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1.! Introduction 

The Factor Zoo phenomenon calls for answers as to which risk factors are in fact 

capable of providing independent information on the cross-section of expected excess 

returns, while considering that asset-pricing literature has produced over three hundred 

different potential risk factors in the last decades (Harvey, Liu, and Zhu (2016)). Solving 

this “factor zoo” (Cochrane (2011)) implies studying, on one side, which of these 350+ 

factors provide independent information about the cross-sectional variation of expected 

returns and, on the other, which are redundant. In fact, this increasing number of potential 

factors also brought about new methodological challenges for empirical research (i.e. 

overfitting, data mining, and design matrix dimension reduction)3. Solutions for these 

methodological challenges were constrained oftentimes by excessively costly approaches 

resulting from their need for increased computational power. Nonetheless, as witnessed 

in the last years, computational power’s decreasing costs, in addition to the rise in 

alternative statistical methods geared towards handling high-dimensional problems4 has 

allowed researchers to start addressing the high-dimensional5 challenges that relate to the 

factor zoo.6 

In this paper, we propose a new methodology to reduce risk factor predictor 

dimensions by selecting the key component 7  of their precision matrix8 . In order to 

implement this procedure, we use a graph to represent the risk factor precision matrix, 

which describes how information networks and risk factors are related. After attaining 

the graph precision matrix, we proceed to select its key component in accordance with a 

specific centrality measure. Those key components become our new risk factor candidates 

set to explain the cross-sectional of expected returns. 

 Our findings attain sparse models that pose better results than classic models 

documented in the literature as well as specific alternative methods proposed by factor 

                                                
3 Hastie, Tibshirani, and Friedman (2009) and Abu-Mostafa, Magdon-Ismail, and Lin (2012). 
4 Some of those methods are dubbed ‘Machine Learning’ techniques. To learn more, see Hastie, Tibshirani, 

and Friedman (2009). 
5 For definition purposes, we consider high-dimensional environmental models yielding more than 10 

predictors. 
6 Harvey, Liu, and Zhu (2016), Green, Hand, and Zhang (2017), Yan and Zheng (2017), Feng, Giglio, and 

Xiu (2020), Freyberger, Neuhierl, and Weber (2020) and Kozak, Nagel, and Santosh (2020).!
7 A key component of the precision matrix is the most central element, according to some centrality 

measure, of the adjacent matrix whom is computed by the precision matrix. 
8 The precision matrix is given by the inverse of the covariance matrix for any given vector of random 

variables. 
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zoo papers. Our model achieves a higher in-sample average adjusted !" from the Fama 

and MacBeth procedure and more significant factors risk premia parameters than the 

Principal Components – PC – peer’s methodology. Regarding out-of-sample results, our 

paper presents the lowest root mean square errors than all other tested alternative factor 

zoo methodologies presented in this study. 

It is important to point out two things from this framework: First, by assuming 

that # $ %&'( ) ( &*+,-./012( 3 $ 45'6, where # is a %7 8 9+ risk factor vector, and 3 

is a positive semidefinite matrix, the 4 (precision matrix) has the following property9: 

:;(< $ = > &; ? &<@A#B C D&; ( &<E (1) 

Equation %9+ shows that &;  is independent (orthogonal) to &< , conditional upon every 

other risk factor if, and only if, the :;(<  element of 4  is zero. Thus, 4  yields the 

conditional dependence in risk factors, and can be represented by a graph that illustrates 

a network. Second, as pointed out by Borgatti (2005), a network’s key element is the 

component that best condenses information about that network individually. Thus, since 

our network is the precision matrix, its key component is best suited to summarize 

information about the risk factor covariance matrix. It therefore yields the highest 

conditional dependence among every other factor, reason why it is analogous to the FG9 

(first principal component) and, consequently, is a natural candidate to explain the cross-

section of expected returns. Furthermore, this methodology poses an advantage since we 

are able to select a specific risk factor which, unlike PCs, entails an economic 

interpretation. Another benefit from this methodology stems from the fact that it enables 

us to clusterize the graph into sub regions, in addition to selecting the key component of 

each of these regions. The precision matrix is therefore divided into partitions, allowing 

us to compare factors selected globally to factors selected regionally. This also enables 

us to infer which regions of the covariance matrix are best suited to explain the cross-

section of expected returns. 

In our methodology, high-dimensional problems are solved using two shrinkage 

steps. First, we estimate the precision matrix with the Graphical Lasso methodology 

proposed by Friedman, Hastie, and Tibshirani (2008) aimed at avoiding Markowitz’s 

curse, which is a well-known documented phenomenon in empirical asset-pricing 

                                                
9 For the proof, see Meinshausen and Bühlmann (2006). 
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literature10. Basically, as the number of factors increases, the conditional number11 of 4 

also rises, and 4 becomes singular. Since the covariance matrix is 3 $ 45', whereas 3 

must be a positive semidefinite, we therefore need a sparse estimation for 412. When 

looking at equation %9+, as Friedman, Hastie, and Tibshirani (2008) argue, we see that 

enforcing the H'  penalty results in a 4 sparsity estimation. Second, selecting the key 

component of the precision matrix reduces dimensions of # from F to 1. The alternative 

methodology, on the other hand, consists of selecting the component of each precision 

matrix cluster whereby lowering dimensions of # sets F to I, where I is the number of 

clusters.  

Our paper resonates very closely with this new literature about high-dimensional 

cross-sectional asset-pricing models. This research field applies a wide range of statistical 

methods such as bootstrapping 13 , lasso, multiple-test corrections 14  and principal 

component analysis15 to achieve robust estimators in a high-dimensional environment, in 

addition to evaluating which risk factors are in fact capable of explaining the cross-section 

of expected returns. Kozak, Nagel, and Santosh (2020) find that a stochastic discount 

factor – SDF – with a small number of principal components from large-set zero-cost 

portfolio returns is capable of explaining cross-sectional returns. This research applies 

elastic net estimator to perform dimensionality reduction on the set of risk factors, and 

finds that a sparsity model only achieves satisfactory results to explain cross-sectional 

returns when the principal components of portfolio returns are used as risk factors. The 

authors also point out that a non-sparse model (up to 15 explanatory variables) is needed 

whenever risk factors are applied to explain cross-sectional returns. Feng, Giglio, and Xiu 

(2020) and Freyberger, Neuhierl, and Weber (2020) use a lasso-type estimator to reduce 

their respective set of risk factors, also reaching a non-sparse result whenever the issue at 

                                                
10 Ledoit and Wolf (2004), Engle, Shephard, and Sheppard (2008) and Brito, Medeiros, and Ribeiro (2018). 
11 Given a matrix J, the conditional number can be expressed as KLMN%J+ $ OPO Q OPO5', whereas %J+ $R if J is singular. 
12 See De Prado (2018) for a thorough discussion on empirical instability results concerning the covariance 

matrix estimator for a large set of securities.!!
13 Harvey and Liu (2019) and Yan and Zheng (2017) apply bootstrapping techniques to evaluate models. 
14 Harvey, Liu, and Zhu (2016) and Green, Hand, and Zhang (2017) implement a threshold adjustment in 

the empirical test with the purpose of avoiding false-positive discoveries as well as data mining. 
15 Kelly, Pruitt, and Su (2019) develop a latent factor model with time-varying loadings instrumented by a 

large set of characteristics called Instrumented Principal Component Analysis – IPCA. The authors come 

to a sparse model after setting a low dimension for the factor vector, consequently concluding that only five 

latent factors provide satisfactory results in regards to explaining average cross-sectional returns. Gu, Kelly, 

and Xiu (2019) delve even deeper into this matter and implement a non-linear IPCA that improves out-of-

sample results. 
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stake concerns explaining the cross-section of expected returns. Hence, we are witnessing 

the emergence of a well-known fact whereby the cross-section of expected returns can 

only be adequately described by PCs in a sparse representation. Whenever we apply risk 

factors, it becomes increasingly challenging to explain cross-sectional expected returns 

in a satisfactory manner by a sparse model. 

This paper also aims to contribute to the applied network theory documented in 

financial literature16. Network analysis were applied to several fields to tackle economic 

problems, such as teaching methods, labor markets and banking and investment 

decisions17, and it has become an increasingly popular subject. Considering asset-pricing 

research, we must acknowledge some prominent papers, such as Herskovic (2018), which 

uses input and output transactions to explain network relationships among firms and, 

furthermore, recognizes that more central firms require less risk premium. 

In short, this paper seeks to add a new method to the existing factor zoo-related 

literature, thereby enabling a significant shrinkage in the original set of risk factors and 

allowing investigations on different regions of the risk factor covariance matrix, all of 

which can be implemented with a swift algorithm. To the best of our knowledge, this is 

also the first paper that uses a graph model to describe joint risk factor distribution, in 

addition to using precision matrix network analysis to select risk factor candidates.  

2.! Methodology 

Our research method is described in four steps. First, we estimate the risk factor 

precision matrix by applying the Graphical Lasso algorithm. Second, we use a graph to 

represent the estimated precision matrix and to select the key component risk factor as 

our candidate to explain the cross-section of expected returns. Third, we proceed to 

partition the precision matrix into regions by clustering the graph, after which we pick 

the key component of each cluster as the risk factor candidate. Fourth, and last, we employ 

the Fama-MacBeth (1973) procedure to verify whether risk factors selected by both the 

second (global models) and third (cluster models) steps entail better in and out-of-sample 

results compared to certain “classic models” from the asset- pricing literature, in addition 

                                                
16 Allen and Babus (2009) provide an in-depth survey on financial network research and discuss potential 

network analysis tools to address financial problems. 
17 Calvo-Armengol and Jackson (2004), Golub and Jackson (2010), Elliott, Golub, and Jackson (2014), 

Gofman (2017), Hochberg, Ljungqvist, and Lu (2007) and Cohen, Frazzini, and Malloy (2008). 
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to other methodologies proposed by research papers addressing the factor zoo that we 

describe ahead. 

 

2.1.Estimating the precision matrix with the graph lasso 

There are countless papers on methods used to estimate a sparse inverse 

covariance matrix with H' (lasso) regularization18. Oftentimes, the basic model employed 

assumes a multivariate Gaussian distribution as # $ %&'( ) ( &*+,-./012( 3 $ 45'6 , 

whereas, in our case, # is a %7 8 9+ vector of observed risk factors. Consequently, the 

graph lasso estimator for the precision matrix can be estimated by maximizing the 

penalized log-likelihood expressed as %S+: 
T%4( #+ $ UVWXYZ%4+[ \ Z]W^%#+4[ \ _O4O'! (2) 

where ^%#+ is the empirical covariance matrix19, O4O' is the H' norm of 4, and _ is the 

regularization parameter. 

We apply the procedure proposed by Friedman, Hastie, and Tibshirani (2008), 

which is a simple yet swift algorithm used to solve %S+, though it limits the solution to 

the positive semidefinite space parameter. Consequently, we need to embed the following 

assumption: # $ %&'( ) ( &*+,-./012( 3 $ 45'6  which implies in 4  being positive 

semidefinite. Furthermore, as equation %9+ suggests, we are able to analyze factorization 

properties of # directly with the sparsity pattern of the precision matrix (4). We use 

network analysis to investigate these factorization properties since 4 can be illustrated by 

a graph, as we describe in the following section. 

 Liu, Roeder, and Wasserman (2010) the stability approach to regularization 

selection method20 (StARS) to set the _ parameter. According to the authors, whenever 

we consider the maximization issue that equation %S+ poses, the StARS approach yields 

a better performance both in simulated and real data when compared to k-fold cross-

validation, AIC and BIC methods. This can be explained by the fact that AIC and BIC 

assume a fixed number of parameters as the sample size increases, reason why results 

tend not to be suitable when the number of parameters is large in comparison to the 

sample size. Additionally, Wasserman and Roeder (2009) show that k-fold cross-

                                                
18 Chapter 9 of Hastie, Tibshirani, and Wainwright (2015) brings a description on several methods, in 

addition to a review on the literature relating to the subject.  
19 ^%#+ $ '

`a #b#b,b̀c'  for Z $ 9() ( d. 

20 Stability approach used for regularization selection.!
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validation tends to overfit data. The StARS methodology is described in three steps. First, 

we set a regularization parameter grid as ef $ %g'( ) ( gh+, where gi $ 9 _ij . Second, 

we generate / subsample kl with #, yielding m $ %k'( ) ( kn+. Third, we evaluate the grid 

in each subsample and select the regularization parameter that produces a sparse result 

for 4, though subsamples fail to show high variability results. Appendix A1 describes the 

StARS approach in detail. 

When we put it all together, our sparse precision matrix estimator can be written 

as:  

4opqrsst $ u]vIwV4x4y zT%4( #( _{|}~{+! (3) 

where 4�  is the positive semidefinite space matrix, T%4( #( _+ is defined as %S+, and 

_{|}~{ is the regularization parameter selected with the StARS approach. 

!

2.2. Precision matrix representation by graph 

A graph is represented as e $ %�( �+, where � is the vertex set, and � is the edge 

set. Elements of � represent random variables, whereas elements of � are pairs of distinct 

vertices %�( �+  so that �( � � � . We label graphs whose edge pairs have different 

orderings (%�( �+ is different from %�( �+) as directed. If, however, the edge pairs do not 

have different orderings (%�( �+ is not different from %�( �+), we classify the graph as 

undirected. An edge can describe any measurable characteristic across a pair of vertices; 

therefore, graph (e ) illustrates each specific network’s relation to random variables 

pursuant to the definition given to the edge. 

It is important to note that e can be grouped into an adjacency matrix P such that: 

�;(< $ �9zw&z%�( �+ � �=zz�Z�Y]�wkY ! (4) 

Since 4opqrsst  is symmetric (:�pqrsst;(< $ :�pqrsst<(; zfor any given w( � � F), we 

show 4opqrsst  as an undirected21 graph e� $ %�( �+ so that # $ � � �* , and %w( �+ � �, 

if :�pqrsst;(< � = for any &; ( &< � #. Thus, Po � ��8� can be written as: 

��;(< $ �9zw&z:�pqrsst;(< � =
=zzzzzz�Z�Y]�wkY  (5) 

                                                
21 It’s worth pointing out that undirected graphs denote a symmetric adjacency matrix. 
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Once we are able to have 4opqrsst represented as e�, we can proceed to compute 

centrality measures and select key component risk factor candidates to explain the cross-

section of expected returns. 

 

2.3. Centrality measures 

Given any e $ %�( �+, a centrality measure is a function � represented as: 

�� e � �n (6) 

where e is a graph, / is the number of elements of �, ��  is the centrality measure of 

vertex �, � � �, and � $ 9() ( /. 

Centrality measures is a well-studied concept in the network analysis literature. 

Borgatti (2005) seminal paper stresses that different measures entail different 

assumptions in regards to how information flows into the network, represented by e. The 

concept of vertex position depends on the research focus and the context of the problem; 

thus, a specific application requires a specific centrality measure. 

In the case at hand, we estimate e�, which represents the risk factor network stated 

as e�� $ e� �� $ #( �04opqrsst6�, meaning that vertex set variables are the risk factors, 

while adjacency matrix P  is computed with %�+� The only information that we have 

concerning estimated risk factor network 0e��6 is that risk factors &; and &<  are conditional 

dependent (independent) if �;(< $ 9  ( �;(< $ = ), given every other risk factor. 

Nevertheless, this does not allow us to infer any causality relationships between &; and 

&< . Consequently, the way information flows into the network remains unknown, and 

there are no a priori assumptions about it. This forces us to compute different types of 

centrality measures in order to select our risk factor candidate, while also comparing 

results among them. 

In this paper, we select four well-known centrality measures in the network 

analysis field: Eigenvector; Degree; Closeness; and Betweenness. As demonstrated by 

Bloch, Jackson, and Tebaldi (2019), said measures have the same logical structure22, the 

only difference being which vertex attributes are taken into consideration to compute the 

                                                
22  The authors also prove that each of the four measures features the three following axioms: i) 

monotonicity, implying that higher statistical figures lead to higher centrality; ii) symmetry, meaning that 

vertices’ centrality relies only on their chosen attributes as opposed to other traits; and iii) additivity, 

denoting that centrality measures are computed in an additively separable manner. 
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results. Consequently, calculating %�+  since � $ # , and # � �*  implies that / $ F , 

whereas, in our case, �%e+ � �*. Each centrality measure is described below. 

For each centrality measure we have �0e��6 $ %�'( ) ( �*+� , where ��  is the 

centrality measure of risk factor &� , while the selected risk factor %&s+ (key component) 

is expressed as &s $ �&�� �� $ Iu� ��0e��6��. Thus, we are able to reduce the original 

vector dimension of # from F to 1. 

 

2.3.1. Eigenvector centrality 

��  $ 9
¡ ¢��(<�< 

*

<c'
 (7) 

where Pzis the adjacent matrix for e, and ¡  is the large eigenvalue of P. It measures the 

influence a risk factor has on its neighborhood, adjusted by the neighborhood’s influence 

on the network. 

 

2.3.2. Degree centrality 

��£ $ X�F \ 9 (8) 

where X� $ a ��(<n<c'  is the degree of vertices ¤. It measures the influence a risk factor 

has on its neighborhood, disregarding the factor position in the network architecture. 

 

2.3.3. Closeness centrality 

��¥ $ F \ 9
a ¦§%�� �+*<c'

 (9) 

where ¦§%�� �+23 is the distance between vertices � and node �. It measures how well a 

risk factor is positioned to obtain novel (random) information early on from the network. 

 

2.3.4. Betweenness centrality 

��̈ $ S
%F \ 9+%F \ S+¢¢©§%�+%�( w+©§%�( w+

*

;c'

*

<c'
 (10) 

                                                
23 The distance from vertex � to � in a graph is the number of edges in the shortest path connecting them. 

A path from vertex � to � is a sequence of distinct edges, which joins a sequence of vertices from vertex � 

to �. See Bavelas (1950) for a formal definition. 
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where ©§%�( w+ is the number of paths from vertices w to vertices �, and ©§%�+%�( w+ is the 

number of paths from vertices w  to vertices � , passing through � . It measures the 

importance a risk factor has in conveying information across the network. 

 

2.4. Clustering graph by modularity 

A common feature in the network analysis is the search for community structures 

across all random variables. In our graph, such community structures can be described as 

a “cohesive” subset of vertices, which occurs inside dense connections as well as in sparse 

associations with other vertices. In other words, finding community structures consists of 

clustering e $ %�( �+ into a partition set ª $ %«'( ) ( «¬+, where «­ $ %�­ ( �­+ is 

also a graph; . is the number of clusters; ® �­¬­c' $ =, ¯ �­ $¬­c' �; and the number 

of edges of vertices inside �­  should ideally be higher than the number of edges of 

vertices between �­ and �l for I( V $ 9() (., and I � V. 

Among the numerous existing methods used to clusterize24  e , we favor the 

modularity approach proposed by Newman and Girvan (2004a) since it is a very popular 

and well-established procedure. The number of clusters in this method is endogenous, 

and therefore, an advantage, since we lack prior information about them. Moreover, this 

method has been successfully applied across a broad range of different problems and 

networks25. 

The approach consists of maximizing the modularity function:  

° $ 9
SV¢¢±P;(< \ ²;²<SV ³ ´0�;( �<6

*

<c'

*

;c'
 (11) 

where V $ µ%�+  is the number of edges; ²; $ a �;(<*<c'  is the degree number of &; , 
´0�;( �<6 $ 9 if ¶ $ � and, otherwise, equal to =; �; is a partition from �; and &; � �;. 
Equation %99+ allows us to verify that the modularity function measures how far any 

given network community’s structure is from the randomized structure. The first term 

(
'
"la a ·P;(<¸´0�;( �<6*<c'*;c' ) relates to the fraction of the edges that belong within the 

communities. Since 
i¹iº
"l  is the probability of the edge, %w( �+ only exists if connections are 

randomly made, taking into account vertices &;, and &<  degrees (²; and ²<). The second 

                                                
24 See Lancichinetti and Fortunato (2009) for a survey on cluster graph methods. 
25 See Khan and Niazi (2017) for a survey on network community detection. 
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term 
'
"la a »i¹iº"l ¼ ´0�;( �<6*<c'*;c'  concerns the fraction of the edges that belong within 

the communities for an expected randomized network due to the vertex degree. Hence, a 

high ° denotes deviation from randomness and signals community structures. 

By setting �½ $ %�'( ) ( �­+26, the cluster solution based on modularity can be 

expressed as �o½ $ u]vIu�A�½(¬B°( and ªo $ %«¾'( ) ( «¾¬+( where «¾­ $
��o­ ( �­04opqrsst6� 27. To maximize ° with respect to �½ and ., we apply the Clauset, 

Newman, and Moore (2004) algorithm, which is swift and enables large-scale dimensions 

for both � and � (large networks).  

In regards to our research, the graph’s distribution seeks to divide the precision 

matrix into regions. This, in turn, enables us to investigate the role of different covariance 

regions and explain the cross-section of expected returns, in addition to comparing risk 

factors selected globally to risk factors chosen regionally. After maximizing %99+ into 

ªo $ %«¾'( ) ( «¾¬+, and consequently clustering e��  in accordance with each centrality 

measure, we proceed to select the risk factor vector with #sh $ 0&'(�( ) ( &¬(�6,, where 

&­(� $ D&� � �� $ Iu�0�%«¾­+6E for I $ 9() (.. Thus, our risk factor vector #sh  has, 

by definition, I and I ¿ F dimensions28.  

 

2.5. Fama-MacBeth procedure (FM) 

Using the APT model introduced by the Stephen (1976) paper, we are able to 

represent the cross-section of expected returns as: 

];(b $ u; ÀÁ;#b À Âb (12) 

Ã0];(b6 $ Á;Ä (13) 

where ];(b is the excess asset returns w observed for period Z; #Å is the vector of selected 

risk factors observed in period Z; Á; stands for the loading’s w asset matrix for risk factors; 

and Äzis the vector of selected factor risk premia. As demonstrated by Cochrane (2009), 

risk factors occur in the stochastic discount factor (inside investors’ marginal utility) 

                                                
26 Note that ® �­¬­c' $ =, ¯ �­ $¬­c' � by definition. 
27 �­04opqrsst6 $ �04opqrsst6 C �%w( �+� � � �o­Æ�, where �­Æ

 is the complement of set �­. 

28 In some cases that use this method, I may be close to F, in which case it will not be suitable for use as 

a shrinkage procedure.!!
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whenever factor risk premia are different from zero. Thus, in order to verify whether our 

methodology is in fact capable of selecting risk factors (&s and #sh) that explain the cross-

section of expected returns (Ã0];(b6), we choose to focus on the Ä parameters. 

Using the methodology described in sections 2.1. to 2.3., we reduce the original 

dimension of # from P to 1 for &s  (global models), and to I for #sh  (cluster models). 

Since our empirical findings point to a I close to 3 in each scenario that we examined, 

we can therefore estimate the model expressed as %9S+ and %9Ç+ using regular and very 

well-known econometric methods29. As a result, we estimate factor risk premia using the 

Fama-MacBeth (FM) procedure, which, in addition to accommodating unbalanced 

panels, allows for time-varying betas and runs swiftly for a large number of assets. 

It is a two-pass regression where the first-pass entails estimating %9S+ with a time-

rolling window procedure whose length30 equals Z½ . The first-pass therefore yields a 

sequence of estimated betas like DÁo;(bEbcb½`
, whereas the second-pass estimate %9Ç+ using 

the following sequence of cross-sectional regressions: 

];(b $ ¡È ÀÁo;(bÄ2 À Yb (14) 

By setting Ä�b $ 0¡�È( Ä�2̀ 6`, Ä�b can be estimated for each cross-section, hence, the 

second-pass from FM produces a sequence of estimated risk premia factors like DÄ� bEbcb½`
, 

while the final factor risk premia estimator can be expressed as: 

Ä� $ a Ä�bb̀cb½%d \ Z½+ (15) 

In order to make inferences about Ä�, and resulting from the fact that betas from 

the first-pass are pre-estimated, this procedure consequently generates errors. To correct 

this bias, we follow Shanken (1992) to compute the Ä� covariance matrix by: 

ÉoÄÊËÌli l $ 09 À Ä�`Éo#5'Ä�6 ÍÉoÄ \ Éo#%d \ Z½+Î À
Éo#%d \ Z½+ (16) 

                                                
29 Campbell et al. (1997), Cochrane (2009) and Goyal (2012) bring extensive descriptions on available 

methods used to estimate factor risk premia when # yields a low dimension. 
30 We set Z½ $ �= in our research paper, using the same value employed by the original Fama and 

MacBeth (1973) article. 
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where Éo# is the estimated risk factor covariance matrix31, and ÉoÄ is the regular estimated 

factor risk premia covariance matrix32. 

 

2.6. Classic Models and Alternative Methodologies 

As pointed out before, our methodology selects risk factor vectors (&s and #sh) 

that yield lower dimensions from the very beginning, consequently, applying the FM 

procedure allows us to compare results directly to certain commonly-cited (classic) 

models that also operate with a low set of risk factors. For our classic models, we choose 

to employ the Fama-French three-factor model (FF3)33, the Novy-Marx four-factor model 

(NM4)34, and the Carhart four-factor model (C4)35. 

It is worth noting that we cannot perceive comparisons between our method and 

classic models as being fair since we begin our research based on a large set of potential 

risk factor candidates aimed at explaining the cross-section of expected returns. Hence, 

with the purpose of evaluating our methodology’s empirical performance, we choose to 

compare it to other approaches documented by research papers on the factor zoo 

literature.  

As already mentioned, a well-known fact in this literature, as endorsed by Kozak, 

Nagel, and Santosh (2020), is that it is not possible to explain the cross-section of 

expected returns in a satisfactory manner with a small number of risk factors, even though 

only a few principal components (PCs) of risk factors are capable of achieving highly 

satisfactory results. From this standpoint, and seeking to compare our findings to results 

attained with the principal component analysis36, we also test an FM procedure using two 

alternative risk factor sets. The first one stems from the first four PCs from #. This makes 

for an interesting comparison since PCs represent orthogonal regions of the risk factor 

covariance matrix, and even though our clusters from the precision matrix are not 

necessarily orthogonal to each other, risk factors selected by #sh  also denote key 

                                                

31 Éo# $ a 0#Ï5#Ð60#Ï5#Ð6ÑÒÏÓÏ½ %`5b½+Ô . 

32 ÉoÄ $ a 0Ä�Ï5Ä�60Ä�Ï5Ä�6ÑÒÏÓÏ½ %`5b½+Ô . 

33 Risk factors are Mkt, SMB, HML. See Fama and French (1993) for a reference on this model. 
34 Risk factors are Mkt, SMB, HML and GP. The GP risk factor is proposed by Novy-Marx (2013). 
35 Risk factors are Mkt, SMB, HML and MOM. For a description of the MOM risk factor, see Carhart 

(1997). In this paper, we apply the six-month MOM risk factor, as described by Jegadeesh and Titman 

(1993).  
36  See Kelly, Pruitt, and Su (2019) and Gu, Kelly, and Xiu (2019) for principal component analysis 

applications regarding the factor zoo. 
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components from different regions. As we pointed out before, the advantage of our 

methodology is that we are able to recover risk factors that pose economic meanings 

differently from PCs which do not present direct economic interpretation. The second 

entails the four-risk factor that yields the highest factor loadings for the first principal 

component of # (FG9)37. Since the first principal component is the latent factor with the 

largest variance, each of these four selected risk factor candidates may help to make a 

satisfactory proposal compared to the risk factor covariance matrix, thereby being a good 

set of candidates to explain the cross-section of expected returns.  

Another prominent segment of factor-zoo38 literature applies the elastic net model 

(H' and H" regularization) to estimate either factor risk prices or premia, depending on 

the research focus. In light of the foregoing, and in order to have a lasso-type estimator 

that we can use to make direct comparisons to our method, we estimate an alternative FM 

procedure with an original high-dimensional vector of risk factors (F $ �9 in or sample) 

as well as an elastic net penalization loss function in both the first and second-passes. 

Consequently, we can express the loss function in the time-series regression as: 

T%Á;( #+ $ '
"a 0];(b \ Õ; \Á;̀ #Å6" À ¡*' »'" %9 \ Õ*'+OÁO"" À Õ*'OÁO'¼b̀c'   (17) 

where ¡*' (regularization parameter) is chosen by a three-fold cross-validation method, 

and Õ*'  is set to 0.5 to have both H' and H" penalizations (elastic net estimator). We 

apply the same rolling-window estimation procedure for %9Ö+, using the exact same Z½z 
time-window length to estimate betas that we use on %9S+ for the regular FM approach. 

Thus, this alternative FM procedure also yields a sequence of betas such as DÁo×Ø(;(bEbcb½`
, 

whereas subscription ×Ø  refers to elastic net estimators. For the second-pass cross-

sectional regression, we employ the following loss function: 

T0Ä(Áo×Ø6 $ 9
S¢0];(b \ ¡È \ Ä2̀Áo×Ø(Ù(b6" À ¡*" ±9S %9 \ Õ*"+ÚÄ2Ú"

" À Õ*"ÚÄ2Ú'³
Û

;c'
 (18) 

where ¡*" is also selected by a three-fold cross-validation method, while Õ*" is likewise 

set to 0.5 in order to generate an elastic net estimator for factor risk premia for each cross-

sectional regression. Using the FM procedure in equation %9Ü+ as the loss function in the 

second-pass, we also achieve a sequence of estimated factor risk premia such as 

                                                
37 Factor loading is the correlation coefficient between the principal component and the original random 

variable.  
38 Feng, Giglio, and Xiu (2020), Freyberger, Neuhierl, and Weber (2020) and Kozak, Nagel, and Santosh 

(2020).!
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DÄ�×Ø(bEbcb½`
. From there on, we proceed to calculate !" and the adjusted !" for each cross-

section, in addition to comparing averages of both measures to results attained with the 

regular FM procedure. 

Last but not least, we compute the one-step-ahead forecast for all models with the 

aim of evaluating and comparing out-of-sample (OOS) results among them. Since we are 

able to calculate the estimator DÁo;(bEbcb½`
 and DÄ�bEbcb½`

 for each methodology we propose, 

and our interest lies in explaining the cross-section of expected returns, we estimate the 

one-step-ahead forecast as follows: 

]Ý;(b�' $ ¡�È(b ÀÁo;(bÄ�2(b (19) 

It is worth noting that the forecast computed with %9Þ+ is entirely out-of-sample. 

For each cross-section, we calculate the root-mean-square-error (!.ßàb ) 39  for Z $
Z½( ) ( d \ 9 , and then compare root-mean-square-error averages (�á� !.ßà ) 40  and 

square-error medians (.� !.ßà)41 across all models.  

3.! Database 

In our research, we look at the factor zoo dataset compiled by Kozak, Nagel, and 

Santosh (2020) with monthly data ranging from January 1981 to December 201642. It 

consists of 51 risk factors, the first being the Excess Market Return43 gathered from the 

French Library44 , while the remaining 50 are zero-investment, long-short portfolios 

constituted by well-known traits described in the asset-pricing literature. In accordance 

with Feng, Giglio, and Xiu (2020), we split each risk factor into six types of groups: Value 

vs Growth; Investment; Profitability; Momentum; Intangibles; and Trading Frictions45. 

This a priori rating system provides us with some interesting tools to assess whether said 

                                                

39 !.ßàb $ âa 0ãÝ¹(Ï5ã¹(Ï6Ôä¹Óå
Û , where æ is the number of assets presents on the cross-section are period Z. 

Since we estimate the one-step-ahead forecast, we lose one observation; thus, we are able to compute OOS 

results only with Z $ Z½( ) ( zd \ 9 as opposed to Z $ Z½( ) ( zd. 

40 �á�!.ßà $ a ç¬sèÏÒéåÏÓÏ½
`5b½5' . 

41 .� !.ßà $ IYXwuV%!.ßàb+zZ $ Z½( ) ( d \ 9. 
42 Data can be downloaded from: https://www.serhiykozak.com/data.!
43 Sharpe (1964). 
44 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
45 Risk factor dataset results show nine risk factors from the Momentum group; 11 from the Value vs. 

Growth group; eight from the Investment group; 13 from the Profitability group; one from the Intangibles 

group; and nine from the Trading Frictions group. 
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categories are conditionally dependent, in addition to whether precision matrix clusters 

concentrate risk factors from specific category types. Table A1 of the Appendix 

summarizes risk factor descriptions and statistics.  

In regards to cross-sectional returns, there is a trade-off between the choice of 

portfolio and individual assets. Although portfolios do not produce missing data by 

construction (balance panel), they do have a tendency of showing a bias towards traits 

used to build them as highlighted by Harvey and Liu (2019). As a result, and due to the 

fact that the FM procedure supports a large unbalanced panel, we choose to focus on 

individual assets from the CRSP stock return dataset. To compose excess asset returns, 

we set one-month maturity USD LIBOR interest rates as risk-free. Since we adopt a 60-

month time window for the first-pass of our FM procedure, we consequently disregard 

assets with less than 60 observations. Additionally, we remove stocks from the financial 

sector. Using these procedures, our dataset accounts for 14,317 individual stocks (CSRP). 

Considering that this first dataset also consists of small-caps, which may yield 

significantly illiquid stocks, we create a second stock-free excess return set with prices 

lower than USD 5.00, thereby leading to a dataset with 10,221 individual assets (CRSP 

without small-caps).  

4.! Results 

4.1.Network result and selected risk factors 

Figure 1 displays the graphic representation of the estimated risk factor network 

described as e��. After using our sparse precision matrix estimator 04opqrsst6 to compute 

the set edge of e��, we can deem e�� a sparse estimated representation for joint risk factor 

distribution F%#+. Results attained with e��  lead to some interesting features of F%#+. 
First, our method selects an optimal regularization parameter (_ ) close to 0.11. As 

expected, as _  increases, the estimated conditional dependence among risk factors 

decreases, as we can see in Figure A1 at the Appendix. Since _Ýsbrçs ê =�99, average risk 

factor conditional dependence numbers correspond to 14.2. In other words, a risk factor 

is, on average, linked to 14.2 other risk factors from an universe of 51 risk factors. With 

21 links, Share Repurchases46  is the risk factor with the most connections, in stark 

                                                
46 Described in Ikenberry, Lakonishok, and Vermaelen (1995). 
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contrast to the Short-term Reversal47, which is the risk factor with the smallest number of 

relations across all of them with only six conditional dependent links. As we see in Figure 

1, the risk factor categories, illustrated according to the node color, is not necessarily 

grouped into clusters since that a coloring pattern does not emerges. Therefore, Figure 1 

suggests that risk factors from different categories interact within each other too, thereby 

implying that systematic risks across different kinds of sources are also related. 

 

Figure 1: Graphic representation of the estimated risk factor network 0ëoì6 

 

Note: The figure displays graphic representation of the estimated risk factor network 0e��6 . As 

described in section 2.1., we estimate the risk factor joint distribution precision matrix by graph lasso 

in order to obtain íopqrsst. By StARS procedure, we find an optimal regularization parameter _Ýsbrçs ê=�99 . As described in section 2.2., we compute our estimated risk factor network by e�� $e� �� $ #(�0íopqrsst6�. In this picture, each node represents a risk factor and the edge between than 

indicates :�pqrsst(;(< � =, which means conditional dependence among the risk factors w and � given all 

others risk factors. The node color represents the risk factor category (blue for Value vs Growth; green 
for Investment; yellow for Profitability; orange for Momentum; dark blue for Intangibles; and red for 

Trading Frictions).

 

 

We describe risk factors (before e��  is clusterized) selected pursuant to each 

centrality measure in Table 1. We dub these models by global centrality selection. As we 

have already pointed out, Share Repurchases is the element with the most connections 

within this network, even though its choice as the main risk factor in the precision matrix 

                                                
47 See Jegadeesh (1990).!
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(only Betweenness selected Dividend Yield48) is merely an empirical coincidence. This 

result is a consequence of high correlations among centrality measures, which we can 

observe in Figure A2 at the Appendix. We note that the smallest correlation among 

centrality measures is between the Eigenvector and Betweenness models, which is still 

0.52, and, consequently, significant.  

 

Table 1: Risk factor global centrality selection 

Description Ret. S.R. Category Reference Code 
Eigenvector            

Share Repurchases  0.029 0.172 Trading Frictions 
Ikenberry, Lakonishok, 
and Vermaelen (1995) 

repurch 

Degree      

Share Repurchases  0.029 0.172 Trading Frictions 
Ienberry, Lakonishok, and 

Vermaelen (1995) 
repurch 

Closeness      

Share Repurchases  0.029 0.172 Trading Frictions 
kenberry, Lakonishok, 
and Vermaelen (1995) 

repurch 

Betweenness      

Dividend Yield  0.022 0.155 Value vs Growth 
Naranjo, Nimalendran, 
and Ryngaert (1998)  

divp 

Note: The table displays the selected risk factor pursuant to each centrality measure %&s+, where &s $�&�� �� $ Iu� ��0e��6�� and � is a centrality measure function. The selection is done before e�� is 

clusterized. For each selected risk factor, the table includes annualized average excess returns, 

annualized Sharpe ratios, a priori category classification, literature reference and code name. 

 

 

Figure 2 exhibits the e�� risk factor network in which the size of the node measures 

each risk factor centrality according to each type of centrality measure. Figure 2 results 

allows us to acknowledge that each of the four types of centrality measures poses very 

similar results. A direct consequence is that, in spite of the e�� clusterization, which we 

will examine ahead, models comprised of the network’s key component are considerably 

similar, and present a high number of risk factors in common. Consequently, we expect 

a similar performance in explaining the cross-section of expected returns to that observed 

in these models, in addition to inferring scarce data as to how information spreads within 

the risk factor network. Fortunately, risk factors selected with our methodology have zero 

intersection with every other alternative model proposed, therefore making it possible for 

us to compare our findings to specific results documented by the literature on the factor 

zoo. 

 

 

                                                
48 See Naranjo, Nimalendran, and Ryngaert (1998). 
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Figure 2: Graph representation of global centrality measures 

 

Note: The figure displays graphic representation of our estimated risk factor network 0e��6 according 

to each centrality measure. In this picture, each node represents a risk factor and the edge between 

than indicates :�pqrsst(;(< � =. The size of each vertex represent value of the its centrality measure (the 

bigger is the size the higher is the measure). The node color represents the risk factor category (blue 

for Value vs Growth; green for Investment; yellow for Profitability; orange for Momentum; dark blue 

for Intangibles; and red for Trading Frictions).  

 

Another very important observation to validate our research entails the fact that 

risk factors present variabilities in degree centralities for each measure. Figure 3 

computes the histogram for centrality measures, enabling one to observe how only a few 

risk factors yield a high degree centrality when we consider each measure. It is important 

to point out that our methodology cannot be applied to homogenous networks where each 

element has the same degree of centrality due to the fact that the element with the highest 

centrality would fail to stand apart from the rest of the set. 
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Figure 3: Global centrality measures histograms 

 

Note: This figure displays the histograms from different centrality measures of our estimated risk factor 

network described by e��. 

 

Applying the Clauset, Newman, and Moore (2004) algorithm to maximize the 

modularity function %99+ results in three clusters shown in Figure 4, suggesting that the 

risk factor precision matrix can be described in three different regions, as represented by 

ªo $ %«¾'( «¾"( «¾î+ with «¾­ being defined as in section 2.3. It is worth mentioning that 

models that select the key component for each cluster are sparse in this empirical case 

since we only have three clusters, and can therefore proceed with our methodology. 

 

Figure 4: Graphic representation of the modularity cluster from our estimated risk factor 

network 0ëoì6 
Cluster 1: %«¾'+ 

 

Cluster 2: %«¾"+ 

 

Cluster 3: %«¾î+ 

 

Note: This figure displays the graphic representation of the clusters (ªo $ %«¾'( ) ( «¾¬++ resulted from 

the modularity function maximization for our estimated risk factor network described by e�� . The 

optimal number of clusters is three (. $ Ç). In this picture, each node represents a risk factor and the 

edge between than indicates :�pqrsst(;(< � =. The node color represents the risk factor category (blue 

for Value vs Growth; green for Investment; yellow for Profitability; orange for Momentum; dark blue 

for Intangibles; and red for Trading Frictions).!

 

The first cluster («¾') entails 13 risk factors, five of which are classified as Value 

vs Growth, and five as Profitability. The second cluster («¾") is the biggest one, featuring 
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24 risk factors, and encompasses over 50% of all risk factors from the Investment, 

Profitability and Trading Frictions models. With 14 factors to account for, the third 

cluster («¾î) concerns Momentum distribution since it incorporates more than 80% of all 

risk factors from such a category. When looking at Figure 4, we find significant 

interaction taking place across each risk factor group, considering that Momentum alone 

stands for over 50% of every risk factor within a cluster, while every other cluster is 

concentrated in risk factors spanning two or three groups. Figure A3 at the Appendix 

shows the risk factor correlation matrix tidy according to the clusters order. As expected, 

risk factor within clusters present higher correlations than risk factors outside clusters. 

Table 2 summarizes the selected risk factor vector pursuant to each centrality 

measure for each cluster result given by ªo $ %«¾'( «¾"( «¾î+ graphs described in Figure 4. 

Since the optimal number of clusters is three (. $ Ç), each centrality measure is able to 

selects three risk factors. We dub these models as cluster models. As highlighted above, 

said models are very similar when compared to the high correlations existing across the 

aforementioned centrality measures. In fact, Eigenvector and Closeness models are 

exactly the same, and the only difference from the Degree model is that Composite 

Issuance49 is the main risk factor from cluster 2 instead of Share Volume50. In regards to 

the Betweenness model, it also poses Value51, a common risk factor across all cluster 

models, as a key component for cluster 1. 

 

                                                
49 See Daniel and Titman (2006). 
50 See Datar, Naik, and Radcliffe (1998). 
51 See Asness and Frazzini (2013). 
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Table 2: Risk factor cluster centrality selection 

Description Ret. S.R. M Category Reference Code 

Eigenvector        

Value (monthly) 0.027 0.161 1 
Value vs 
Growth 

Asness and Frazzini (2013) valuem 

Share Volume -0.037 -0.222 2 
Trading 

Frictions 

Datar, Naik, and Radcliffe 

(1998) 
shvol 

Industry Momentum 0.042 0.244 3 Momentum 
Moskowitz and Grinblatt 

(1999) 
indmom 

Degree       

Value (monthly)  0.027 0.161 1 
Value vs 
Growth 

Asness and Frazzini (2013) valuem 

Composite Issuance  -0.086 -0.543 2 Profitability Daniel and Titman (2006) ciss 

Industry Momentum  0.042 0.244 3 Momentum 
Moskowitz and Grinblatt 

(1999) 
indmom 

Closeness       

Value (monthly)  0.027 0.161 1 
Value vs 

Growth 
Asness and Frazzini (2013) valuem 

Share Volume  -0.037 -0.222 2 
Trading 
Frictions 

Datar, Naik, and Radcliffe 
(1998) 

shvol 

Industry Momentum  0.042 0.244 3 Momentum 
Moskowitz and Grinblatt 

(1999) 
indmom 

Betweenness       

Value (monthly)  0.027 0.161 1 
Value vs 
Growth 

Asness and Frazzini (2013) valuem 

Industry Relative 
Reversals  

-0.133 -0.808 2 Momentum 
Da, Liu, and Schaumburg 

(2014) 
indrrev 

Investment-to-Capital  -0.053 -0.302 3 Investment Xing (2008) invcap 

Note: The table displays the selected risk factor vector pursuant to each centrality measure for each 

cluster result %#sh+, where #sh $ 0&'(�( ) ( &¬(�6, &­(� $ D&�� �� $ Iu�0�%«¾­+6E for I $ 9() (. , 

. $ Ç and � is a centrality measure function. The selection is done after e�� is clusterized. For each 

selected risk factor, the table includes annualized average excess returns, annualized Sharpe ratios, 

cluster origin, a priori category classification, literature reference and code name. 

 

 

4.2. Fama-MacBeth Results 

After selecting risk factors for our global and cluster models, we are able to verify 

whether this methodology is in fact capable of explaining the cross-section of expected 

returns. Table 3 shows the factor risk premia estimated with FM procedure global models.  
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Table 3: FM Results for global models 

Base CRSP CRSP without Small Caps 

Coefficient E D C B E D C B 

Intercept Estimate 0.0039* 0.0039* 0.0039* 0.0055*** 0.0058*** 0.0058*** 0.0058*** 0.006*** 

S. Error 0.0022 0.0022 0.0022 0.0021 0.0018 0.0018 0.0018 0.0016 

p-value 0.0832 0.0832 0.0832 0.0080 0.0014 0.0014 0.0014 0.0002 

Share 

Repurchases 

Estimate (0.0041) (0.0041) (0.0041)  (0.0057)*** (0.0057)*** (0.0057)***  

S. Error 0.0031 0.0031 0.0031  0.0028 0.0028 0.0028  

p-value 0.1888 0.1888 0.1888  0.0435 0.0435 0.0435  

Dividend 

Yield 

Estimate    (0.0030)    (0.0063)*** 

S. Error    0.0027    0.0024 

p-value    0.2690    0.0095 

Av. adjusted !" 0.043 0.043 0.043 0.039 0.054 0.054 0.054 0.052 

Note: The table displays the Fama and MacBeth (FM) results for the global models. The FM complete 

procedure is described in Section 2.5. Columns E, D, C and B refers to selected risk factor pursuant 
to eigenvector, degree, closeness and betweenness centrality measure respectively. The selection is 

done before e�� is clusterized (global models described in Table 1). The results are reported both for 

complete and without small caps CRSP datasets. The average number of securities in each cross-

sectional regression is 4,041 and 2,885 for complete and without small caps CRSP datasets 

respectively. For each model and each dataset, the table includes the estimated risk premia, standard 

error and the p-value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ � =. The 

subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of 
significance, respectively.  

 

Table 4 summarizes the same results for cluster models. By comparing such 

results, we observe that the average adjusted !" for cluster models is higher (almost two-

fold) than global models for both CRSP and CRSP without small-cap samples. For global 

models, on the other hand, none of the factor risk premium parameter is significant in the 

full CRSP sample. If we ignore small-caps, though, every factor risk premium parameter 

becomes significant, an expected result when we consider that small-cap stocks are 

known to yield more idiosyncratic elements than other stocks. 

In regards to cluster models, we have significant factor risk premium parameter 

in both samples (with and without small-caps). Nevertheless, it is important to point out 

that the only significant risk premium factor, in each case52, comes from cluster 2. All 

other factor risk premium parameters are insignificant. In summary, cluster models are 

superior to global models since they yield a higher adjusted !" as well as significant 

factor risk premia, even in the full CRSP sample. Nonetheless, this result is driven by 

information originating from the second region of the precision matrix. 

 

                                                
52 The Share Volume risk factor applies to Eigenvector and Closeness models; the Composite Issuance risk 

factor applies to the Degree model; and the Investment to Capital ratio risk factor apples to the Betweenness 

model. 
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Table 4: FM Results for cluster models 

Base CRSP CRSP without Small Caps 

Coefficient E D C B E D C B 

Intercept Estimate 0.0020  0.0019  0.0020  0.0034*** 0.0033*** 0.0037*** 0.0033*** 0.0049*** 

S. Error 0.0015  0.0015  0.0015  0.0016  0.0012  0.0013  0.0012  0.0013  

p-value 0.1752  0.2231  0.1752  0.0313  0.0076  0.0043  0.0076  0.0002  

Value 

(monthly)  

Estimate (0.0006) (0.0009) (0.0006) (0.0012) (0.0022) (0.0028) (0.0022) (0.0035) 

S. Error 0.0029  0.0030  0.0029  0.0029  0.0027  0.0027  0.0027  0.0027  

p-value 0.8276  0.7592  0.8276  0.6806  0.4260  0.3068  0.4260  0.2057  

Industry 

Momentum  

Estimate 0.0010  0.0012  0.0010    0.0007  0.0018  0.0007    

S. Error 0.0031  0.0031  0.0031   0.0028  0.0028  0.0028   

p-value 0.7341  0.6952  0.7341    0.8067  0.5262  0.8067    

Share 

Volume  

Estimate 0.0047*   0.0047*   0.007***   0.007***   

S. Error 0.0028   0.0028   0.0027   0.0027   

p-value 0.0972    0.0972    0.0093    0.0093    

Composite 

Issuance  

Estimate   0.0052*       0.008***     

S. Error   0.0030      0.0027    

p-value   0.0809        0.0030      

Investment-

to-Capital  

Estimate       0.0054*       0.0077*** 

S. Error     0.0030      0.0029  

p-value       0.0721        0.0078  

Industry 

Relative 

Reversals  

Estimate       0.0017        0.0003  

S. Error     0.0028      0.0027  

p-value       0.5555        0.9061  

Av. adjusted !" 0.098 0.096 0.098 0.096 0.115 0.111 0.115 0.112 

Note: The table displays the Fama and MacBeth (FM) results for the cluster models. The FM complete 

procedure is described in Section 2.5. Columns E, D, C and B refers to selected risk factor pursuant 

to eigenvector, degree, closeness and betweenness centrality measure respectively. The selection is 

done after e�� is clusterized (cluster models described in Table 2). The results are reported both for 

complete and without small caps CRSP datasets. The average number of securities in each cross-

sectional regression is 4,041 and 2,885 for complete and without small caps CRSP datasets 

respectively. For each model and each dataset, the table includes the estimated risk premia, standard 

error and the p-value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ � =. The 

subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of 

significance respectively.  

 

Classic model results are displayed in Table 5. The average adjusted !" is slightly 

better than in our global models, though lower in every case when we compare it to our 

cluster models. When we consider the full CRSP sample, classic models do not show any 

significant estimated factor risk premia. And when small-caps are removed from the 

CRSP dataset, the risk premium for the Excess Market Return becomes significant for the 

FF3 and NM4 models, although it remains insignificant in the C4 model. Gross 

Profitability is significant in the NH4 model, whereas Momentum is not significant in the 

C4 model. 

In the next step, we compute the FM procedure for the first four PCs of # whose 

results are described in Table 6. The first four PCs account for approximately 80% of the 

total cumulative variance of #, as we observe in Figure A4 at the Appendix, resulting in 

promising risk factor candidates to explain cross-sectional returns.  
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Table 5: FM Results for classic models 

Base CRSP CRSP without Small Caps 

Coefficient FF3 NM4 C4 P5 FF3 NM4 C4 P5 

Intercept Estimate 0.0032** 0.0035*** 0.0029** 0.0031** 0.0039*** 0.0038*** 0.0037** 0.0036** 

S. Error 0.0013  0.0013  0.0012  0.0012  0.0009  0.0009  0.0008  0.0008  

p-value 0.0182  0.0070  0.0197  0.0106  0.0000  0.0000  0.0000  0.0000  

Excess 

Market 

Return  

Estimate 0.0026  0.0025  0.0028  0.0026  0.0046* 0.0046* 0.0045  0.0044  

S. Error 0.0027  0.0027  0.0027  0.0026  0.0025  0.0025  0.0025  0.0025  

p-value 0.3372  0.3610  0.2963  0.3213  0.0715  0.0697  0.0690  0.0717  

Size  Estimate (0.0025) (0.0029) (0.0031) (0.003) -0.0059** -0.0065** -0.006** (0.006) 

S. Error 0.0028  0.0028  0.0027  0.003  0.0026  0.0026  0.0026  0.003  

p-value 0.3823  0.3002  0.2571  0.217  0.0253  0.0124  0.0199  0.012  

Value  Estimate (0.0024) (0.0025) (0.0021) (0.0024) (0.0037) (0.0037) (0.0038) (0.0039) 

S. Error 0.0028  0.0028  0.0027  0.0027  0.0027  0.0027  0.0026  0.0026  

p-value 0.3986  0.3700  0.4321  0.3886  0.1640  0.1609  0.1475  0.1441  

Gross 

Profitability  

Estimate   0.0034    0.0035    0.0047*   0.0047  

S. Error   0.0028   0.0027    0.0026   0.0026  

p-value   0.2205    0.1981    0.0707    0.0703  

Momentum 

(6m)  

Estimate     (0.0002) 0.0000      0.0003  0.0005  

S. Error    0.0030  0.0029     0.0028  0.0028  

p-value     0.9343  0.9987      0.9101  0.8476  

Av. adjusted !" 0.048 0.060 0.060 0.071 0.058 0.071 0.066 0.082 

Note: The table displays the Fama and MacBeth (FM) results for the classic models. The FM complete 

procedure is described in Section 2.5. Columns FF3, NM4, C4 and P5 refers to classic models 

described in Section 2.6. The results are reported both for complete and without small caps CRSP 

datasets. The average number of securities in each cross-sectional regression is 4,041 and 2,885 for 

complete and without small caps CRSP datasets respectively. For each model and each dataset, the 

table includes the estimated risk premia, standard error and the p-value for null hypothesis ïÈ� ¡ $ = 

against the alternative hypothesis ï'� ¡ � =. The subscription ½,½½ and ½½½ indicates that the null 

hypothesis is rejected at 10%, 5% and 1% level of significance respectively.  
 

 

Table 6, in turn, shows that none of the PCs are significant for full CRSP samples. 

In regards to the dataset without small-caps, only the first principal component is 

significant across all models, while the fourth principal component is significant in the 

PC4 model. The average adjusted !" for the PC3 and PC4 models is attuned to the results 

from our cluster models. 
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Table 6: FM Results for PCs models 

Base CRSP CRSP without Small Caps 

Coefficient PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Intercept Estimate 0.0042** 0.0035** 0.0021  0.0024* 0.0057*** 0.0046*** 0.0035*** 0.0035*** 

S. Error 0.0019  0.0016  0.0015  0.0014  0.0017  0.0013  0.0013  0.0011  

p-value 0.0286  0.0296  0.1735  0.0912  0.0007  0.0007  0.0053  0.0011  

PC1 Estimate 0.0191  0.0167  0.0148  0.0148  0.0263** 0.0263** 0.0243** 0.0237** 

S. Error 0.0129  0.0129  0.0126  0.0125  0.0119  0.0122  0.0121  0.0120  

p-value 0.1397  0.1948  0.2410  0.2372  0.0278  0.0319  0.0455  0.0499  

PC2 Estimate   (0.0047) (0.0018) (0.000)   (0.0056) (0.0027) 0.000  

S. Error   0.0080  0.0076  0.007    0.0073  0.0072  0.007  

p-value   0.5582  0.8148  0.986    0.4390  0.7055  0.962  

PC3 Estimate     0.0045  0.0035      0.0050  0.0044  

S. Error    0.0066  0.0065     0.0058  0.0057  

p-value     0.4985  0.5916      0.3866  0.4441  

PC4 Estimate       (0.0063)       -0.0098** 

S. Error     0.0050      0.0044  

p-value       0.2081        0.0273  

Av. adjusted !" 0.042 0.074 0.100 0.124 0.055 0.088 0.116 0.143 

Note: The table displays the Fama and MacBeth (FM) results for the PCs models. The FM complete 

procedure is described in Section 2.5. Columns PC1, PC2, PC3 and PC4 refers to principal 

components’ models described in Section 2.6. The results are reported both for complete and without 

small caps CRSP datasets. The average number of securities in each cross-sectional regression is 

4,041 and 2,885 for complete and without small caps CRSP datasets respectively. For each model 

and each dataset, the table includes the estimated risk premia, standard error and the p-value for null 

hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ � =. The subscription ½,½½ and ½½½ 
indicates that the null hypothesis is rejected at 10%, 5% and 1% level of significance respectively.  

 

Considering the PC1 (first principal component) risk premium significance, we 

also test models with four-risk factors that yield the highest factor loadings for the first 

principal component of #, leading to models that we dub as PC1 loadings. Figure A5 at 

the Appendix shows factor loadings for the first principal component of #. It is interesting 

to note that all four factors with the highest loadings on the first principal component 

(Firm Age, Investment to Capital, Share Issuance [Monthly and Annual]) come from the 

second cluster. Table 7 summarizes estimated results for PC1 loadings models. As we 

can see, unlike previous models with the exception of cluster models, PC1 loadings 

models achieve significant factor risk premium estimators for both CRSP and CRSP 

samples without small-caps. Model 4 presents an average adjusted !" slightly worse than 

in cluster models’ statistics. Consequently, Table 7 also supports specific evidence that 

favors risk factors from the second region of the precision matrix. 

In general terms, we determine that our cluster models as well as the PC1 loadings 

models are the only ones that present significant estimated factor risk premia parameters 

in the full CRSP sample. After comparing each cluster model to each PC1 loadings model, 

we observe that cluster models achieve a higher average adjusted !" in both samples. 
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When, in turn, we look at the in-sample result, only PC3 and PC4 models display average 

adjusted !" numbers higher than cluster models; nevertheless, they are unable to provide 

significant factor risk premia for the full CRSP dataset. Thus, FM results support cluster 

models when we take into consideration each sparse model tested so far. In regards to in-

sample average adjusted !" numbers, they range from approximately 0.09 for the CRSP 

full sample, to 0.11 for the CRSP with small-cap samples, a satisfactory outcome 

according to Campbell and Thompson (2008). 

 

Table 7: FM Results for PC1 loadings models 

Base CRSP CRSP without Small Caps 

Coefficient Model1 Model2 Model3 Model4 Model1 Model2 Model3 Model4 

Intercept Estimate 0.0032* 0.0031* 0.0027  0.0033** 0.0049*** 0.005*** 0.0047*** 0.0052*** 

S. Error 0.0018  0.0017  0.0017  0.0016  0.0015  0.0014  0.0014  0.0014  

p-value 0.0771  0.0728  0.1086  0.0454  0.0014  0.0007  0.0011  0.0002  

Firm Age  Estimate (0.0053) (0.0051)* (0.0046) (0.0047) (0.006)*** (0.0071)** (0.0068)** (0.0071)** 

S. Error 0.0032  0.0031  0.0030  0.0030  0.0029  0.0028  0.0027  0.0028  

p-value 0.1011  0.0942  0.1272  0.1155  0.0187  0.0119  0.0138  0.0108  

Investment-

to-Capital  

Estimate   0.007** 0.0065** 0.0064**   0.0081*** 0.0077*** 0.008*** 

S. Error   0.0031  0.0031  0.003    0.0029  0.0028  0.003  

p-value   0.0258  0.0350  0.037    0.0048  0.0057  0.005  

Share 

Issuance 

(monthly)  

Estimate     0.0051* 0.0051*     0.0057** 0.006** 

S. Error    0.0030  0.0031     0.0028  0.0028  

p-value     0.0967  0.0965      0.0437  0.0347  

Share 

Issuance 

(annual)  

Estimate       0.0050        0.0058** 

S. Error     0.0031      0.0029  

p-value       0.1130        0.0459  

Av. adjusted !" 0.043 0.065 0.089 0.107 0.057 0.081 0.106 0.125 

Note: The table displays the Fama and MacBeth (FM) results for the PC1 loadings models. The FM 

complete procedure is described in Section 2.5. Columns Model1, Model2, Model3 and Model4 refers 

to PC1 loadings models described in Section 2.6. The results are reported both for complete and 

without small caps CRSP datasets. The average number of securities in each cross-sectional 

regression is 4,041 and 2,885 for complete and without small caps CRSP datasets respectively. For 

each model and each dataset, the table includes the estimated risk premia, standard error and the p-

value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ � =. The subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of significance 

respectively.  

 

Results from using our lasso-type estimator (the alternative FM method described 

in section 2.5) are summarized in Table 8 from which we observe that the average 

adjusted !" is around 0.17 and 0.24, respectively, for CRSP and CRSP datasets without 

small-caps, higher than the average adjusted !" exhibited by every other sparse model 

tested. However, the number of average risk factor predictors in each cross-sectional 

regression is 11.7 and 19.7 for the respective datasets. Consequently, this entails that we 

start moving away from sparse models. 
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Table 8: FM Results for lasso model 

Base CRSP CRSP without Small Caps 

Av. adjusted !" 0.172 0.244 

Av. number predictors 11.7 19.7 

Note: The table displays the Fama MacBeth (FM) results for the lasso model which is described in 

Section 2.6. The results are reported both for complete and without small caps CRSP datasets. The 

average number of securities in each cross-sectional regression is 4,041 and 2,885 for complete and 

without small caps CRSP datasets respectively. For each dataset, the table includes the average 

adjusted !" and the average number of non-zero predictors from the FM second-pass procedure 

describe by equation (18). 

!

4.3.Time-Varying Robustness 

Variations regarding the explanatory power of individual factors in the cross-

section of expected returns over time is something commonly described in research 

papers on the factor zoo literature53. Taking such an observation into consideration, and 

seeking to examine this well-known fact, we proceed to split our samples in half so that 

the first part ranges from January 1981 to December 1998, while the second encompasses 

the time frame from January 1999 to December 2016. For these samples we apply the 

same methodology described in Sections 2.1. to 2.4. 

 

Figure 7: Risk factor`s global centrality measures histograms and correlations 

First Half 

 

Second Half 

 
Note: This figure displays the histograms and correlations from different centrality measures of our 

estimated risk factor network for different samples periods. The first half ranges from January 1981 to 

December 1998 and the second half ranges from January 1999 to December 2016. Letter e, d, c and b 

refers to Eigenvector, Degree, Closeness and Betweenness centrality measure respectively. 

 

Figure 7 shows correlations among centrality measures for both time frames, 

which enables us to verify high correlations between Eigenvector, Degree and Closeness 

                                                
53 See Freyberger, Neuhierl, and Weber (2020) and Green, Hand, and Zhang (2017). 
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models in both samples. Although Betweenness accounts for lower correlations in regards 

to the remaining models, it remains positive and only becomes insignificant in the second 

half of the sample, after we compute it against the Eigenvector centrality measure. Table 

9 describes selected risk factors according to each centrality measure %&s+ for different 

sampling periods.  

Table 9: Risk factor global centrality selection 

All samples First Half Second Half 

Eigenvector  

Share Repurchases  Investment-to-Capital  Firm Age 

Degree 

Share Repurchases  Value Firm Age 

Closeness 

Share Repurchases  Investment-to-Capital  Share Repurchases  

Betweenness 

Dividend Yield  Price Price 

Note: The table displays the selected risk factor pursuant to each centrality measure %&s+ for different 

samples periods, where &s $ �&�� �� $ Iu� ��0e��6�� and � is a centrality measure function. The 

selection is done before e�� is clusterized. The first half ranges from January 1981 to December 1998 

and the second half ranges from January 1999 to December 2016. 

 

After maximizing modularity %99+, the number of optimal clusters remains three 

for all sampling periods, and Table 10 illustrates selected risk factor vectors according to 

each centrality measure and precision matrix cluster for different sampling periods. We 

note that selected risk factors usually differ across different periods, though oftentimes 

they are the same within certain periods of both global and cluster models. In fact, when 

it comes to cluster models, all four centrality measures attain the same model for the first 

half of the sampling period. This reflects high correlations found among centrality 

measures shown in Figure A2 and Figure 7.  

For the FM procedure, and given that we are still using the 60-month time window 

for the first-pass, results from second-pass regressions apply cross-sections estimated 

from January 1986 to December 1998 in the first half, and from January 2004 to 

December 2016 for the second half. Table 11 and Table 12 display FM results for global 

and cluster models, respectively, for the first half period. This allows us to conclude that 

Investment to Capital is the only risk factor from global models that poses a significant 

estimator for the CRSP without small-cap samples. 
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Table 10: Risk factor cluster centrality selection 

All samples First Half Second Half 

Eigenvector  

Value (monthly)  Firm Age Composite Issuance 

Share Volume  Value Return on Assets (annual) 

Industry Momentum  Price Price 

Degree 

Value (monthly)  Firm Age Beta Arbitrage 

Composite Issuance  Value Return on Assets (annual) 

Industry Momentum  Price Price 

Closeness 

Value (monthly)  Firm Age Beta Arbitrage 

Share Volume  Value Return on Assets (annual) 

Industry Momentum  Price Price 

Betweenness 

Value (monthly)  Firm Age Beta Arbitrage 

Industry Relative Reversals  Value Return on Assets (annual) 

Investment-to-Capital  Price Price 

Note: The table displays the selected risk factor vector pursuant to each centrality measure for each cluster result %#sh+  for different samples periods, where #sh $ 0&'(�() ( &¬(�6 , &­(� $ D&�� �� $ Iu�0�%«¾­+6E  for I $
9() (., and � is a centrality measure function. The selection is done after e�� is clusterized. . $ Ç for all the 
three different sample periods. The first half ranges from January 1981 to December 1998 and the second half 
ranges from January 1999 to December 2016. 

 

Table 11: FM Results for global models for the first half sample 

Base CRSP CRSP without Small Caps 

Coefficient E D C B E D C B 

Intercept Estimate 0.0054  0.0049  0.0054  0.0026  0.0034  0.0057** 0.0034  0.005* 

S. Error 0.0037  0.0035  0.0037  0.0034  0.0021  0.0024  0.0021  0.0026  

p-value 0.1505  0.1732  0.1505  0.4424  0.1180  0.0186  0.1180  0.0559  

Investment-

to-Capital  

Estimate 0.0017    0.0017   0.0067**   0.0067**  

S. Error 0.0044   0.0044   0.0033   0.0033   

p-value 0.7030    0.7030   0.0463    0.0463   

Value  Estimate   (0.0012)       (0.0051)     

S. Error   0.0035      0.0033    

p-value   0.7401        0.1202      

Price  Estimate       (0.0025)       (0.0035) 

S. Error     0.0029      0.0024  

p-value       0.3859        0.1476  

Av. adjusted !" 0.029 0.029 0.029 0.030 0.055 0.044 0.055 0.040 

Note: The table displays the Fama and MacBeth (FM) results for the global models. The FM complete 

procedure is described in Section 2.5. Columns E, D, C and B refers to selected risk factor pursuant 

to eigenvector, degree, closeness and betweenness centrality measure respectively. The selection is 

done before e�� is clusterized (global models described in Table 1). The results are reported both for 

complete and without small caps CRSP datasets. The FM second-pass regressions results apply cross-

sections estimated from January 1986 to December 1998. The average number of securities in each 

cross-sectional regression is 3,825 and 2,528 for complete and without small caps CRSP datasets 
respectively. For each model and each dataset, the table includes the estimated risk premia, standard 

error and the p-value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ � =. The 

subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of 

significance respectively.  
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Table 12: FM Results for cluster models for the first half sample 

Base CRSP CRSP without Small Caps 

Coefficient E D C B E D C B 

Intercept Estimate 0.0029  0.0029  0.0029  0.0029  0.0046** 0.0046** 0.0046** 0.0046** 

S. Error 0.0025  0.0025  0.0025  0.0025  0.0020  0.0020  0.0020  0.0020  

p-value 0.2484  0.2484  0.2484  0.2484  0.0253  0.0253  0.0253  0.0253  

Firm Age  Estimate (0.0031) (0.0031) (0.0031) (0.0031) (0.0050) (0.0050) (0.0050) (0.0050) 

S. Error 0.0032  0.0032  0.0032  0.0032  0.0031  0.0031  0.0031  0.0031  

p-value 0.3386  0.3386  0.3386  0.3386  0.1059  0.1059  0.1059  0.1059  

Value  Estimate (0.0024) (0.0024) (0.0024) (0.0024) (0.0042) (0.0042) (0.0042) (0.0042) 

S. Error 0.0033  0.0033  0.0033  0.0033  0.0032  0.0032  0.0032  0.0032  

p-value 0.4745  0.4745  0.4745  0.4745  0.1840  0.1840  0.1840  0.1840  

Price  Estimate (0.0012) (0.0012) (0.0012) (0.0012) (0.0020) (0.0020) (0.0020) (0.0020) 

S. Error 0.0029  0.0029  0.0029  0.0029  0.0025  0.0025  0.0025  0.0025  

p-value 0.6852  0.6852  0.6852  0.6852  0.4249  0.4249  0.4249  0.4249  

Av. adjusted !" 0.081 0.081 0.081 0.081 0.097 0.097 0.097 0.097 

Note: The table displays the Fama and MacBeth (FM) results for the cluster models. The FM complete 

procedure is described in Section 2.5. Columns E, D, C and B refers to selected risk factor pursuant 

to eigenvector, degree, closeness and betweenness centrality measure respectively. The selection is 

done after e�� is clusterized (cluster models described in Table 2). The results are reported both for 

complete and without small caps CRSP datasets. The FM second-pass regressions results apply cross-

sections estimated from January 1986 to December 1998. The average number of securities in each 

cross-sectional regression is 3,825 and 2,528 for complete and without small caps CRSP datasets 

respectively. For each model and each dataset, the table includes the estimated risk premia, standard 

error and the p-value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ � =. The 

subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of 

significance respectively.  

 

Table 13 and Table 14 feature global and cluster model results for the second half 

sample. In this case, results are slightly better with Price risk factor premium being 

significant in the Betweenness global model, and three other cluster models for the CRSP 

without small-cap samples. 

Splitting the dataset into half enables us to verify the factor zoo evidence on the 

time-varying explanatory power of individual factors in the cross-section of expected 

returns. Nevertheless, results are considerably poorer compared to those obtained using 

the full sampling period, thereby suggesting that 13-year monthly data time frames for 

FM second-pass regressions may be too short a sample to reach satisfactory results54. 

 

 

 

 

 

 

                                                
54 See Cavalcante Filho et al. (2020) for interesting observations on sample sizes required to obtain a 

robust risk premium estimator. 
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Table 13: FM Results for global models for the second half sample 

Base CRSP CRSP without Small Caps 

Coefficient E D C B E D C B 

Intercept Estimate 0.0051  0.0051  0.0078  0.0019  0.0053** 0.0053** 0.0082*** 0.0027  

S. Error 0.0024  0.0024  0.0036  0.0027  0.0021  0.0021  0.0031  0.0024  

p-value 0.0379  0.0379  0.0311  0.4783  0.0129  0.0129  0.0092  0.2553  

Firm Age  Estimate (0.0004) (0.0004)     (0.0022) (0.0022)    

S. Error 0.0023  0.0023     0.0022  0.0022    

p-value 0.8752  0.8752      0.3328  0.3328     

Share 

Repurchases  

Estimate     0.0025        0.0004    

S. Error    0.0025      0.0024   

p-value     0.3292        0.8745    

Price  Estimate       (0.0043)       (0.0065)** 

S. Error     0.0032     0.0030  

p-value       0.1739        0.0338  

Av. adjusted !" 0.034 0.034 0.034 0.038 0.044 0.044 0.038 0.046 

Note: The table displays the Fama and MacBeth (FM) results for the global models. The FM complete procedure 
is described in Section 2.5. Columns E, D, C and B refers to selected risk factor pursuant to eigenvector, degree, 

closeness and betweenness centrality measure respectively. The selection is done before e�� is clusterized (global 
models described in Table 1). The results are reported both for complete and without small caps CRSP datasets. 

The FM second-pass regressions results apply cross-sections estimated from January 2004 to December 2016. 
The average number of securities in each cross-sectional regression is 4,128 and 3,103 for complete and without 
small caps CRSP datasets respectively. For each model and each dataset, the table includes the estimated risk 

premia, standard error and the p-value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ �=. The subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of 
significance respectively.  

 

Table 14: FM Results for global models for the second half sample 

Base CRSP CRSP without Small Caps 

Coefficient E D C B E D C B 

Intercept Estimate 0.0019  0.0028  0.0028  0.0028  0.0022  0.0026  0.0026  0.0026  

S. Error 0.0021  0.0021  0.0021  0.0021  0.0017  0.0017  0.0017  0.0017  

p-value 0.3617  0.1837  0.1837  0.1837  0.1820  0.1204  0.1204  0.1204  

Composite 

Issuance  

Estimate 0.0009     0.0027     

S. Error 0.0028     0.0027     

p-value 0.7429     0.3292     

Return on 

Assets 

(annual)  

Estimate (0.0009) (0.0016) (0.0016) (0.0016) (0.0029) (0.0047) (0.0047) (0.0047) 

S. Error 0.0039  0.0038  0.0038  0.0038  0.0038  0.0037  0.0037  0.0037  

p-value 0.8114  0.6630  0.6630  0.6630  0.4424  0.2002  0.2002  0.2002  

Price  Estimate (0.0027) (0.0034) (0.0034) (0.0034) (0.0050) (0.0064)** (0.0064)** (0.0064)** 

S. Error 0.0031  0.0029  0.0029  0.0029  0.0031  0.0029  0.0029  0.0029  

p-value 0.3881  0.2430  0.2430  0.2430  0.1040  0.0257  0.0257  0.0257  

Beta 

Arbitrage  

Estimate   0.0020  0.0020  0.0020    0.0041  0.0041  0.0041  

S. Error   0.0032  0.0032  0.0032    0.0031  0.0031  0.0031  

p-value   0.5406  0.5406  0.5406    0.1828  0.1828  0.1828  

Av. adjusted !" 0.088 0.086 0.086 0.086 0.106 0.106 0.106 0.106 

Note: The table displays the Fama and MacBeth (FM) results for the cluster models. The FM complete procedure 
is described in Section 2.5. Columns E, D, C and B refers to selected risk factor pursuant to eigenvector, degree, 

closeness and betweenness centrality measure respectively. The selection is done after e�� is clusterized (cluster 
models described in Table 2). The results are reported both for complete and without small caps CRSP datasets. 
The FM second-pass regressions results apply cross-sections estimated from January 2004 to December 2016. 
The average number of securities in each cross-sectional regression is 4,128 and 3,103 for complete and without 
small caps CRSP datasets respectively. For each model and each dataset, the table includes the estimated risk 

premia, standard error and the p-value for null hypothesis ïÈ� ¡ $ = against the alternative hypothesis ï'� ¡ �=. The subscription ½,½½ and ½½½ indicates that the null hypothesis is rejected at 10%, 5% and 1% level of 
significance respectively.  
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4.4. Out-of-sample Results  

As Abu-Mostafa, Magdon-Ismail, and Lin (2012) point out, as the model’s 

complexity increases, the in-sample performance (IN) will also permanently increase. On 

the other hand, out-of-sample performances (OOS) will start to decrease after the training 

model stops fitting the data structure, and starts fitting the data noise. Thus, we can state 

that a desirable result is a model posing both IN and OOS satisfactory results. Hence, we 

analyze out-of-sample (OOS) results from the one-step-ahead forecast computed, as 

described in section 2.5. 

Table 15 displays statistics for the �á�!.ßà (root-mean-square-error averages) 

and .� !.ßà (root-mean-square-error medians) of every model tested in the previous 

sections. The Degree model from the cluster model group shows the lowest figures for 

�á�!.ßà and .� !.ßà in both samples. Furthermore, all cluster models also scored 

the lowest �á� !.ßà  and .�!.ßà  averages compared to every other model in both 

samples. This outperform is statistically significant in both samples as we observe the 

Diebold-Mariano test results in Table A2 and A3 on the Appendix. Thus, the OOS 

analysis favors our cluster model methodology when compared to every other approach.  

 

Table 15: All models out-of-sample results 

Base CRSP CRSP without Small Caps 

Model/Metric �á� !.ßà .� !.ßà �á� !.ßà .� !.ßà 

Global 
E, D and C 0.1730 0.1599 0.1279 0.1166 

B 0.1725 0.1606 0.1275 0.1162 

Cluster 

E and C 0.1673 0.1543 0.1234 0.1116 

D 0.1672 0.1540 0.1233 0.1113 

B 0.1673 0.1546 0.1235 0.1117 

Classic 

FF3 0.1763 0.1620 0.1298 0.1173 

NM4 0.1775 0.1627 0.1306 0.1185 

C4 0.1776 0.1632 0.1307 0.1183 

P5 0.1787 0.1632 0.1314 0.1192 

PCs 

PC1 0.1726 0.1600 0.1278 0.1171 

PC2 0.1747 0.1611 0.1290 0.1174 

PC3 0.1763 0.1626 0.1299 0.1177 

PC4 0.1776 0.1629 0.1307 0.1182 

PC1 Loadings 

Model1 0.1728 0.1596 0.1278 0.1169 

Model2 0.1740 0.1610 0.1286 0.1174 

Model3 0.1755 0.1618 0.1296 0.1185 

Model4 0.1767 0.1628 0.1303 0.1188 

Lasso type (Elastic Net FM) 0.1732 0.1599 0.1293 0.1175 

Note: The table displays the root mean square error averages (�á� !.ßà) and medians (.� !.ßà) 
across all models relating to the out-of-sample one-step-ahead forecast described in Section 2.6. 
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5.! Conclusion 

Factor risk premia papers have produced hundreds of potential candidates to 

explain the cross-section of expected returns, resulting in the factor zoo problem. 

Unfortunately, the question posed by Cochrane (2011) concerning which risk factor “(…) 

really provides independent information about average returns” remains unanswered. 

Nevertheless, thanks to the advanced computational power, superior dataset as well as 

novel econometric methods, economists are now able to start addressing this issue. 

With this paper, we propose a new methodology to reduce risk factor predictor 

dimensions by employing several tools/resouces from different fields, such as high-

dimensional statistics and network analysis. We estimate the risk factor precision matrix 

using an elastic net penalization. Moreover, we apply risk factor precision matrices’ 

inherent conditional dependence to develop a risk factor network, and argue that its key 

component is best suited to condense information stemming from it. We consequently 

achieve sparsity after selecting its key component (global models). Nevertheless, since 

we are able to clusterize the estimated precision matrix by maximizing modularity, we go 

even further and select a group of risk factors that are the key components within each 

cluster (cluster models). And since the number of clusters is much smaller than the 

dimension of the original risk factor vector, we are also able to achieve a sparse model in 

this second approach. To the best of our knowledge, this is the first time that both 

penalized risk factor precision matrix estimators and network analysis are applied 

together to solve the factor zoo. After selecting these low-dimensional risk factor vector 

candidates, we then apply the FM procedure to evaluate our methodology based on the 

CRSP monthly stock return dataset ranging from January 1981 to December 2016, in 

addition to Kozak, Nagel, and Santosh (2020) factor datasets. 

Our findings imply that cluster models yield better both in and out-of-sample 

results when compared to classic models or specific alternative methods documented in 

the literature about the factor zoo. Cluster model outperformances of global models may 

suggest that investors are more concerned with a smaller and specific set of risk factors 

than with a globally systematic risk summarized from a large set of different risk factors. 

Additionally, the fact that cluster models produced satisfactory results shows that 

applying network analysis may be an interesting method that economists can use to better 

understand joint risk factor distribution, in addition to how its properties can be applied 

to select risk factors with the purpose of explaining the cross-section of expected returns.!

Electronic copy available at: https://ssrn.com/abstract=3691331



 34 

Appendix 

 

A1. Stability approach for regularization selection (StARS) 

We seek to generate / subsample kl with # without replacements with size ð $
Z dj  so that m $ %k'( ) ( kn+, and = ñ ð ñ 9. Next, we define a regularization parameter 

grid ef $ %g'( ) ( gh+, setting gi $ 9 _ij . For each kl and gi , we define �;(<%kl ( gi+, 
where P%kl ( gi+ is the adjacent matrix resulting from the 4opqrsst  estimator described as 

%Ç+ with the kl as the observed data, and gi  as the regularization parameter. Next, we set 

ò;(<%gi+ $ F0�;(<%k'( ) ( knógi+ $ 9z6  and estimate it with ò�;(<%g+ $
'
na �;(<%kl ( g+nlc' . We then proceed to write ô;(<%g+ $ S �ò;(<%g+� �9 \ ò;(<%g+�, and 

estimate it with ôõ;(<%g+ $ S �ò�;(<%g+� �9 \ ò�;(<%g+� . The ô;(<%g+  relation measures 

edge instability, represented as �;(< across all subsamples. Thus, we compute the total 

instability by averaging ôõ;(<%g+ across all edges, resulting in ôõ%g+ $ a a ôõ;(<%g+*<c'*;c' . 

Since a large g tends to generate a dense graph with low ôõ%g+, and our interest lies on a 

sparse result for 4opqrsst , we monotonize ôõ%g+  by ôÐ%g+ $ k��Èöböfôõ%Z+  using 

_Ý{|}~{ $ k��Ag�ôÐ%g+ ¿ ÷B to estimate _{|}~{ �zFinally, following the recommendation 

made by Liu et al. (2010), we set / $ 9==, ð $ =�Þ=, ø $ 9==, and ÷ $ =�=� for the 

StARS procedure. 
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Table A1: Risk factor descriptive statistics 

Description  Ret. S.R. Category Reference Code 
Excess Market Return  0.064 0.418 Value vs Growth (Sharpe 1964) Rme 

Size  -0.027 -0.170 Trading Frictions (Fama and French 1993) Size 

Value  0.039 0.242 Value vs Growth (Fama and French 1993) value 

Gross Profitability  0.024 0.151 Profitability (Novy-Marx 2013) prof 
Value-Profitability  0.131 0.845 Profitability (Novy-Marx 2013) valprof 

Piotroski’s F-score  0.038 0.221 Profitability (Piotroski 2000) fscore 

Debt Issuance  0.016 0.098 Investment (Spiess and Affleck-Graves 1999) debtiss 

Share Repurchases  0.029 0.172 Trading Frictions (Ikenberry, Lakonishok, and Vermaelen 1995) repurch 
Share Issuance (annual)  -0.100 -0.563 Investment (Pontiff and Woodgate 2008) nissa 

Accruals  -0.029 -0.188 Investment (Sloan 1996) accruals 

Asset Growth  -0.090 -0.556 Profitability (Cooper, Gulen, and Schill 2008) growth 

Asset Turnover  0.036 0.246 Profitability (Soliman 2008) aturnover 
Gross Margins  -0.011 -0.068 Profitability (Novy-Marx 2013) gmargins 

Dividend Yield  0.022 0.155 Value vs Growth (Naranjo, Nimalendran, and Ryngaert 1998) divp 

Earnings/Price  0.052 0.313 Value vs Growth (Basu 1977) Ep 

Cash Flow / Market Value of Equity  0.048 0.295 Value vs Growth (Lakonishok, Shleifer, and Vishny 1994) Cfp 
Net Operating Assets  0.004 0.026 Profitability (Hirshleifer et al. 2004) Noa 

Investment  -0.098 -0.594 Investment (Chen, Novy-Marx, and Zhang 2011) Inv 

Investment-to-Capital  -0.053 -0.302 Investment (Xing 2008) invcap 

Invetment Growth  -0.107 -0.630 Investment (Xing 2008) igrowth 
Sales Growth  -0.071 -0.427 Profitability (Lakonishok, Shleifer, and Vishny 1994) sgrowth 

Leverage  0.033 0.195 Value vs Growth (Bhandari 1988) Lev 

Return on Assets (annual)  0.010 0.067 Profitability (Chen, Novy-Marx, and Zhang 2011) roaa 

Return on Equity (annual)  0.038 0.235 Profitability (Haugen and Baker 1996) roea 
Sales-to-Price  0.066 0.394 Value vs Growth (Barbee Jr, Mukherji, and Raines 1996) Sp 

Growth in LTNOA  -0.017 -0.132 Investment (Fairfield, Whisenant, and Yohn 2003) gltnoa 

Momentum (6m)  0.004 0.023 Momentum (Jegadeesh and Titman 1993) mom 

Industry Momentum  0.042 0.244 Momentum (Moskowitz and Grinblatt 1999) indmom 
Value-Momentum  0.029 0.178 Momentum (Novy-Marx 2013) valmom 

Value-Momentum-Profitability  0.051 0.308 Momentum (Novy-Marx 2013) valmomprof 

Short Interest  -0.006 -0.048 Trading Frictions (Dechow, Kothari, and Watts 1998) shortint 
Momentum (1y)  0.043 0.259 Momentum (Jegadeesh and Titman 1993) mom12 

Momentum-Reversal  -0.074 -0.451 Trading Frictions (Jegadeesh and Titman 1993) momrev 

Long-term Reversals  -0.058 -0.374 Value vs Growth (De Bondt and Thaler 1985) lrrev 

Value (monthly)  0.027 0.161 Value vs Growth (Asness and Frazzini 2013) valuem 
Share Issuance (monthly)  -0.096 -0.533 Investment (Pontiff and Woodgate 2008) nissm 

PEAD (SUE)  0.072 0.481 Momentum (Foster, Olsen, and Shevlin 1984) sue 

Return on Book Equity  0.084 0.541 Profitability (Chen, Novy-Marx, and Zhang 2011) roe 

Return on Market Equity  0.073 0.441 Value vs Growth (Chen, Novy-Marx, and Zhang 2011) rome 
Return on Assets  0.047 0.316 Profitability (Chen, Novy-Marx, and Zhang 2011) roa 

Short-term Reversal  -0.069 -0.413 Trading Frictions (Jegadeesh 1990) strev 

Idiosyncratic Volatility  -0.054 -0.323 Trading Frictions (Ang, Chen, and Xing 2006) ivol 

Beta Arbitrage  -0.034 -0.207 Trading Frictions (Cooper, Gulen, and Schill 2008) betaarb 
Seasonality  0.076 0.482 Trading Frictions (Heston and Sadka 2008) season 

Industry Relative Reversals  -0.133 -0.808 Momentum (Da, Liu, and Schaumburg 2014) indrrev 

Industry Relative Reversals (Low Vol.)  -0.225 -1.542 Momentum (Da, Liu, and Schaumburg 2014) indrrevlv 

Industry Momentum-Reversal  0.143 0.885 Momentum (Moskowitz and Grinblatt 1999) indmomrev 
Composite Issuance  -0.086 -0.543 Profitability (Daniel and Titman 2006) ciss 

Price  -0.015 -0.092 Value vs Growth (Blume and Husic 1973) price 

Firm Age  0.013 0.074 Intangibles (Barry and Brown 1984) age 

Share Volume  -0.037 -0.222 Trading Frictions (Datar, Naik, and Radcliffe 1998) shvol 

Note: The table displays the descriptive statistics for our risk factors dataset compiled by Kozak, 

Nagel, and Santosh (2020) with monthly data ranging from January 1981 to December 2016. For 

each risk factor, the table includes annualized average excess returns, annualized Sharpe ratios, a 
priori category classification, literature reference and code name. 
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Figure A1: Graphic representation of our estimated risk factor network 0ëoì6 for a 

selected parameter regularization %ù+ 

 

Note: The figure displays graphic representation of our estimated risk factor network 0e��6. As 

described in section 2.1., we estimate the risk factor joint distribution precision matrix by graph 

lasso in order to obtain 4opqrsst.. As described in section 2.2., we compute our estimated risk factor 

network by e�� $ e� �� $ #(�04opqrsst6�. In this picture, each node represents a risk factor and 

the edge between than indicates :�pqrsst(;(< � =, which indicates conditional dependence among 

the risk factors w  and � given all others risk factors. The node color represents the risk factor 

category (blue for Value vs Growth; green for Investment; yellow for Profitability; orange for 

Momentum; dark blue for Intangibles; and red for Trading Frictions). We select six different 

regularization parameters %_+. As _ increases, the estimated conditional dependence among risk 

factors also decreases. 

 

! !
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Figure A2: Risk factor`s global centrality measures histograms and correlations 

 

Note: This figure displays the histograms and correlations from different centrality measures of our 

estimated risk factor network described by e�� in Figure 2. Letters e, d, c and b refers to Eigenvector, 

Degree, Closeness and Betweenness centrality measure respectively.!

!

! !
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Figure A3: Risk factor`s correlations tidy by the modularity clusters order 

Note: This figure displays the risk factors correlations matrix tidy according to the modularity clusters

order. The red dotted square area defines within cluster risk factor correlations matrix. Each risk 

factors cluster group is highlighted on right label. 

!

! !
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Figure A4: Principal component cumulative risk factor variance 

 

Note: This figure displays the cumulative risk factors variance explained by its principal components %FGk+. 
!

!

Figure A5: First principal component risk factor loadings absolute values 

 

Note: This figure displays the absolute values from the first principal component risk factor loadings 

order by value. 

!

!
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Table A2: Modified Diebold-Mariano test results for the CRSP dataset 

Model 1 
Global Cluster Classic PCs PC1 Loadings Elastic 

Net FM E D and C B E and C D B FF3 NM4 C4 P5 PC1 PC2 PC3 PC4 Model1 Model2 Model3 Model4 

M
o

d
el

 2
 

Global 
E, D and C   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.4648 

B     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cluster 

E and C       0.0001 0.1873 0.0734 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 

D         0.0007 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

B           0.1522 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000 0.0068 0.0000 

Classic 

FF3             0.0000 0.0000 0.0000 0.0000 0.0000 0.9364 0.0000 0.0000 0.0000 0.0000 0.6749 0.0000 

NM4               0.0048 0.0000 0.0000 0.0000 0.0000 0.3342 0.0000 0.0000 0.0000 0.0002 0.0000 

C4                 0.0000 0.0000 0.0000 0.0000 0.5765 0.0000 0.0000 0.0000 0.0000 0.0000 

P5                   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PCs 

PC1                     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PC2                       0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PC3                         0.0000 0.0000 0.0000 0.0000 0.3281 0.0000 

PC4                           0.0000 0.0000 0.0000 0.0000 0.0000 

PC1 

Loadings 

Model1                             0.0000 0.0000 0.0000 0.0365 

Model2                               0.0000 0.0000 0.0000 

Model3                                 0.0000 0.0000 

Model4                                   0.0000 

Elastic Net FM                   

Note: The table displays the p-value from the modified Diebold-Mariano test for predictive accuracy among two models proposed by  D. Harvey, Leybourne, and Newbold 

(1997). The null hypothesis is given by !"# $%&'()* + $%&,()* against the alternative hypothesis !"# $%&'()* - $%&,()* (model 1 is less accurate than model 2), where &.() is the 

out-of-sample one-step-ahead forecast error described in Section 2.6 from model / and  $ is a quadratic function.  

!

!

!

!

!

!

!

!

!

Electronic copy available at: https://ssrn.com/abstract=3691331



 41 

 

Table A3: Diebold-Mariano test results for the CRSP dataset without small caps 

Model 1 
Global Cluster Classic PCs PC1 Loadings Elastic 

Net FM E D and C B E and C D B FF3 NM4 C4 P5 PC1 PC2 PC3 PC4 Model1 Model2 Model3 Model4 

M
o

d
el

 2
 

Global 
E, D and C   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 

B     0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cluster 

E and C       0.0168 0.2237 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0207 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

D        0.4684 0.0714 0.0000 0.0000 0.0000 0.0000 0.0000 0.0031 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

B          0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Classic 

FF3            0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NM4             0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 

C4              0.0000 0.0000 0.0000 0.0000 0.4080 0.0000 0.0000 0.0000 0.0000 0.0000 

P5                0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PCs 

PC1                  0.0000 0.0000 0.0000 0.7863 0.0000 0.0000 0.0000 0.0000 

PC2                   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0157 

PC3                    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PC4                      0.0000 0.0000 0.0000 0.0000 0.0000 

PC1 

Loadings 

Model1                        0.0000 0.0000 0.0000 0.0000 

Model2                         0.0000 0.0000 0.0001 

Model3                          0.0000 0.0000 

Model4                            0.0000 

Elastic Net FM  

Note: The table displays the p-value from the modified Diebold-Mariano test for predictive accuracy among two models proposed by  D. Harvey, Leybourne, and Newbold 

(1997). The null hypothesis is given by !"# $%&'()* + $%&,()* against the alternative hypothesis !"# $%&'()* - $%&,()*, where &.() is the out-of-sample one-step-ahead forecast 

error described in Section 2.6 from model / and  $ is a quadratic function.  

!

!

!

!

!
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