

of consumers searching just once drop, following the law change, transferring mostly to searching

twice. We now relate these to the search cost distribution.

Group K ∆̂1 Ĝ(∆1) ∆̂2 Ĝ (∆2) ∆̂K−1 Ĝ(∆K−1)

PL 06/07 23 2.49 0.23 1.24 0.01 0.07 0.01

(0.05) (0.02) (0.02) (0.00) (0.00) (0.00)

PL 07/08 36 3.17 0.60 1.26 0.05 0.03 0.05

(0.40) (0.09) (0.10) (0.01) (0.00) (0.01)

LC 06/07 22 1.72 0.33 0.83 0.03 0.05 0.03

(0.08) (0.08) (0.08) (0.01) (0.01) (0.01)

LC 07/08 29 6.07 0.80 1.98 0.07 0.04 0.07

(1.18) (0.12) (0.24) (0.01) (0.00) (0.01)

Table 6: Estimates of search cost distribution

We do not report the estimated cdf values for other cut-off points since they are almost identical

to Ĝ (∆2) and Ĝ (∆K−1). Since the cut-off values for each group differ, it is more convenient to make

this comparison graphically. We next estimate the cdf as a function.

Pooling Data Across Markets

We combine the data between the two leagues for each time period using the sieve estimator

proposed in Section 4. We use Bernstein polynomials as the base functions for our sieve estimator.

Specifically, suppose SC = [0, 1]. The basis functions that defines Bernstein polynomials of order L

consists of the following L+ 1 functions:

glL (c) =
L!

l! (L− l)!c
l (1− c)L−l , l = 0, . . . , L.

We choose Bernstein polynomials due to its well-behaved uniform property as well as the simplicity

to impose shape restrictions one expects from a cdf. Particularly for any continuous function g:

lim
L→∞

L∑
l=0

g

(
l

L

)
L!

l! (L− l)!c
l (1− c)L−l = g (c) ,

holds uniformly on [0, 1]. Furthermore for GT =
{
g : g = gL>b for some b = (b0, . . . , bL)

}
, elements

in GT will be non-decreasing under the restrictions that bl ≤ bl+1 for l = 0, . . . , L, and the range
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of functions in GT can be set by choosing b0 and bL to be the minimum and the maximum values

respectively.15 For a generic support, SC =
[
C,C

]
, we can scale the support of functions in GT

accordingly. To construct our estimates for the cdfs we only impose monotonicity on the coeffi cients

to ensure the estimates are non-decreasing. We fit the data using L = 4.

Figures 1 and 2 illustrate how sieve estimation interpolates data across markets. They provide

scatter plots of the point estimates of quantiles for the two leagues and the corresponding sieve

estimates for the 2006/7 and 2007/8 seasons respectively. Figure 3 plots the two curves together. We

see that the estimate from the 2007/8 season takes higher value than the cdf from the 2006/7 season

almost uniformly where their supports overlap. This display of a first order stochastic dominance

behavior indicates the cost of search has fallen since the implementation of the new advertising law.

15Further details on Bernstein polynomials can be found in Lorentz (1986).
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6 Conclusion

We propose a minimum distance estimator to estimate quantiles of search cost distribution when only

the price distribution is available. We derive the distribution theory of our estimator and show it can

be consistently bootstrapped. It is easier to estimate and perform inference with our estimator. Our

point estimator can be readily used to estimate the cdf of the search cost as a function by the method

of sieve. We provide the uniform convergence rate for our sieve estimator. The rate can be used to

quantify the errors from interpolating quantiles across markets when such data are available. Our

point estimator performs reasonably well relatively to other existing estimators in a simulation study

with small sample. We also illustrate the ease of use for our estimators with real world data. We

use online odds to construct bookmakers’prices for online betting for professional football matches

in the UK for the two seasons either side of the change in the advertising law that allows gambling

operators to advertise more freely. This particular change in the law marks a well-known event

that has since been reported to increase competition amongst bookmakers by several measures; as

intended by the Gambling Act 2005. One aspect of this outcome is supported by our simple search

model that suggests that consumers search more often, which can be attributed at least partly to the

reduction of search cost. We expect the minimum distance approach in this paper can be adapted

to offer a computationally appealing way to estimate more complicated search models.
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Appendix

Preliminary Notations

The proofs of our Theorems make use of results from empirical processes theory. We do not define

basic terms and definitions from empirical processes theory here for brevity. We refer the reader to

the book by Kosorok (2008) for further details.

Firstly, with an abuse of notation, it will be convenient to introduce a functionm (·, θ, γ) : SP → R
that depends respectively on finite and infinite dimensional parameters θ ∈ Θ and γ ∈ Γ. Recall

that Θ = [0, 1]K−1. Here we use Γ to denote a set of all cdfs with bounded densities defined on SP .
So that for p ∈ SP , θ ∈ Θ and γ ∈ Γ, we define:

m (p, θ, γ) = θ1

((
p− p

)(
K −

K−1∑
k=1

(k −K) θk

))

−

 K
(

1−
∑K−1

k=1 θk

)
(1− γ (p))K−1

+
∑K−1

k=1 θk (1− γ (p))k−1

×((p− p) θ1 −
(
p− p

)(
K −

K−1∑
k=1

(k −K) θk

))
.

Comparing the above to the function m (·, θ) used in the main text (see (8)), we have that m (·, θ) is
precisely m (·, θ, F ).

We denote a space of bounded functions defined on SP equipped with the sup-norm by D. We
view m (·, θ, γ) as an element in D, which is parameterized by (θ, γ) ∈ Θ×Γ. Also since γ is defined

in m (p, θ, γ) pointwise for each p, it will be useful in the proofs below for us to occasionally write

m (p, θ, γ (p)) ≡ m (p, θ, γ) in defining some derivatives for clarity. In particular, pointwise for each

p, using an ordinary derivative, for any γ let: Dγm (p, θ, γ (p)) ≡ limt→0

∣∣∣m(p,θ,γ(p)+t)−m(p,θ,γ(p))
t

∣∣∣ and
Dγ

∂
∂θk
m (p, θ, γ (p)) ≡ limt→0

∣∣∣∣ ∂
∂θk

m(p,θ,γ(p)+t)− ∂
∂θk

m(p,θ,γ(p))

t

∣∣∣∣ for all k. It is easy to see that m (·, θ, γ),

∂
∂θk
m (·, θ, γ), Dγm (·, θ, γ) and Dγ

∂
∂θk
m (·, θ, γ) are elements in D for any (θ, γ) in Θ × Γ. In the

main text we have denoted the sup-norm for any real value function defined on SC by |·|∞. In
this Appendix we will also use |·|∞ to denote the sup-norm for any real value function defined on

SP as well. We do not index the norm further to avoid additional notation. There should be no

ambiguity whether the domain for the function under consideration is SP or SC . We define the
following constants that will be helpful in guiding the reader through our proofs:

κm = sup
(θ,γ)∈Θ×Γ

|m (·, θ, γ (·))|∞ , κ ∂
∂θ
m = max

1≤k≤K
sup

(θ,γ)∈Θ×Γ

∣∣∣∣ ∂∂θkm (·, θ, γ (·))
∣∣∣∣
∞
,

κDFm = sup
(θ,γ)∈Θ×Γ

|DFm (·, θ, γ (·))|∞ , κDF ∂
∂θ
m = max

1≤k≤K
sup

(θ,γ)∈Θ×Γ

∣∣∣∣DF
∂

∂θk
m (·, θ, γ (·))

∣∣∣∣
∞
.
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Other generic positive and finite constants that do not depend on the sample size are denoted by κ0,

which can take different values in different places.

Lemmas

Lemmas 1 - 8 are used to prove Theorems 1 - 3 from Section 3. Lemmas 9 - 17 are used to prove

Theorem 4 from Section 4.

Lemma 1. Under Assumptions A2(i) and A2(ii), M (θ) has a well-separated minimum at θ0.

Proof of Lemma 1. Under A2(i) and the domination condition in A2(ii), M has a unique

minimum at θ0. Since M is continuous on Θ, the minimum is well-separated.�

Lemma 2. Under Assumptions A2(i) and A2(ii), supθ∈Θ |MN (θ)−M (θ)| a.s.→ 0.

Proof of Lemma 2.

MN (θ)−M (θ)

=

∫
m (p, θ, FN)2 (µN (dp)− µ (dp)) +

∫
m (p, θ, FN)2 −m (p, θ, F )2 dµ

= I1 (θ) + I2 (θ) .

For I1 (θ), using the bound for m, |I1 (θ)| ≤ κ2
m

∫
(µN (dp)− µ (dp)). The convergence of measure

follows from A2(ii) so that supθ∈Θ |I1 (θ)| a.s.→ 0. For I2 (θ), we have

|I2 (θ)| ≤ 2κm

∫
|m (p, θ, FN)−m (p, θ, F )|µ (dp)

≤ 2κmκDFm

∫
µ (dp) |FN − F |∞ .

The second inequality follows from taking pointwise mean value expansion about F . Then supθ∈Θ |I2 (θ)| a.s.→
0 by Glivenko-Cantelli theorem. The proof then follows from the triangle inequality.�

Let

H (θ) =

∫
2
∂

∂θ
m (p, θ, F )

∂

∂θ
>m (p, θ, F )µ (dp) ,

HN (θ) =

∫
2
∂

∂θ
m (p, θ, FN)

∂

∂θ
>m (p, θ, FN)µN (dp) ,

H∗N (θ) =

∫
2
∂

∂θ
m (p, θ, F ∗N)

∂

∂θ
>m (p, θ, F ∗N)µ∗N (dp) ,

where F ∗N is the empirical cdf with respect to the bootstrap sample.

Lemma 3. Under Assumption A2(ii), for any θN such that ‖θN − θ0‖
a.s.→ 0 then ‖HN(θN)−H (θ0)‖ a.s.→

0.
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Proof of Lemma 3. First show supθ∈Θ ‖HN(θ)−H (θ)‖ a.s.→ 0. Using the same strategy in the

proof of Lemma 2, let h (p, θ, γ) = 2 ∂
∂θ
m (p, θ, γ) ∂

∂θ
>m (p, θ, γ), we have:

HN (θ)−H (θ)

=

∫
h (p, θ, FN)µN (dp)−

∫
h (p, θ, F )µ (dp)

=

∫
h (p, θ, FN) (µN (dp)− µ (dp)) +

∫
h (p, θ, FN)− h (p, θ, F )µ (dp)

= J1 (θ) + J2 (θ) .

Then supθ∈Θ ‖J1 (θ)‖ ≤ κ0κ
2
∂
∂θ
m

∫
(µN (dp)− µ (dp))

a.s.→ 0, and supθ∈Θ ‖J2 (θ)‖ ≤ κ0κ
2
DF

∂
∂θ
m

∫
µ (dp) |FN − F |∞

a.s.→
0. Uniform almost sure convergence then follows from the triangle inequality.

By the continuity of H (θ) and Slutzky’s theorem, |H(θN)−H (θ0)| a.s.→ 0.

The desired result holds by using the triangle inequality to bound HN(θ̂) − H (θ0) = HN(θ̂) −
H(θ̂) +H(θ̂)−H (θ).�

Lemma 4. Under Assumption A2(ii), ∂
∂θ
MN (θ0)

d→ N (0,Σ).

Proof of Lemma 4. From its definition, ∂
∂θ
MN (θ0) = 2

∫
∂
∂θ
m (p, θ0, FN)m (p, θ0, FN)µN (dp),

by adding nulls we have

√
N
∂

∂θ
MN (θ0)

= 2

∫
∂

∂θ
m (p, θ0, F )

√
Nm (p, θ0, FN)µ (dp)

+2

∫ (
∂

∂θ
m (p, θ0, FN)− ∂

∂θ
m (p, θ0, F )

)√
Nm (p, θ0, FN)µ (dp)

+2

∫
∂

∂θ
m (p, θ0, F )

√
Nm (p, θ0, FN) (µN (dp)− µ (dp))

+2

∫ (
∂

∂θ
m (p, θ0, FN)− ∂

∂θ
m (p, θ0, F )

)√
Nm (p, θ0, FN) (µN (dp)− µ (dp))

= J1 + J2 + J3 + J4.

We first show the desired distribution theory is delivered by J1.

By Donskers’theorem the empirical cdf converges weakly to a standard Brownian bridge of F ,

denoted by (B (F (p)))p∈SP . So that for p, p
′ ∈ SP ,

B (F (p)) ∼ N (0, F (p) (1− F (p))) , and (16)

Cov (B (F (p)) ,B (F (p′))) = F (min {p, p′})− F (p)F (p′) .

In this proof, it will be convenient to define m† (·, γ) = m (·, θ0, γ) as an element in D indexed by just
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γ. Next we calculate the directional derivative of m† at F in the direction ξ, which gives for all p:

lim
t→0

∣∣∣∣m† (p, F (p) + tξ (p))−m† (p, F (p))

t
− δ (p) ξ (p)

∣∣∣∣ = 0, where (17)

δ (p) =

(
(K − 1)K

(
1−

K−1∑
k=1

θk

)
(1− F (p))K−2 +

K−1∑
k=2

(k − 1) θk (1− F (p))k−2

)

×
(

(p− p) θ1 −
(
p− p

)(
K −

K−1∑
k=1

(k −K) θk

))
.

It is clear that δ is an element in D, andm† is Hadamard differentiable at F . Consequently the linear
functional γ 7→ 2

∫
∂
∂θ
m (p, θ0, F )m† (p, γ)µ (dp) is also Hadamard differentiable at F . In particular

its derivative is represented by a linear operator, which we denote by TF :

TF : D → R such that for any ξ, (18)

TF ξ = 2

∫
η (p) ξ (p)µ (dp) , where

η (p) =
∂

∂θ
m (p, θ0, F ) δ (p) for all p ∈ SP .

Hence we can apply the functional delta method and the continuous mapping theorem by letting

ξ =
√
N (FN − F ):

2

∫
∂

∂θ
m (p, θ0, F )

√
Nm† (p, FN)µ (dp) (19)

= 2

∫
η (p)

√
N (FN (p)− F (p))µ (dp) + op (1)

d→ 2

∫
η (p)B (F (p))µ (dp) .

It remains to show that ‖Jj‖
p→ 0 for j = 2, 3, 4. We will repeatedly use the fact that any linear

functional of
√
Nm† (·, FN) is asymptotically tight and it is therefore also bounded in probability.

Consider the k−th component of J2, (J2)k:

|(J2)k| ≤ 2

∫ (
∂

∂θk
m (p, θ0, FN)− ∂

∂θk
m (p, θ0, F )

)2

µ (dp)

∫ (√
Nm (p, θ0, FN)

)2

µ (dp)

≤ κ0κ
2
DF

∂
∂θ
m

∫
µ (dp) |FN − F |2∞

∫ (√
Nm† (p, FN)

)2

µ (dp) ,

where we first use Cauchy Schwarz inequality, then we take a pointwise mean value expansion at
∂
∂θk
m (p, θ0, F ). Then remaining integrals in the second inequality are bounded and |(J2)k|

p→ 0 since

|FN − F |2∞
p→ 0.

For J3, take out the upper bounds of the integrand:

|(J3)k| ≤ κ0κ ∂
∂θ
m sup
p∈SP

∣∣∣√Nm† (p, FN)
∣∣∣ ∫ (µN (dp)− µ (dp)) .
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Since the supremum is a linear functional, we have supp∈SP

∣∣∣√Nm† (p, FN)
∣∣∣ = Op (1). Then by A2(ii)∫

(µN (dp)− µ (dp))
p→ 0, and |(J3)k|

p→ 0.

For J4, applying similar arguments to J2 and J3, we have

|(J4)k| ≤ κ0κDF ∂
∂θ
m |FN − F |∞

∫ √
Nm† (p, FN)µ (dp)

∫
(µN (dp)− µ (dp)) .

So that |(J4)k|
p→ 0 since

∫ √
Nm† (p, FN)µ (dp) = Op (1) and |FN − F |∞

∫
(µN (dp)− µ (dp))

p→ 0.�

Lemma 5. Under Assumptions A2(i), A2(ii) and A3, supθ∈Θ |M∗
N (θ)−M (θ)| a.s.

∗
→ 0 for almost

all samples {Pi}Ni=1.

Proof of Lemma 5. Write

M∗
N (θ)−M (θ) = M∗

N (θ)−MN (θ) +MN (θ)−M (θ) .

From Lemma 2, supθ∈Θ |MN (θ)−M (θ)| a.s.→ 0. Next,

M∗
N (θ)−MN (θ) =

∫
m (p, θ, F ∗N)2 (µ∗N (dp)− µN (dp)) +

∫
m (p, θ, F ∗N)2 −m (p, θ, FN)2 dµN

= I∗1 (θ) + I∗2 (θ) .

We can use analogous arguments made in the proof of Lemma 2 to show supθ∈Θ |M∗
N (θ)−MN (θ)| a.s.

∗
→

0. The result then follows from an application of the triangle inequality.�

Lemma 6. Under Assumptions A2(i), A2(ii) and A3, θ̂
∗ a.s.∗→ θ0 for almost all samples {Pi}Ni=1.

Proof of Lemma 6. Follows immediately from Lemmas 1 and 5.�

Lemma 7. Under Assumptions A2(i), A2(ii) and A3, for any θN such that ‖θN − θ0‖
a.s.∗→ 0,

‖H∗N(θN)−H (θ0)‖ a.s.
∗
→ 0 for almost all samples {Pi}Ni=1.

Proof of Lemma 7. The same argument used in Lemma 3 can be applied to show that

supθ∈Θ ‖H∗N(θ)−HN (θ)‖ a.s.∗→ 0 by replacing the quantities defined using the original data by the

bootstrap sample, and the limiting (population) objects by the sample counterparts using the original

data. Then the triangle inequality we have:

‖H∗N(θN)−H (θ0)‖ ≤ sup
θ∈Θ
‖H∗N(θ)−HN (θ)‖+ ‖HN(θN)−H (θ0)‖ .

Then by Lemma 3 ‖H∗N(θN)−H (θ0)‖ a.s.
∗
→ 0.�

Lemma 8. Under Assumptions A2(i), A2(ii) and A3,
√
N
(
∂
∂θ
M∗

N (θ0)− ∂
∂θ
MN (θ0)

)
converges in

distribution to N (0,Σ) under P∗ conditionally given {Pi}Ni=1
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Proof of Lemma 8. For notational simplicity we set µ∗N and µN to be equal to µ for all N ,

otherwise the proof can be extended in the same manner as done in Lemma 4 with more algebra.

Then

√
N
∂

∂θ
M∗

N (θ0)−
√
N
∂

∂θ
MN (θ0)

= 2

∫
∂

∂θ
m (p, θ0, F )

√
N (m (p, θ0, F

∗
N)−m (p, θ0, FN))µ (dp)

+2

∫ (
∂

∂θ
m (p, θ0, FN)− ∂

∂θ
m (p, θ0, F )

)√
N (m (p, θ0, F

∗
N)−m (p, θ0, FN))µ (dp)

+2

∫ (
∂

∂θ
m (p, θ0, F

∗
N)− ∂

∂θ
m (p, θ0, FN)

)√
Nm (p, θ0, FN)µ (dp)

+2

∫ (
∂

∂θ
m (p, θ0, F

∗
N)− ∂

∂θ
m (p, θ0, FN)

)√
N (m (p, θ0, F

∗
N)−m (p, θ0, F

∗
N))µ (dp)

= J∗1 + J∗2 + J∗3 + J∗4 .

From Giné and Zinn (1990) we know the empirical distribution can be bootstrapped, so that
√
N (F ∗N − FN) has the same distribution as

√
N (FN − F ) asymptotically, and similarly their corre-

sponding linear functionals. Therefore K∗1 gives the desired distribution theory in the limit.

For the other terms, first consider J∗2 . Take the k−th component of J∗2 and apply Cauchy Schwarz
inequality:

|(J∗2 )k| ≤ 2

∫ (
∂

∂θk
m (p, θ0, FN)− ∂

∂θk
m (p, θ0, F )

)2

µ (dp)

∫ (√
N (m (p, θ0, F

∗
N)−m (p, θ0, FN))

)2

µ (dp)

≤ κ0κ
2
DF

∂
∂θ
m

∫
µ (dp) |FN − F |2∞

∫ (√
N (m (p, θ0, F

∗
N)−m (p, θ0, FN))

)2

µ (dp) .

So |(J∗2 )k|
p∗→ 0 since |FN − F |2∞

p→ 0 and
∫ (√

N (m (p, θ0, F
∗
N)−m (p, θ0, FN))

)2

µ (dp) is asymp-

totically tight under P∗.
By an analogous reasoning, it is straightforward to show that ‖J∗3‖

p∗→ 0 and ‖J∗4‖
p∗→ 0.

The proof then follows from the triangle inequality.�

We define the following objects for the remaining lemmas. Let: Q̂T = ĝ>ĝ/T , QT = g>g/T

and Q = E [QT ]; 1̂T = I[λ(Q̂T ) > 0] and 1T = I [λ (QT ) > 0]; ‖·‖F denote the Frobenius norm for

matrices, so that for any matrix A, ‖A‖F = tr
(
A>A

)1/2
where tr (·) is the trace operator. Note that

‖x‖ = ‖x‖F for any column vector x.

Lemma 9. Under Assumptions B1, max1≤t≤T

∥∥∥Ŵt −Wt
∥∥∥ = Op

(
1/
√
NT

)
.

Proof of Lemma 9. Under B1, the implications of Theorem 2 and Corollary 2 hold for all

markets. Therefore for all t,
∥∥∥Ŵt −Wt

∥∥∥ = Op

(
1/
√
N t
)
, and the proof follows since N t ≥ NT .�
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Lemma 10. Under Assumptions B1 - B3, ‖QT −Q‖2
F = op (1).

Proof of Lemma 10. For this it is suffi cient to show E
[
‖QT −Q‖2

F

]
= o (1). First we write:

QT =
1

T

T∑
t=1

gt>gt, where

gt =
(
gL
(
∆t

1

)
, . . . , gL

(
∆t
Kt−1

))>
.

Under B2
{
gt>gt

}T
t=1

is an i.i.d. sequence of squared matrices of size L. Therefore E [QT ] = Q does

not depend on T . Since ‖QT −Q‖2
F is the sum of the squared of every element in QT −Q, we have:

E
[
‖QT −Q‖2

F

]
=

L∑
l,l′=1

E [(QT −Q)ll′ ]
2

=

L∑
l,l′=1

Var

(
1

T

T∑
t=1

(
gt>gt

)
ll′

)

=
1

T

L∑
l,l′=1

Var

 K∑
K=2

K−1∑
k=1

glL
(
∆t
k

)
gl′L

(
∆t
k

)
I
[
Kt = K

] .

The variance term can be bounded by using the law of total variance and, since K < ∞, applying
Cauchy Schwarz inequality together with B3(ii) repeatedly, so that

Var

 K∑
K=2

K−1∑
k=1

glL
(
∆t
k

)
gl′L

(
∆t
k

)
I
[
Kt = K

]
≤ E

Var

 K∑
K=2

K−1∑
k=1

glL
(
∆t
k

)
gl′L

(
∆t
k

)∣∣∣∣∣∣Kt = K


≤ κ0ζ (L)4 .

Therefore E
[
‖QT −Q‖2

F

]
≤ κ0ζ (L)4 L2/T . By B3(ii) E

[
‖QT −Q‖2

F

]
= o (1), which implies

‖QT −Q‖2
F = op (1).�

Lemma 11. Under Assumptions B1 - B3, 1T = 1 + op (1).

Proof of Lemma 11. Since |λ (QT −Q)| ≤ ‖QT −Q‖F , as the latter is the square root of the
sum of all squared eigenvalues of QT − Q, we also have λ (QT −Q) = op (1) by Lemma 10. By the

implication of B3(i), λ (Q) > 0 therefore limT→∞ Pr [λ (QT ) > 0] = 1 which completes the proof.�

Lemma 12. Under Assumptions B1 - B3,
∥∥∥1T (β̃ − βL)

∥∥∥ = Op (L−α).

Proof of Lemma 12. First write 1T (β̃ − βL) = 1T
(
g>g

)−
g> (y − gβL). By Lemma 11, we

have with probability approaching one (w.p.a. 1), 1T
(
g>g

)−
= 1TQ

−1
T /T therefore,∥∥∥1T

(
g>g

)−
g> (y − gβL)

∥∥∥ ≤ ∥∥∥1TQ
−1
T g>/

√
T
∥∥∥∥∥∥(y − gβL) /

√
T
∥∥∥ .
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Next we show that
∥∥∥1TQ

−1
T g>/

√
T
∥∥∥ = Op (1). Since λ (1TQT ) is bounded away from zero w.p.a. 1,

as seen from the previous lemma, we have that λ
(
1TQ

−1
T

)
is bounded from above w.p.a. 1. Then we

have:
∥∥∥1TQ

−1
T g>/

√
T
∥∥∥2

= λ
(
1TQ

−1
T g>gQ−1

T /T
)

= λ
(
1TQ

−1
T

)
= Op (1), so that

∥∥∥1TQ
−1
T g>/

√
T
∥∥∥ =

Op (1). Note that y can be written as a vector of {G (∆t
k)}

Kt,T
k=1,t=1, see equation (14). Then using

B3(iii), we have

∥∥∥(y − gβL) /
√
T
∥∥∥2

=
1

T

T∑
t=1

Kt−1∑
k=1

(
G
(
∆t
k

)
− gL

(
∆t
k

)>
βL

)2

≤ L−2α
(
K − 1

)
K/2.

So that
∥∥∥(y − gβL) /

√
T
∥∥∥ = O (L−α), which completes the proof.�

Lemma 13. Under Assumptions B1 - B4,
∥∥∥(ŷ − y) /

√
T
∥∥∥ = Op

(
1/
√
NT

)
.

Proof of Lemma 13. Recall that ŷ is a vector of {q̂tk}
Kt,T
k=1,t=1, so that

∥∥∥(ŷ − y) /
√
T
∥∥∥2

=
1

T

T∑
t=1

Kt−1∑
k=1

(
k∑

k′=1

(
qtk′ − q̂tk′

))2

.

The proof is an immediate consequence of Lemma 9 since we have:
∑Kt−1

k=1

(∑k
k′=1 (qtk′ − q̂tk′)

)2

=

Op (1/NT ) for all t.�

Lemma 14. Under Assumptions B1 - B4,
∥∥∥(ĝ − g) /

√
T
∥∥∥ = Op

(
ζ (L) /

√
NT

)
.

Proof of Lemma 14. Recall that ĝ is a matrix of
{
giL(∆̂t

k)
}Kt,T

k=1,t=1
. From Assumption B4(i),

we can take a mean value expansion so that for any t, k
∣∣∣giL(∆̂t

k)− giL(∆t
k)
∣∣∣ ≤ ζ (L)

∣∣∣∆̂t
k −∆t

k

∣∣∣, which
is Op

(
ζ (L) /

√
NT

)
by Lemma 9. The proof then follows by the same argument as used in Lemma

13.�

Lemma 15. Under Assumptions B1 - B4,
∥∥∥Q̂T −QT

∥∥∥ = Op

(
ζ (L) /

√
NT

)
.

Proof of Lemma 15. Since ĝ>ĝ − g
>
g = 2 (ĝ − g) >g + (ĝ − g) > (ĝ − g), we have∥∥∥Q̂T −QT

∥∥∥ ≤ 2
∥∥(ĝ − g) >g/T

∥∥+
∥∥(ĝ − g) > (ĝ − g) /T

∥∥ .
We can bound

∥∥(ĝ − g) >g/T
∥∥ by:∥∥(ĝ − g) >g/T

∥∥ ≤ ∥∥∥(ĝ − g) /
√
T
∥∥∥∥∥∥g/√T∥∥∥

= Op

(
ζ (L) /

√
NT

)
,
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as we have shown
∥∥∥(ĝ − g) /

√
T
∥∥∥ = Op

(
ζ (L) /

√
NT

)
in Lemma 14 and using the fact that

∥∥∥g/√T∥∥∥2

=

λ (QT ) = Op (1). The latter follows from Lemma 10, which implies
∣∣λ (QT −Q)

∣∣ ≤ ‖QT −Q‖F =

op (1), together with B3(i) they ensure λ (QT ) is bounded w.p.a.1. Also, by Lemma 14
∥∥(ĝ − g) > (ĝ − g) /T

∥∥ =

op
(
ζ (L) /

√
NT

)
since

∥∥(ĝ − g) > (ĝ − g) /T
∥∥ =

∥∥∥(ĝ − g) /
√
T
∥∥∥2

= Op

(
ζ (L)2 /NT

)
which is op

(
ζ (L) /

√
NT

)
by B4(ii).�

Lemma 16. Under Assumptions B1 - B4, 1̂T = 1 + op (1).

Proof of Lemma 16. From Lemma 14, 1̂T = 1T + op (1). The proof then follows from Lemma

11.�

Lemma 17. Under Assumptions B1 - B4,
∥∥∥(ĝ>ŷ − g>y

)
/
√
T
∥∥∥ = Op

(
ζ (L) /

√
NT

)
.

Proof of Lemma 17. We begin by writing: ĝ>ŷ−g>y = (ĝ − g) >y+g> (ŷ − y)+(ĝ − g) > (ŷ − y).

We can bound (ĝ − g) >y/T by:∥∥(ĝ − g) >y/T
∥∥ ≤ ∥∥∥(ĝ − g) /

√
T
∥∥∥∥∥∥y/√T∥∥∥

= Op

(
ζ (L) /

√
NT

)
,

as we have
∥∥∥(ĝ − g) /

√
T
∥∥∥ = Op

(
ζ (L) /

√
NT

)
from Lemma 14 and

∥∥∥y/√T∥∥∥ = Op (1). The latter

holds since
∥∥∥y/√T∥∥∥2

= 1
T

∑T
t=1

∑Kt−1
k=1

(
1−

∑k
k′=1 q

t
k′

)2

≤ K
(
K − 1

)
/2 < ∞. The same line of

arguments can be used to show that g> (ŷ − y) /T = Op

(
ζ (L) /

√
NT

)
and (ĝ − g) > (ŷ − y) /T =

op
(
ζ (L) /

√
NT

)
.�

Proofs of Theorems

Our proofs of Theorems 1 and 2 follow standard steps for an M-estimator (e.g. see van der Vaart

(2000)). The proof of Theorem 3 follows the approach of Arcones and Giné (1992). Parts of the

proof of Theorem 4 take similar strategy used in Newey (1997).

Proof of Theorem 1. Immediately holds from Lemmas 1 and 2, following the standard

conditions for consistency of an M-estimator.�

Proof of Theorem 2. Our estimator satisfies the following first order condition, 0 = ∂
∂θ
MN

(
θ̂
)
.

Applying a mean value expansion,

0 =
∂

∂θ
MN (θ0) +HN

(
θ̃
)(

θ̂ − θ0

)
=

∂

∂θ
MN (θ0) +H (θ0)

(
θ̂ − θ0

)
+ op

(∥∥∥θ̂ − θ0

∥∥∥) ,
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where θ̃ denotes some intermediate value between θ̂ and θ0, and the second equality follows from

Lemma 3 and Theorem 1. Assumption A2(iii) ensures H ≡ H (θ0) is invertible, by re-arranging and

multiplying by
√
N , we have

√
N
(
θ̂ − θ0

)
= H−1

(√
N
∂

∂θ
MN (θ0)

)
+ op (1) .

The result then follows from applying Cramér theorem to Lemma 4.�

Proof of Theorem 3. Similar to the proof of Theorem 2, our bootstrap estimator satisfies

the following first order condition,

0 =
∂

∂θ
M∗

N (θ0) +H∗N

(
θ̃
∗)(

θ̂
∗
− θ0

)
=

∂

∂θ
M∗

N (θ0) +H
(
θ̂
∗
− θ0

)
+ op∗

(∥∥∥θ̂∗ − θ0

∥∥∥) .
where θ̃

∗
denotes some intermediate value between θ̂

∗
and θ0, and the second equality follows from

Lemmas 6 and Lemma 7. Using A2(iii), we have

√
N
(
θ̂
∗
− θ0

)
= H−1

(√
N
∂

∂θ
M∗

N (θ0)

)
+ op∗ (1) .

Take the difference between
√
N
(
θ̂
∗
− θ0

)
and
√
N
(
θ̂ − θ0

)
(from the last equation in the previous

proof), gives

√
N
(
θ̂
∗
− θ̂
)

= H−1

(√
N
∂

∂θ
M∗

N (θ0)−
√
N
∂

∂θ
MN (θ0)

)
+ op∗ (1) .

The proof is completed by applying Cramér theorem to Lemma 8.�

Proof of Theorem 4. We decompose:

Ĝ (c)−G (c) = Ĝ (c)− G̃ (c) + G̃ (c)−G (c) .

First consider G̃ (c)−G (c), which can be decomposed into gL (c)>
(
β̃ − βL

)
+
(
gL (c)> βL −G (c)

)
.

These terms are similar to the components of a series estimator of a regression function. We have,∣∣∣1T (G̃−G)∣∣∣
∞
≤ ζ (L)

∥∥∥1T (β̃ − βL)
∥∥∥+O

(
L−α

)
= Op

(
ζ (L)L−α

)
.

The rate above follows from Lemma 12 and Assumption B3(iii). And from Lemma 11, we have

1− 1T = op (1), therefore:∣∣∣G̃−G∣∣∣
∞

=
∣∣∣1T (G̃−G)∣∣∣

∞
+ op

(∣∣∣G̃−G∣∣∣
∞

)
= Op

(
ζ (L)L−α

)
.
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Next consider Ĝ (c)−G̃ (c) that accounts for the generated variables. We focus on 1̂T1T

(
Ĝ (c)− G̃ (c)

)
.

In particular Lemmas 11 and 16 ensure that Q−1
T and Q̂−1

T exist w.p.a. 1, and we have

1̂T1T

(
Ĝ (c)− G̃ (c)

)
= 1̂T1Tg

L (c)>
(
Q̂−1
T ĝ>ŷ/T −Q−1

T g>y/T
)
.

We now show that 1̂T1T

(
Q̂−1
T ĝ>ŷ/T −Q−1

T g>y/T
)

= Op

(
ζ (L) /

√
NT

)
. To see this, consider:

1̂T1T

(
Q̂−1
T ĝ>ŷ/T −Q−1

T g>y/T
)

= 1̂T1TQ
−1
T

(
ĝ>ŷ − g>y

)
/T

+1̂T1T

(
Q̂−1
T −Q−1

T

)
g>y/T

+1̂T1T

(
Q̂−1
T −Q−1

T

) (
ĝ>ŷ − g>y

)
/T.

Lemma 10 ensures that Q̂−1
T and Q−1

T converge in probability to Q−1, which is known to be bounded

by assumption B3(i). Therefore, using Lemma 17,

1̂T1TQ
−1
T

(
ĝ>ŷ − g>y

)
/T = Q−1

(
ĝ>ŷ − g>y

)
/T + op

((
ĝ>ŷ − g>y

)
/T
)

= Op

(
ζ (L) /

√
NT

)
.

Note we can write 1̂T1T

(
Q̂−1
T −Q−1

T

)
= 1̂T1T Q̂

−1
T

(
QT − Q̂T

)
Q−1
T . Then, in addition to the above,

by Lemma 15:
∥∥∥1̂T1T

(
Q̂−1
T −Q−1

T

)∥∥∥ = Op

(
ζ (L) /

√
NT

)
. We also have

∥∥g>y/T
∥∥ ≤ ∥∥∥g/√T∥∥∥∥∥∥y/√T∥∥∥,

which we know is bounded in probability since both
∥∥∥g/√T∥∥∥ and ∥∥∥y/√T∥∥∥ are Op (1) (we have shown

these in the proof of Lemmas 15 and 17 respectively). Hence,∥∥∥1̂T1T

(
Q̂−1
T −Q−1

T

)
g>y/T

∥∥∥ ≤ ∥∥∥1̂T1T

(
Q̂−1
T −Q−1

T

)∥∥∥∥∥g>y/T
∥∥

= Op

(
ζ (L) /

√
NT

)
.

Lastly, under B4(ii), we have∥∥∥1̂T1T

(
Q̂−1
T −Q−1

T

) (
ĝ>ŷ − g>y

)
/T
∥∥∥ ≤ ∥∥∥1̂T1T

(
Q̂−1
T −Q−1

T

)∥∥∥∥∥(ĝ>ŷ − g>y
)
/T
∥∥

= op

(
ζ (L) /

√
NT

)
.

Therefore we have
∣∣∣1̂T1T

(
Ĝ− G̃

)∣∣∣
∞

= Op

(
ζ2 (L) /

√
NT

)
, and by Lemmas 11 and 16 we know

1̂T1T = 1 + op (1), so that∣∣∣Ĝ− G̃∣∣∣
∞

=
∣∣∣1̂T1T

(
Ĝ− G̃

)∣∣∣
∞

+ op

(∣∣∣(Ĝ− G̃)∣∣∣
∞

)
= Op

(
ζ2 (L) /

√
NT

)
.

Then
∣∣∣Ĝ−G∣∣∣

∞
can be bounded by using the triangle inequality which completes the proof.�
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