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1 Introduction

We consider the computational aspect for estimating a popular class of dynamic games in an infinite

time horizon, where players’ private values enter the payoff function additively and are independent

across players, under the conditional independence framework. Recent surveys for such model can

be found in Aguirregabiria and Mira (2010) and Bajari, Hong and Nekipelov (2012). A variety of

methods have been proposed to estimate these games in recent years; examples are given below.

However, a common component of the methodologies in the literature is a nonlinear optimization

problem that may act as a considerable deterrent for applied researchers to estimate dynamic games

due to involved programming needs and/or long computational time.

In this note we propose a simple class of least squares estimators that have closed-form when the

payoffs have a linear-in-parameter specification. Our estimator takes a familiar OLS expression in the

simplest case, and the efficient version has the GLS form. The linear parameterization can be quite

general. In games with finite states linear-in-parameter payoff can be interpreted as nonparametric,

otherwise it can generally represent any nonlinear (basis) functions of observables. In any case payoff

with the linear-in-parameter structure is the leading specification employed in empirical work.

Estimation of dynamic games can be challenging. Games with multiple equilibria give rise to

incomplete models, where each parameter corresponds to multiple probability distributions (Tamer

(2003)). Even without the multiplicity issue, a full solution approach is computationally demanding

since the game has to be solved for every parameter value (Rust (1994)). A popular approach to

estimate dynamic games is to perform a two-step estimation procedure. Its origin can be traced back

to the novel work of Hotz and Miller (1993) in a single agent setting, whose insight is to perform

inference on a model that is generated using the empirical decision rule that can be estimated in

the first-step from the observed choice and transition probabilities. Their idea is also applicable in a

game context, where the empirical equilibrium strategy is used to compute any expected discounted

payoffs without solving the game even once. We call the collection of implied probability distributions

generated in this way the empirical model.

The choice probabilities implied by the empirical model in a dynamic game are characterized

by the cumulative distribution function of the normalized additive private values and the index of

expected discounted payoffs (cf. McFadden (1974)). Many existing two-step methodologies use choice

probabilities to construct objective functions for estimation. Examples include traditional criterions

such as the pseudo-likelihood approach (Aguirregabiria and Mira (2007), Kasahara and Shimotsu
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(2012)) and other moment and minimum distance based conditions (Pakes, Ostrovsky, Berry (2007),

Pesendorfer and Schmidt-Dengler (2008, PSD hereafter)). However, in order to calculate these

probabilities, the implied expected discounted payoffs first have to be calculated. Furthermore,

choice probabilities are written in terms of integrals that are generally nonlinear mappings of the

expected payoffs that have to be computed numerically outside the well-known conditional logit

framework.

The main purpose of our work is to emphasize that the integration step used to obtain choice

probabilities adds an unnecessary computational cost. We define a class of least squares estimators

based on minimizing the distance of the payoffs observed from the data and those implied by the

empirical model directly. In particular, when the payoffs have a linear-in-parameter specification the

expected discounted payoffs inherit this structure1 so that our objective function has an expression

that resembles a familiar linear regression problem. Different norming of the distance gives differ-

ent least squares estimator. When we do not impose the linear parameterization, our least squares

problem becomes nonlinear and has no closed-form solution. Our approach mirrors the asymptotic

least squares methodology of PSD, who instead minimize distances in terms of probabilities. The

estimators obtained using our approach and PSD’s are asymptotically equivalent. PSD’s estimator

provides a good theoretical benchmark as it includes the non-iterative likelihood estimator of Aguir-

regabiria and Mira (2007) and the moment estimator of Pakes, Ostrovsky and Berry (2007) as special

cases. We refer the reader to the previous version of our work for the proof of this result. This note

only focuses on developing a closed-form estimator for dynamic games and highlighting its practical

simplicity.

Other methodologies that use expected payoffs explicitly to construct objective functions also

exist in the literature. The first such two-step estimator has been developed by Hotz, Miller, Sanders

and Smith (1994), who estimate the expected payoffs by forward simulation, to estimate a dynamic

decision problem for a single agent. Hotz et al. (1994) define their estimator using conditional

moment restrictions. They also recognize it is possible to have a closed-form estimator when payoff

functions have linear-in-parameter specification in the form of an IV estimator (see equation (5.8) in

the Monte Carlo Study section of Hotz et al. (1994)). In the context of dynamic games, we are only

aware of two other current methodologies that base their objective functions explicitly on expected

1Related discussions can be found in Bajari, Benkard and Levin (2007, Section 3.3.1) and Pakes, Ostrovsky, Berry

(2007, Section 3).
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payoffs. First is the two-step estimator proposed by Bajari, Benkard and Levin (2007), who also

use forward simulation like Hotz et al. Although generally no closed-form estimator is possible with

Bajari, Benkard and Levin’s methodology as they compare expected payoffs in the empirical model

and those generated by local perturbations. The other is Bajari, Chernozhukov, Hong and Nekipelov

(2009), who provide nonparametric identification results for a more general game, with continuous

state space, and propose an efficient one-step estimator.2,3

The remainder of this note is organized as follows. Section 2 defines the game and the empirical

model. Section 3 defines our least squares estimator. Section 4 presents results from some Monte

Carlo experiments that compare the statistical performance and relative speed of our estimator and

that of PSD’s. Section 5 concludes and discusses how our estimators can be used to complement

other recent research in the literature. All proofs can be found in the Appendix.

2 Basic Setup

We consider a game with I players, indexed by i ∈ I = {1, . . . , I}. The elements of the game are:

Actions. The action set of each player is A = {0, 1, . . . , K}. We denote the action variable for

player i by ait. Let at = (a1t, . . . , aIt) ∈ A = ×Ii=1A. We will also occasionally abuse the notation

and write at = (ait, a−it) where a−it = (a1t, . . . , ai−1t, ai+1t . . . , aIt) ∈ A\A.

States. Player i’s information set is represented by the state variables sit ∈ S, where sit =

(xit, εit) such that xit ∈ X is common knowledge to all players and εit = (εit (1) , . . . , εit (K)) ∈ E
denotes private information only observed by player i. We define εt = (ε1t, . . . , εIt). Note that we

exclude the private value associated with action 0 for the purpose of normalization. We shall use sit

and (xt, εit) interchangeably.

State Transition. Future states are uncertain. Players’ actions and states today affect future

states. The evolution of the states is summarize by a Markov transition law P (st+1|st, at).
Per Period Payoff Functions. Each player has a payoff function, ui : A× S → R.

Discounting Factor. Future period’s payoffs are discounted at the rate β ∈ [0, 1).

2An earlier version of Bajari et al. (2009), Bajari and Hong (2006), proposes a two-step estimator that can be seen

as the dynamic game version of Hotz et al. (1994).
3Another notable estimator that does not take a two-step approach is Egesdal, Lai and Su (2012). Although

Egesdal et al. construct their objective functions in terms of choice probabilities.
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We also impose the following assumptions, which are standard in the literature (e.g. see Aguir-

regabiria and Mira (2007), Pakes et al. (2008) and PSD).

Assumption M1 (Additive Separability). ui (ai, a−i, x, εi) = πi (ai, a−i, x) + εi (ai) 1 [ai > 0] for

all i, ai, a−i, x, εi.

Assumption M2 (Conditional independence). The transition distribution of the states has the

following factorization: P (xt+1, εt+1|xt, εt, at) = Q (εt+1)G (xt+1|xt, at), where Q is the cumulative

distribution function of εt and G denotes the transition law of xt+1 conditioning on at and xt.

Assumption M3 (Independent private values). The private information is independently dis-

tributed across players, and each is absolutely continuous with respect to the Lebesgue measure whose

density is bounded on RK.

Assumption M4 (Discrete public values). The support of xt is finite so that X =
{
x1, . . . , xJ

}
for some J <∞.

We consider an infinite time horizon game, where at time t, each player i observes sit then

chooses ait simultaneously. Players are assumed to use stationary pure Markov strategies, αi, so that

αi : S → A, ait = αi (sit) for all i, t, and whenever sit = siτ then αi (sit) = αi (siτ ) for any τ . Player

i′s beliefs, σi, is a distribution of at = (α1 (s1t) , . . . , αI (sIt)) conditional on xt for some strategy

profile (α1, . . . , αI). The decision problem for each player is to solve:

max
ai∈Ai

{Eσi [ui (ait, a−it, si) |sit = si, ait = ai] + βEσi [Wi (sit+1;σi) |sit = si, ait = ai]}, (1)

where Wi (si;σi) =
∞∑
τ=0

βτEσi [ui (at+τ , sit+τ )| sit = si] ,

for any si. Under M1 and M2, it is Player’s i best response to choose action ai if for all a′i 6= ai:

Eσi [πi (ai, a−it, xt)|xt = x] + βEσi [Wi (st+1;σi)|xt = x, ait = ai] + εi (ai) (2)

≥ Eσi [πi (a
′
i, a−it, xt)|xt = x] + βEσi [Wi (st+1;σi)|xt = x, ait = a′i] + εi (a

′
i) .

The subscript σi on the expectation operator makes explicit that present and future actions are

integrated out with respect to the beliefs σi. Wi (·;σi) is a policy value function, where σi can be any

beliefs, not necessarily equilibrium beliefs. Therefore the induced transition laws for future states

are completely determined by the primitives and σi. Any strategy profile that solves the decision

problems for all i, and is consistent with the beliefs, is an equilibrium strategy. It is well-known that
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players’ best responses are pure strategies almost surely and Markov perfect equilibria for games

under M1 - M4. Further details can be found in Aguirregabiria and Mira (2007) and PSD.

An Empirical Model

The starting point is the structural assumption that we observe a random sample of {at, xt, xt+1}
from a single equilibrium, where each ait in at equals αi (sit). Let Pi (ai|x) ≡ Pr [ait = ai|xt = x] for

all ai, x denote the equilibrium conditional choice probabilities. Then we have: (i) the equilibrium

beliefs for all players is summarized by
∏I

i=1 Pi, and (ii) Pr [xt+1 = x′|xt = x, at = a] = G (x′|x, a) for

all a, x, x′. In common with the related papers cited above, we shall also assume β and Q are known

throughout. Therefore the knowledge of (
∏I

i=1 Pi, G,Q) can be used to construct the stationary

equilibrium decision rule that is consistent with the data generating process.

We next parameterize the payoff function. The payoff parameter for each player is denoted by

θi ∈ Θi ⊂ Rpi , and we overwrite the payoff function associated with the observed variables in M1 by

πi,θi . Let θ0 = (θ>10, . . . , θ
>
I0)> ∈ Θ ≡ ×Ii=1Θi be the data generating parameter of interest.

The (conditional) probability distribution of the empirical model can be thought of as being

derived from the following decision problem. For any θi, consider (cf. (1)):

max
ai∈Ai

{E [πi,θi (ai, a−it, xt)|xt = x] + εi (ai) 1 [ai > 0] + βE [Vi,θi (st+1)|xt = x, ait = ai]},

where Vi,θi (si) =
∞∑
τ=0

βτE[πi,θi (ait+τ , xit+τ ) +
∑
a′>0

εit+τ (a′) 1 [ait+τ = a′] |st = si].

Here Vi,θi is the empirical policy value function, where all players use the equilibrium strategy observed

in the data. Note that we have omitted the dependence on the beliefs for notational convenience.

Then we can define the implied choice specific expected discounted payoffs as:

vi,θi (ai, x) = E [πi,θi (ai, a−it, xt)|xt = x] + βE[Vi,θi (st+1)|xt = x, ait = ai]. (3)

The implied choice probabilities can also be written in terms of differences in choice specific expected

payoffs. Let ∆vi,θi (ai, x) denote vi,θi (ai, x)− vi,θi (0, x) for ai > 0 and any x, then we define:

Pi,θi (ai|x) = Pr [∆vi,θi (ai, xt) + εit (ai) > ∆vi,θi (a′i, xt) + εit (a′i) for all a′i > 0|xt = x] ,

and Pi,θi (0|x) = 1−
∑

ai>0 Pi,θi (ai|x).
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The empirical model can now be defined as {Pθ}θ∈Θ such that Pθ =
∏I

i=1 Pi,θi . By the structural

assumption, that we observe outcomes of an equilibrium play, Pi,θi0 must equal Pi for all i (see

equation (2)). Therefore the empirical model can be useful for the purpose of estimating θ0.4 In

particular the form of Pi,θi is familiar from the classical random utility model (e.g. see McFadden

(1974)) with a normalized index mean utility of ∆vi,θi .

We shall focus on the form of vi,θi when πi,θi has a linear-in-parameter specification.

Assumption M5 (Linear-in-parameter payoffs). For all (i, θi, ai, a−i, x),

πi,θi (ai, a−i, x) = θ>i πi0 (ai, a−i, x) ,

for some pi−dimensional vector πi0 (ai, a−i, x) = (π1
i0 (ai, a−i, x) , . . . , πpii0 (ai, a−i, x))

>
, where pi <

J .

The requirement pi < J ensures πi,θi satisfies a necessary order condition on the payoffs for

identification as the game under consideration is generally under-identified (Proposition 2 in PSD).

The term vi,θi appears complicated as it is written in terms of expectations of present and future

payoffs. It shall be helpful to re-write a version of equation (3) here, where Vi,θi is expressed explicitly

in terms of the sum of future discounted payoffs:

vi,θi (ai, x) = vi,θi (ai, x) + vi (ai, x) , where (4)

vi,θi (ai, x) =
∞∑
τ=0

βτE[πi,θi (ait, a−it+τ , xit+τ ) |xt = x, ait = ai],

vi (ai, x) =
∞∑
τ=0

βτ+1E[
∑
a′>0

εit+τ+1 (a′) 1 [ait+τ+1 = a′] |xt = x, ait = ai].

Since expectations and summations are linear operations, vi,θi can be written as some linear com-

bination of πi,θi , so that under M5, vi,θi (ai, x) = θ>i vi0 (ai, x) for some pi−dimensional vector

vi0 (ai, x) = (v1
i0 (ai, x) , . . . , vpii0 (ai, x))

>
. Therefore the linear-in-parameter structure of πi,θi is in-

herited by vi,θi . Furthermore, since the support of (ait, xt) is finite, we have a matrix representation

for {∆vi,θi (ai, x)}ai>0,x∈X which we now state as a lemma.

4Since all of the expectations in vi,θi are calculated using the same equilibrium beliefs observed from the data,

there is no need to solve the game for any θi .
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Lemma R: Under M1 - M5 {∆vi,θi (ai, x)}ai>0,x∈X can be represented by a JK−vector ∆vi,θi :

∆vi,θi = Xiθi + ∆vi, (5)

for some JK by pi matrix Xi and a JK−vector ∆vi.

We provide the detailed compositions of Xi and ∆vi in Appendix A. For the moment it suffices

to say they are known in terms of (β,
∏I

i=1 Pi, G,Q).

3 Closed-Form Least Squares Estimation

Under the continuity of the distribution of εit with large support (M3), there is an invertible map re-

lating {Pi,θi (ai|x)}ai>0,x∈X and {∆vi,θi (ai, x)}ai>0,x∈X (e.g. Proposition 1 of Hotz and Miller (1993)).

Let Pi,θi denote a JK−vector of {Pi,θi (ai|x)}ai>0,x∈X . We denote the invertible map by Φi so that

∆vi,θi = Φi (Pi,θi) for every i, θi. Similarly we can define the vectors of choice probabilities and ex-

pected discounted payoffs observed from the data. Let Pi denote a JK−vector of {Pi (ai|x)}ai>0,x∈X

and ∆vi = Φi (Pi) be a vector of the same dimension. Then we can define a JK−vector Yi, where

Yi = Φi (Pi)−∆vi.

Therefore by construction:

Yi = Xiθi when θi = θi0. (6)

Let Y =
(
Y>1 , . . . ,Y>I

)>
, θ =

(
θ>1 , . . . , θ

>
I

)>
and define a block diagonal matrix X = diag(X1,

. . . ,XI). A natural estimator of θ0 can be motivated from minimizing the sample counterpart of the

following least squares criterion:

S (θ;W) = (Y − X θ)>W(Y − X θ),

where W is some positive definite (p.d.) weighting matrix.

It is also worth emphasizing that X and Y are known functions of (β,
∏I

i=1 Pi, G,Q). Then, given a

sample from a single equilibrium, (
∏I

i=1 Pi, G) can be identified from the data under weak conditions.

Consequently we consider an objective function where (X ,Y) is replaced by some consistent estimator

(X̂ , Ŷ) in the first-step. We denote the sample counterpart of S(θ;W) by Ŝ(θ; Ŵ), where for some

p.d. matrix Ŵ that converges in probability to W ,

Ŝ(θ; Ŵ) = (Ŷ − X̂ θ)>Ŵ(Ŷ − X̂ θ).
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Our estimator is defined to minimize Ŝ(θ; Ŵ). If X̂ has full column rank we obtain a closed-form

least squares solution:

θ̂(Ŵ) = arg min
θ∈Θ
Ŝ(θ; Ŵ) (7)

= (X̂>ŴX̂ )−1X̂>ŴŶ .

The simplest estimator can be obtained by using the identity weighting, and the expression above

simplifies to an OLS estimator: (X̂>X̂ )−1X̂>Ŷ . Under some mild regularity conditions our estimator

is consistent and asymptotically normal. We provide some large sample results as well as a discussion

of efficient estimation in Appendix B.

4 Numerical Illustration

We illustrate the performance of our estimator using the Monte Carlo design in Section 7 of PSD.

Consider a two-firm dynamic entry game. In each period t, each firm i(= 1, 2) has two possible

choices, ait ∈ {0, 1}. Observed state variables are previous period’s actions, xt = (a1t−1, a2t−1). Firm

1′s period payoffs are described as follows:

π1,θ (a1t, a2t, xt) = a1t (µ1 + µ2a2t) + a1t (1− a1t−1)F + (1− a1t) a1t−1W, (8)

where θ = (µ1, µ2, F,W ) denote respectively the monopoly profit, duopoly profit, entry cost and

scrap value. Each firm also receives additive private shocks that are i.i.d. N (0, 1). The game is

symmetric and Firm’s 2 payoffs are defined analogously. We also provide a detailed construction of

Xi for this simple model in Appendix A.

We set (µ10, µ20, F0,W0) = (1.2,−1.2,−0.2, 0.1). PSD show there are three distinct equilibria for

this game, one of which is symmetric. We generate the data using the symmetric equilibrium and

estimate (µ10, µ20, F0) while W0 is assumed known for the purpose of identification. For each sample

size T = 100, 500, 1000, 5000, using 1000 simulations, we report the same set of statistics as PSD for

our OLS and GLS estimators, as well as their identity weighted and efficient asymptotic least squares

estimators (denoted by PSD-I and PSD-E respectively). The results are collected in Table 1.5 The

estimators are consistent and their performance is similar across the two asymptotic least squares

5Our Table 1 corresponds to equilibria (iii) in PSD, and it can be compared directly with Table 3 in their paper

on page 922.
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approaches. We find similar results with data generated from other (non-symmetric) equilibria. We

do not report these results for the sake of space.

We also study the computational time taken to construct the estimators. We introduce an

additive market fixed effect to the per-period payoff in the game described above. We use the

number of markets, denoted by M, to control the complexity of the game.6 For each M, we solve

the model for the symmetric equilibrium and simulate it five times. Table 2 reports the average

central processing unit (CPU) time in seconds taken to compute our OLS and GLS estimators and

for PSD-I and PSD-E. The standard errors of the computing time are reported in parentheses.7

Our closed-form estimators are substantially faster to compute, which is not surprising, and the

distinction grows exponentially with more parameters in the model. The reported CPU time also

includes the construction of the optimal weighting matrices. Since the procedure to compute the

optimal weighting matrices are similar for both estimators, its contribution in this setting can be

approximated by comparing the CPU time taken to estimate OLS and GLS as M varies. More

generally, we also expect the computation time for PSD’s estimator to grow at a faster rate with

larger action and/or state spaces for any fixed M relative to our closed-form approach.

Another numerical property of our estimator that is not quantified above is it trivially obtains

the global minimizer. In contrast, a numerical solution to a general nonlinear optimization routine

may be sensitive to the search algorithm and initial values.

5 Conclusions and Possible Extensions

There can be a substantial computational advantage in defining objective functions in terms of payoffs

instead of probabilities for the estimation of dynamic games. We propose a class of closed-form least

squares estimators when the commonly used linear-in-parameter payoff is employed. Closed-form

estimation is attractive for its simplicity and stability compared to any search algorithm. Our

estimators are asymptotically equivalent to those proposed by Pesendorfer and Schmidt-Dengler

(2008), which include other well-known estimators in the literature.

6There are other ways to vary the complexity of the game, e.g. by changing the number of potential actions and

states. However, the difficulty to solve and estimate such game increases significantly as the game becomes more

complex. Our design is chosen for its simplicity as it only requires us to solve a simple game multiple times.
7The simulation was performed using MATLAB (R2012a, 64 bit version) on a standard PC running on an Intel

Core (TM) 2 Duo 3.16 GHz processor with 4 GB RAM.
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T Estimator F0 µ10 µ20 MSE

100 OLS -0.304 (0.475) 0.997 (0.398) -0.895 (0.558) 0.840

GLS -0.436 (0.356) 1.015 (0.352) -0.88 (0.446) 0.641

PSD-I -0.241 (0.514) 1.102 (0.471) -1.023 (0.624) 0.917

PSD-E -0.397 (0.445) 1.081 (0.381) -0.975 (0.526) 0.722

500 OLS -0.225 (0.244) 1.149 (0.187) -1.118 (0.282) 0.184

GLS -0.260 (0.229) 1.159 (0.185) -1.122 (0.278) 0.175

PSD-I -0.201 (0.258) 1.200 (0.222) -1.176 (0.304) 0.208

PSD-E -0.230 (0.239) 1.177 (0.189) -1.157 (0.287) 0.178

1000 OLS -0.214 (0.177) 1.169 (0.134) -1.158 (0.204) 0.093

GLS -0.227 (0.170) 1.179 (0.136) -1.166 (0.206) 0.092

PSD-I -0.202 (0.180) 1.193 (0.147) -1.187 (0.211) 0.099

PSD-E -0.207 (0.186) 1.191 (0.148) -1.188 (0.220) 0.105

5000 OLS -0.203 (0.082) 1.194 (0.062) -1.190 (0.093) 0.019

GLS -0.205 (0.076) 1.197 (0.060) -1.192 (0.090) 0.017

PSD-I -0.201 (0.083) 1.200 (0.066) -1.196 (0.095) 0.020

PSD-E -0.201 (0.078) 1.199 (0.061) -1.197 (0.094) 0.018

Table 1: Monte Carlo results. OLS and GLS are our closed-form estimators. PSD-I and PSD-E

are respectively the identity weighted and efficient estimators of Pesendorfer and Schmidt-Dengler

(2008).
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M 1 10 20 30 100 200

OLS 0.0021 0.0125 0.0245 0.0366 0.1241 0.2654

(0.0010) (0.0000) (0.0000) (0.0001) (0.0004) (0.0004)

GLS 0.0180 0.1542 0.3091 0.4658 1.8504 5.6084

(0.0038) (0.0001) (0.0013) (0.0002) (0.0023) (0.0069)

PSD-I 0.2084 4.9957 28.6415 73.3173 1171.5137 5657.6393

(0.0089) (0.0351) (0.1805) (0.0846) (1.9478) (0.9183)

PSD-E 0.3564 10.4140 52.0471 109.5519 1607.2349 7621.5963

(0.0079) (0.0359) (0.1824) (0.1049) (2.6654) (1.2093)

Table 2: Computation time. OLS and GLS are our closed-form estimators. PSD-I and PSD-E

are respectively the identity weighted and efficient estimators of Pesendorfer and Schmidt-Dengler

(2008).

The computational gain from closed-form estimation accumulates beyond point estimation. Any

iteration or resampling algorithms (e.g. to compute standard errors) would clearly benefit. In

particular, for the former, the bias reduction procedures in Aguirregabiria and Mira (2007) and

Kasahara and Shimotsu (2012) can use OLS/GLS estimator at each step of iteration instead of a

pseudo-likelihood estimator. It would be interesting to verify if the asymptotic equivalence still holds

with such iteration procedure.

Analogous closed-form estimation is also possible in some models with common unobserved het-

erogeneity and/or for empirical games with multiple equilibria. This follows since, in principle, Hotz

and Miller’s (1993) two-step approach can be used whenever a nonparametric estimator is available

to construct an empirical model that is consistent with the observed data in the first step. For

example, see Aguirregabiria and Mira (2007, Section 3.5), where nonparametric identification results

of Kasahara and Shimotsu (2009) can be applied. Therefore we are hopeful that closed-form estima-

tion based on minimizing expected payoffs is generally possible beyond the basic setup of our game,

particularly given recent identification results for games with multiple equilibria (Aguirregabiria and

Mira (2013), Xiao (2014)) and other dynamic models with latent state variables (e.g. Hu and Shum

(2012)).
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Appendix A - Representation Lemma

Proof of Lemma R. We first write vi,θi in equation (4) in a matrix form. The conditional expec-

tations of discrete random variables are just weighted sums they can be represented using matrices.

In particular we can vectorize {vi,θi (ai, x)}ai∈A,x∈X into the following form,

vi,θi = (Ri + βHiMR) Πiθi + vi.

Note that (Ri + βHiMR) Πi is Xi in equation (5), which is central for estimation. Then Πiθi and

vi represent {πi,θi (a, x)}a∈A,x∈X and {vi (ai, x)}ai∈A,x∈X respectively, and:

Matrix: Representing Vector: Representing

Ri E [φ (a−it) |xt = ·, ait = ·] RiΠiθi {E [πi,θi (ait,a−it, xt) |xt = x, ait = ai]}ai∈A,x∈X
R E [φ (at) |xt = ·] RΠiθi {E [πi,θi (at, xt) |xt = x]}x∈X
M

∑∞
τ=0 β

τE[φ (at+τ , xit+τ ) |xt = ·] MRΠiθi {
∑∞
τ=0 β

τE[πi,θi (ait,a−it+τ , xit+τ ) |xt = x]}
x∈X

Hi E[φ (xt+1) |xt = ·, ait = ·] HiMRΠiθi {
∑∞
τ=1 β

τE[πi,θi (ait,a−it+τ , xit+τ ) |xt = x, ait = ai]}ai∈A,x∈X

for any generic function φ. For the details of the matrices and vectors above, we need additional nota-

tions to those already defined in the main text. The representation of the choice specific expected pay-

offs in this paper stacks the vector in a repeating sequence of {xj} for each action. By writing vai,θi =(
vi,θi (a, x1) , . . . , vi,θi

(
a, xJ

))
for all a ∈ A, then vi,θi =

(
v0
i,θi
, . . . , vKi,θi

)>
is a J (K + 1)−vector. Let

πa1...aIi =
(
πi0 (a1, . . . , aI , x

1) , . . . , πi0
(
a1, . . . , aI , x

J
))

for all a1, . . . , aI , and Πi =
(
π0...0
i , . . . , πK...Ki

)>
,

so that Πi is a J (K + 1)I by pi matrix. Then: Hi is a block-diagonal matrix diag
(
H0
i , H

1
i , . . . , H

K
i

)
,

where Ha
i is a J×J matrix such that (Ha

i )jj′ = Pr
[
xt+1 = xj

′|xt = xj, ait = a
]
; M =

(
I(K+1)I ⊗M

)
,

where M = (IJ − L)−1 and L denotes a J × J matrix such that (L)jj′ = β Pr
[
xt+1 = xj

′ |xt = xj
]

and Id denotes an identity matrix of size d; R =
(
ι(K+1)I ⊗R

)
is a J (K + 1)I by J (K + 1)I matrix,

where ιd denotes a d−column vector of ones, R =
[
P 0...0 · · · PK...K

]
is a J by J (K + 1)I matrix

so that P a1...aI = diag(P (a1, . . . , aI |x1) ,

. . . , P
(
a1, . . . , aI |xJ

)
) with P (a1, . . . , aI |x) =

∏I
j=1 Pj (aj|x); and Ri is a J (K + 1) by J (K + 1)I

matrix such that RiΠi =
[

(R0
iΠi)

> · · ·
(
RK
i Πi

)> ]>
gives a J (K + 1) by pi matrix with the

first J rows is R0
iΠi =

(
E [πi0 (0, a−it, xt) |xt = x1] , . . . , E

[
πi0 (0, a−it, xt) |xt = xJ

])>
, and the next

J rows is R1
iΠi =

(
E [πi0 (1, a−it, xt) |xt = x1] , . . . , E

[
πi0 (1, a−it, xt) |xt = xJ

])>
and so on. De-

fine ∆vai,θi =
(
vi,θi (a, x1)− vi,θi (0, x1) , . . . , vi,θi

(
a, xJ

)
− vi,θi

(
0, xJ

))
for all a > 0, and ∆vθ =(

∆v1
i,θi
, . . . ,∆vKi,θi

)>
. Then let D denote the JK×J (K + 1) matrix that performs the transformation
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Dvθ = ∆vθ. Finally vican be constructed similarly. Let vai =
(
vi (a, x

1) , . . . , vi
(
a, xJ

))
for all a, so

that vai = βHa
iMei where ei = (E[

∑
a′>0 εit (a′) 1 [ait = a′] |xt = x1], . . . , E[

∑
a′>0 εit (a′) 1 [ait = a′] |xt =

xJ ]). We define vi =
(
v0
i , . . . , v

K
i

)>
, so that ∆vi = Dvi is also a JK−vector. Then the expression

in equation (5) immediately follows.�

Construction of Xi used in the Simulation Study. Here we provide some explicit details

of Xi for the game we have described in Section 4. We only show X1 to avoid repetition. X2 can be

constructed similarly. From (8), note that the payoff function of player 1 satisfies M5:

π1,θ (a1t, a2t, xt) = a1t · µ1 + a1ta2t · µ2 + a1t (1− a1t−1) · F + (1− a1t) a1t−1 ·W. (9)

So we can write π1,θ (a1t, a2t, xt) = θ>π10 (a1t, a2t, xt) with θ = (µ1, µ2, F,W )> and π10 (a1ta2t, xt) =

(a1t, a1ta2t, a1t (1− a1t−1) , (1− a1t) a1t−1)>. Then, following equation (4) and its subsequent discus-

sion, we have v1,θ (a, x) = θ>v10 (a, x) for some 4−dimensional vector v10 (a, x) for any a, x. With two

actions X1 is just a vectorization of {v10 (1, x)− v10 (0, x)}x∈X . In terms of the notation used above

we have: (R1 + βH1MR) Π1 =

[
R0

1Π1 + βH0
1 (I4 − L)−1RΠ1

R1
1Π1 + βH1

1 (I4 − L)−1RΠ1

]
=

[
{v10 (0, x)}x∈X
{v10 (1, x)}x∈X

]
. We order

the elements in the state vector according to (a1t−1, a2t−1) = ((0, 0) , (0, 1) , (1, 0) , (1, 1))>. Then let

14



pi (x) stand for Pr [ait = 1|xt = x] and qi (x) = 1− pi (x), we have:

R0
1Π1 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

 , R1
1Π1 =


1 p2 ((0, 0)) 1 0

1 p2 ((0, 1)) 1 0

1 p2 ((1, 0)) 0 0

1 p2 ((1, 1)) 0 0

 ,

RΠ1 =


p1 ((0, 0)) p1 ((0, 0)) p2 ((0, 0)) p1 ((0, 0)) 0

p1 ((0, 1)) p1 ((0, 1)) p2 ((0, 1)) p1 ((0, 1)) 0

p1 ((1, 0)) p1 ((1, 0)) p2 ((1, 0)) 0 q1 ((1, 0))

p1 ((1, 1)) p1 ((1, 1)) p2 ((1, 1)) 0 q1 ((1, 1))

 ,

L = β


q1 ((0, 0)) q2 ((0, 0)) q1 ((0, 0)) p2 ((0, 0)) p1 ((0, 0)) q2 ((0, 0)) p1 ((0, 0)) p2 ((0, 0))

q1 ((0, 1)) q2 ((0, 1)) q1 ((0, 1)) p2 ((0, 1)) p1 ((0, 1)) q2 ((0, 1)) p1 ((0, 1)) p2 ((0, 1))

q1 ((1, 0)) q2 ((1, 0)) q1 ((1, 0)) p2 ((1, 0)) p1 ((1, 0)) q2 ((1, 0)) p1 ((1, 0)) p2 ((1, 0))

q1 ((1, 1)) q2 ((1, 1)) q1 ((1, 1)) p2 ((1, 1)) p1 ((1, 1)) q2 ((1, 1)) p1 ((1, 1)) p2 ((1, 1))

 ,

H0
1 =


q2 ((0, 0)) p2 ((0, 0)) 0 0

q2 ((0, 1)) p2 ((0, 1)) 0 0

q2 ((1, 0)) p2 ((1, 0)) 0 0

q2 ((1, 1)) p2 ((1, 1)) 0 0

 and H1
1 =


0 0 q2 ((0, 0)) p2 ((0, 0))

0 0 q2 ((0, 1)) p2 ((0, 1))

0 0 q2 ((1, 0)) p2 ((1, 0))

0 0 q2 ((1, 1)) p2 ((1, 1))

 .

We do not write out Ra
1, R and Π1 separately since they are cumbersome. (The number of columns of

Ra
1 and R, and the number of rows in Π1 are 24 that equals to the number of all distinct possibilities

of (a1t, a2t, a1t−1, a2t−1).) Although it is obvious from (9) how the expressions for Ra
1Π1 and RΠ1 re-

spectively vectorize {E[π0 (a1t, a2t, xit) |xt = x, ait = a]}x∈X and {E[π0 (a1t, a2t, xit) |xt = x]}x∈X . The

contents of Ha
1 are simply conditional choice probabilities of player 2’s action, and those in L are

products of the choice probabilities of both players since their actions are conditionally indepen-

dent. Then given the data the conditional choice probabilities can be estimated, and the sample

counterpart of X1 can be constructed for the purpose of estimation.

Appendix B - Large Sample Properties

In what follows we denote the matrix norm by ‖·‖, so that ‖B‖ =
√
trace (B>B) for any real matrix

B, and we let “
p→” and “

d→” denote convergence in probability and distribution respectively. Suppose
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the following hold:

Assumption B1: X has full column rank and W is p.d.

Assumption B2: ‖W‖ , ‖X‖ and ‖Y‖ are finite, and Ŵ p→W , X̂ p→ X and Ŷ p→ Y .

Assumption B3: Let Û = Ŷ − X̂ θ0,
√
N Û d→ N (0,Σ) where Σ is p.d. and non-stochastic.

B1 assumes θ0 is the unique minimizer of S(θ;W). When W is p.d., the full rank condition of

X is necessary and sufficient condition for the identification of θ0. Analogously, if Ŵ is p.d., X̂ has

full column rank if and only if Ŝ(θ; Ŵ) has a unique solution (in (7)). B2 and B3 are standard high

level conditions that can be verified under weak conditions since (X̂ , Ŷ) are smooth mappings of the

choice and transition probabilities. Then:

Proposition 1(Consistency): Under assumptions A1 - A2, θ̂(Ŵ)
p→ θ0.

Proposition 2(Asymptotic Normality): Under assumptions A1 - A3,

√
N(θ̂(Ŵ)− θ0)

d→ N (0,ΩW),

where ΩW =
(
X>WX

)−1X>WΣWX
(
X>WX

)−1
. Furthermore, ΩW−ΩΣ−1 is positive semi-definite

for any W.

Note that efficient estimation requires a consistent estimator of Σ, which can be constructed using

any preliminary consistent estimator of θ0 such as (X̂>X̂ )−1X̂>Ŷ .

Proof of Proposition 1. Under A1 and A2 ŴX̂ has full column rank with probability

approaching (w.p.a.) 1. Consistency immediately follows by repeated applications of continuous

mapping theorem.�

Proof of Proposition 2. Using the definitions of the estimator in (7) and Û , we have w.p.a.

1:

θ̂ = θ0 + (X̂>ŴX̂ )−1X̂>ŴÛ

= θ0 + (X>WX )−1X>WÛ + op(||Û ||),

where the second equality follows from continuous mapping theorem. Asymptotic normality follows

from Assumption A3 and an application of Slutsky’s theorem. The efficiency proof for this type of

variance structure is well-known (e.g. see Hansen (1982, Theorem 3.2)).�
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