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1.! Introduction 

Cochrane (2011) states the issue of the factor zoo as the need to answer which risk 

factors are in fact capable of providing independent information on the cross-section of 

expected excess returns. Considering that asset pricing literature has produced over two 

hundred different potential risk factors in the last decades (Harvey, Liu, and Zhu (2016), 

the factor zoo phenomenon has become a high-dimensional econometric problem, which 

additionally brings forth new methodological challenges for empirical research (i.e. 

overfitting, data mining, and design matrix dimension reduction)3. Fortunately, though, 

increased alternative statistical methods geared towards these high-dimensional 

challenges4 have enabled researchers to start addressing the issue of the factor zoo5. 

In this paper, we propose a new methodology aimed at diminishing risk factor 

predictor dimension by estimating the joint risk factor distribution with a complete partial 

directed acyclic graph (CPDAG) and by selecting the CPDAG root as the new candidate 

set to explain cross-sectional returns. The main driving force behind the decision to apply 

the CPDAG to the joint risk factor distribution entails its ability to address high-

dimensional problems as well as track causal relations. Given the vast set of potential risk 

factor candidates available to explain cross-sectional returns, these CPDAG properties 

enable us to identify a sparse set of risk factors that potentially spans all the remaining 

risk factors. Based on the reasoning of Ross’s (1976) APT model, this new sparse set of 

risk factors relates to natural candidates capable of explaining cross-sectional returns. In 

this methodology, the CPDAG root is used to solve high-dimensional problems since this 

set of results poses only a couple of risk factors compared to the original set of risk factors. 

We then apply the Fama-MacBeth procedure to verify whether risk factors selected using 

our methodology provide better results as opposed to alternative models. 

Our findings achieve a sparse risk factor model that poses better results than 

standard models documented in the asset pricing literature, as well as certain principal 

component-related methods proposed by a bunch of factor zoo papers. In addition to 

significant factor risk premia parameters, our model yields the highest in-sample average 

                                                
3 Hastie, Tibshirani, and Friedman (2009); and Abu-Mostafa, Magdon-Ismail, and Lin (2012). 
4 Some of these methods are dubbed ‘Machine Learning’ techniques.’ To learn more, see Hastie, Tibshirani, 

and Friedman (2009). 
5 Harvey, Liu, and Zhu (2016); Green, Hand, and Zhang (2017); Yan and Zheng (2017); Feng, Giglio and 

Xiu (2020); Freyberger, Neuhierl and Weber (2020); and Kozak, Nagel and Santosh (2020).!
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adjusted !", and regarding out-of-sample results, the lowest root-mean-square error 

across the models. 

This paper adds a chapter to such a new literature about high-dimensional cross-

sectional asset pricing models. This research field applies a wide range of statistical 

methods, such as bootstrapping6, lasso7, multiple-test corrections8, and principal 

component analysis9 to achieve robust estimators in high-dimensional environments, in 

addition to evaluating which risk factors are in fact capable of explaining the cross-section 

of expected returns. 

Feng, Giglio, and Xiu (2020); and Freyberger, Neuhierl, and Weber (2020) attain 

non-sparse results whenever the issue at stake concerns how to explain the cross-section 

of expected returns. Kozak, Nagel, and Santosh (2020), in turn, find that sparsity models 

are only capable of achieving satisfactory results to explain cross-sectional returns when 

they use the principal components of portfolio returns as risk factors. Applying the 

instrumented principal component, Kelly, Pruitt, and Su (2019) conclude that only five 

latent factors manage to provide satisfactory results when it comes to explaining average 

cross-sectional returns. We therefore witness the emergence of the well-known fact that 

the cross-section of expected returns can only be adequately described by PCs in a sparse 

representation. Whenever we apply risk factors, it becomes increasingly challenging to 

explain the cross-section of expected returns satisfactorily with a sparse model. 

Considering this stylized fact, we define the principal component model as our 

benchmark to evaluate our methodology. Our methodology presents an advantage over 

the principal component analysis since PCs do not present directed economic 

interpretation and our risk factor selected set does. 

In summary, this paper seeks to add a new method to the existing factor zoo-

related literature, thereby enabling a significant shrinkage in the original set of risk 

factors, as well as enabling investigations on joint risk factor distribution. To the best of 

our knowledge, this is also the first paper that uses a CPDAG model to describe joint risk 

factor distribution, in addition to using CPDAG properties to select risk factor candidates. 

 

                                                
6 See Harvey and Liu (2019); and Yan and Zheng (2017). 
7 See Kozak, Nagel, and Santosh (2020); Feng, Giglio and Xiu (2020); and Freyberger, Neuhierl and 

Weber (2020).  
8 See Harvey, Liu, and Zhu (2016); and Green, Hand, and Zhang (2017). 
9 See Kelly, Pruitt, and Su (2019); and Gu, Kelly, and Xiu (2019). 
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2.! Methodology 

We describe our research method in two main steps. First, we estimate a complete 

partial directed acyclic graph (CPDAG) to represent the joint risk factor distribution. We 

employ an analytical framework to make a comparison between the CPDAG root and the 

Ross’s (1976) APT model. We conclude our first step by selecting the CPDAG root risk 

factor subset as our candidate to explain the cross-section of expected returns. The risk 

factor dimension is reduced since the CPDAG root set is bounded by the original set. 

Second, we apply the Fama-MacBeth (FM) procedure10 to verify whether risk factors 

selected using our methodology provide better results compared to certain well-known 

sparse “standard models” from the asset pricing literature, as well as other methodologies 

proposed by papers addressing the factor zoo that we describe ahead. Finally, we perform 

an out-of-sample evaluation on all models. 

 

2.1!Risk factor selection using the CPDAG root 

2.1.1! DAG joint distribution function representation 

 Before we discuss the representation of the joint risk factor distribution using a 

direct acyclic graph (DAG), in addition to its implication on the asset pricing theory, first 

it is important to introduce the graph terminology used herein.  

We define graph # $ %&' () as a set of vertices & $ *+' , ' -. and a set of edges ( / & 0 &, where these vertices are a random variable vector 1 2 34, while the edges 

describe the relationship between two variables (56,758 and 9' : 2 &). We define a directed 

edge %9 ; :) as %9' :) 2 ( although %:' 9) < (, whereas an undirected edge %9 = :) is 

defined as %9' :) 2 (, and %:' 9) 2 (. A skeleton of # is defined as the ( set, without taking 

into account edge directions. Vertices 9 and : are said to be adjacent if7%9 = :) 2 (; %: ; 9) 2 (; or if %: > 9) 2 (. We define ?6 as the set of all adjacent vertices of vertex 9. 
A v-structure is defined by any three vertices %9' :' @) such that %9 ; :) 2 (, %@ ; :) 2 (, 

and 9 and @ are not adjacent. A vertex 9 is called a parent of : if A9 ; :, and we define B8 
as the set of all parent vertices11 of :. A vertex 9 is a root of # if B6 $ C, and -# $*9D B6 $ C. is the set of all graph roots. A direct acyclic graph (#EFG $ %&' ()) is a # $
                                                
10 Fama and MacBeth (1973).!
11 Note that if A9 ; : H 9 2 B8 . 
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%&' () in which all edges are directed, feature at least one root and do not contain any 

cycles12. 

The -%1) joint distribution of 1 is said to be factorized by its Markovian parents 

if: 

-%1) $I-%56J*1. K 56) $I-%56JL6)4
6MN

4
6MN  (1) 

where L6 is the Markovian parent set for 56, which is defined as the minimal subset of O*1. K 56P such that -%56J*1. K 56) $ -%56JL6). If equation (1) stands, then -%1) can 

be factorized according to #EFG $ %&' (), by setting L6 $ B6  for every 9 2 &. In other 

words, the conditional independence relationship for -%1) can be inferred by the #EFG  

edge structure since 9 ; : 2 Q R 56 2 L8. Following the seminal work by Pearl (2009), 

the causal relationship for a DAG can be interpreted as follows: 56 is a direct cause of 58 
if and only if A9 ; :. It is worth noting that each directed edge indicates a conditional 

dependence relationship that cannot be attributed to any other variable. This paper 

explores this DAG property with the aim of finding the original set of risk factors 

responsible for spanning of all excess return space. 

 

2.1.2! Implications of DAG risk factor representation for the asset pricing theory  

 Ross’s (1976) APT model allows for the following beta representations: 

S6'T $ UV6'WXW'T4
WMN Y Z6'T (2) 

[\S6'T] $ UV6'W^W4
WMN  (3) 

where S6'T represents the excess returns of asset 9 for period _; XW'T represents the B = _` 

risk factor for period _; Z6'T is an error term; V6'W represents the loadings of asset 9 on the 

B = _` risk factor; and ^W7represents the7B factor risk premia13. This asset pricing model 

allows us to state the well-known theoretical hypothesis that all excess return spaces are 

                                                
12 A cycle is a sequence of more than one edges in which the first and last vertices are the same, according 

to set a $ *%9 ; :)' %: ; @)' %@ ; 9). as an example. For a formal definition, see Diestel (2012). 
13 The APT theory assumes that [%Z6) $ b; acd\Z6 ' Z8] $ b for 9 e :; and acd\Z6 ' XW] $ b for each 9 and B.  
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spanned the risk factors. As highlighted before, the issue of the factor zoo consists of the 

fact that the observable set of risk factors is large when compared to the available asset’s 

excess return time series length. Thus, with the purpose of selecting a sparse set of risk 

factors, we define the observable set of risk factors as f $ %XN' , ' X4)g where - is usually 

large, and further assume the existence of a “true” risk factor set such that fghij / f and fghij  spans the entire excess return space, including *f. K *fghij.. In other words, we 

assume that risk factors comprising the stochastic discount factor (fghij ) are included in 

the original f set. 

 First, we define -%f) as the joint risk factor distribution function. By stating a 

restricted version of the APT model, where we set acd\X6' X8] $ b for 9 e : (9' : 2%+', ' -)) as an additional assumption, we can establish a relationship between fghij  

and the #EFG $ %f' () root. Note that if acd\X6 ' X8] $ b when 9' : 2 fghij , then the joint 

distribution of fghij  can be expressed as: 

-%fghij) $I -%X6)62*fklmn.  (4) 

Equation (4) allows us to observe that L6 $ C for all 9 2 fghij . Since every 

excess return is spanned by the fghij  set, if we add another set of risk factors, defined as fogpjhq , such that f $ fghij r fogpjhq, and hold the assumption that -%f) can be 

expressed as (1), we therefore have L6 e C for all 9 2 fogpjhq . Thus, -%f) can be 

represented by #EFG $ %f' () where fghij  is given by7fq $ *9DL6 $ C., which is 

identical to -#stu. In other words, the true set of risk factors corresponds to the set of all 

#EFG  roots. By selecting only the #EFG $ %f' () roots as the risk factor candidate to 

explain cross-sectional asset returns, we are able to proceed with our first shrinkage step 

since the number of elements in fghij  is bounded by the number of elements in f. 

 Figure 1 plots a DAG example for a -%f) distribution where - $ +b, fghij $*v'w'+b., which are vertices highlighted in red, while fogpjhq $ *+'x'y'z'{'|'}.. As we 

can see, B6 e C applies to all 9 2 fogpjhq  since these risk factors are generated by fghij  

and its Markovian parent set is not empty by definition (L6 $ B6). On the other hand, 

when it comes to the red vertices (9 2 fghij), B6 $ C since these risk factors are 

independent among them and are not generated by any other variable. 
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Figure 1: DAG example 

 

Note: The figure shows a DAG example for a -%f) distribution where f $ fghij r fogpjhq, fghij $*v'w'+b., fogpjhq $ *+'x'y'z'{'|'}., BN $ *|'w'+b.' B" $ *v'}'w., B~ $ C, B� $ *{'|'w., B� $*{'}'+b.' B� $ *v.; B� $ *v., B� $ *+b., B� $ C' and BN� $ C. Each node represents a risk factor and 

the directed edge 9 ; : indicates that 9 belongs to the Markovian parent set of 9. The red nodes are the 

DAG roots. 

 

2.1.3 DAG representation using a CPDAG 

 Before we proceed with our risk factor selection methodology, we must introduce 

some additional concepts regarding DAG structures. Two or more different DAGs can 

describe the same independence information for a joint distribution function14. Therefore, 

it is possible for two different DAGs, which describe the same conditional independence 

information from the joint risk factor distribution, to pose different root sets. In this case, 

any inferences on the fq set explaining cross-sectional returns are insufficient since fq 

can be obtained using a single DAG estimation. Moreover, every DAG describing the 

same conditional independence information for -%f) comprises a set �, which is defined 

as a Markov equivalence class15 for -%f). As demonstrated by Andersson et al. (1997), 

set � is uniquely represented by a complete partial directed acyclic graph (#�4EFG )16, 

which states that: 

#�4EFG  is said to represent a #EFG  if #EFG 2 � and � is described by #�4EFG  (5) 

 In setting � $ O#EFG%6) $ \&'(EFG%6)]P6MNG
 as the set that contains all DAGs 

comprising �, the #�4EFG $ %&' (�4EFG) is defined by: i) if %9 ; :) 2 (�4EFG , then 

                                                
14 See Verma and Pearl (1991). 
15 #EFG%6) 2 � and #EFG%8) 2 � if and only if #EFG%6) and #EFG%8) presents the same skeleton and v-

structures.  
16 See Andersson et al. (1997) for formal evidence. 
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%9 ; :) 2 (EFG%6) for at least one #EFG%6); and ii)7if %9 = :) 2 (�4EFG+|, then %9 ; :) 2
(EFG%6) for at least one #EFG%6) and %9 > :) 2 (EFG%8) for at least one other #EFG%8). These 

two properties mean that the #�4EFG  root presents the following property18: 

-#��stu /� -#stu%�)G
6MN  (6) 

where -#stu%�)  is the root set of #EFG%6). According to (5), f can be expressed as #�4EFG $%f' (�4EFG) since #�4EFG  uniquely represents � from -%f), where fghij  is given by -#��stu  following the same reasoning from the previous section. Relation (6) allows us 

to observe how our first shrinkage step is sparser when we select the #�4EFG  root instead 

of the #EFG  root since -#��stu  is bounded by � -#stu%�)G6MN . 

 

2.1.4 Estimation procedure for the high-dimensional CPDAG 

 The PC-algorithm proposed by Spirtes et al. (2000) has been widely applied to 

estimate a #�4EFG  representation for high-dimensional problems19. Furthermore, it is 

consistent in generating sparse graphs for the conditional dependence information of 

high-dimensional joint distribution functions, as evidenced by Harris and Drton (2013). 

This PC-algorithm property is desirable since we are interested in carrying out a sparse 

selection from the original risk factor dataset, with the #�4EFG  expected to have fewer 

roots as the number of estimated edges decreases20. In order to estimate #�4EFG , we apply 

a modified version of the PC-algorithm proposed by Colombo and Maathuis (2014) (PC-

CM). As highlighted by these authors, the original PC-algorithm is order-dependent, 

meaning that the final estimation depends on the order upon which input variables are 

given. According to the authors, the order-dependent property can be very problematic in 

a high-dimensional environment. The PC-CM consists of three procedures: i) 

determination of the skeleton; ii) establishment of the v-structures; and iii) orientation of 

the remaining undirected edges. 

                                                
17 Unlike #EFG, #�4EFG 7allows for undirected edges %9 = :), and according to Pearl (2009), the %9 = :) 

relation can be interpreted as a correlation effect between 56 and 58 , which cannot be attributed to any 

other variable. To learn more, see Verma and Pearl (1991). 
18 See Chickering (2002) for formal proof. 
19 For CPDAG-applied empirical papers on high-dimensional sets, see Kalisch et al. (2010); Nagarajan et 

al. (2010); Stekhoven et al. (2012); and Zhang et al. (2012). 
20 See Kalisch and Bühlmann (2007). 
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The first procedure starts from an undirected graph7#i%�) $ \&'(%�)], where (%�) 
contemplates all possible edges across &. For the first step, for every 9' : 2 &, we test 

whether 56 � 58, and if it is significant, we then remove %9 = :) from (%�); however, if it 

is not significant, we keep %9 = :) on (%�). The first step leads to a new #i%N) $ \&'(%N)]. 
In the second step, for every 9' : 2 & such that %9 = :) 2 (%N), we test 56 � 58��N for 

different sets of �N, where �%�N) $ + and �N / ?6\(%N)] K *:., until we confirm whether 

56 � 58��N is significant, removing %9 = :) from (%N) and setting ��6'8 $ �N, where �6'8 is 

the separation set of 9 and :; or, on the other hand, we exhaust all possible sets for �N, 

maintaining %9 = :) from (%N) and setting ��6'8 $ C. The second step yields a new #i%") $\&'(%")], and we repeat the second step exactly as the first step, though with �%�") $ x 

instead of 1. For every 9' : 2 &, we stop the algorithm whenever �\?6\(%��N)] K *:.] �%� = +), where � is the number of steps. 

 To evaluate 56 � 58�� empirically, we perform a partial correlation test by setting 

� as the significance level. The null-hypothesis can be stated as ��D �6'8J� $ b, as opposed 

to the alternative hypothesis of �ND �6'8J� e b. We follow the methodology set forth by 

Kalisch and Bühlmann (2007) and apply Fisher’s z-transformation: 

�%9' :J�) $ +x �c��+ Y ��9':J�+ = ��9':J�  (7) 

where ��6'8J� is the partial correlation estimator calculated from a linear regression. Thus, 

we reject the null-hypothesis if: 

J�%9' :J�)J%¡ = �%�) = v)N" ¢ £=+ ¤+ = �x¥ (8) 

where ¡ is the number of observations and £ is a cdf ¡%b'+). It is important to point out 

that the role of � on (9) reaches well beyond the test's significance level. It is a shrinkage 

degree parameter that controls the sparsity level of (��4EFG  and, consequently, the final 

CPDAG root set. As in Colombo and Maathuis (2014), we apply the Bayesian 

Information Criterion (BIC) to set the significance level starting from (8); thus, we select �, which minimizes: 

=x¦ ¤§̈#̈©-ª«¬%�)' ®¥ Y ¯U+°§̈#̈©-ª«¬%�)6'8 e b±6²8 Y -³ �c�%¡) (9) 
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where ¦%´) is a P-dimensional log-likelihood of a multinormal distribution; 1%´) is an 

indicator function equal to 1 if §̈#µ��stu%¶)6'8 e b and, otherwise, is zero; §̈#µ��stu%¶) is the 

covariance matrix estimator21 based on #µ�4EFG%�); and ®  is the7& vector mean. From the 

first part, we obtain an estimated skeleton defined to be #µq·¸� $ \&' (�q·¸�] where 

(�q·¸� $ (%��N) and the separation set ��6'8 for every 9' : 2 &. 

The second procedure, in turn, consists of assigning directions to the skeleton’s 

edges to create the graph’s v-structures. It is worth noting that for every @' 9' : 2 &22: 

%9 = :) < (�q·¸�, @ 2 ?6 and @ 2 ?8 ¹ A%9 = @ = :) (10) 

Consequently, when we look at (11) if @ < ��6'8, we orient %9 = @ = :) as %9 ; @ > :). 
This orientation provides us with a new set of edges defined as (�4EFG . 

Finally, we undertake the third and final procedure (orientation of the remaining 

undirected edges) pursuant to three rules: 

1.! Orient %9 = :) as %9 ; :) if %@ ; 9) 2 (�4EFG , and : < ?·; otherwise, a new v-

structure is created. 

2.! Orient %9 = :) as %9 ; :) if %9 ; @) 2 (�4EFG , and %@ ; :) 2 (�4EFG; otherwise, a 

directed cycle is created. 

3.! Orient %9 = :) as %9 ; :) if %9 = @) 2 (�4EFG , %@ ; :) 2 (�4EFG , %9 = �) 2 (�4EFG  

and %� ; :) 2 (�4EFG ; otherwise, either a new v-structure or a directed cycle is 

created. 

The end goal of the PC-CM algorithm is a #µ�4EFG $ \&'(��4EFG], where we 

obtain (��4EFG  after applying the aforementioned rules to (�4EFG . Given #µ�4EFG , the -̈#��stu  set is formally defined as -̈#��stu $ O9D B�4EFG'6 $ CP. Finally, we set fghij $-̈#��stu . 

 

2.2!The Fama-MacBeth procedure 

We apply the FM procedure to estimate the APT model composed of (2) and (3). 

We focus our analyses on º factor risk premia parameters, with the aim of evaluating 

whether our methodology is effective in selecting risk factors fully capable of explaining 

                                                
21 See Norton and Richardson (2002) for detailed information on §̈#µ��stu%¶) estimators. 
22 By definition, @ 2 ?6 ¹ %9 = @) 2 (�q·¸�. 

Electronic copy available at: https://ssrn.com/abstract=3691336



the cross-section of expected returns »\S6'T]. Since our empirical findings for the -̈#��stu  

set pose a low dimension, the APT model can be estimated with very well-known 

econometric methods23, such as, for instance, the generalized method of moments (GMM) 

and the iterated nonlinear seemingly unrelated regression (ITNLSURE). However, we 

apply the FM procedure since our asset dataset for excess returns is an unbalanced panel. 

Our econometric model can be defined as: 

S6'T $UV6'WXW'T4
WMN Y Z6'T (11) 

S6'T $ ^� YUVµ6'W'T^W Y4
WMN ¼T (12) 

where (12) is identical to equation (2), which is estimated using a time-rolling window 

procedure whose length24 equals _½. Thus, this first-pass time series regression results in 

a sequence of estimated betas like O¾�6'TPTMT½g
. These betas are inputs for the second-pass 

cross-sectional regression described by (12), which leads to a sequence of estimated 

factor risk premia such as Oº̈TPTMT½g
. The final factor risk premia estimator can be expressed 

as: 

º̈ $ ¿ º̈TgTMT½%À = _½) (13) 

We follow Shanken (1992) to compute the º̈ covariance matrix with 

Á�ºÂÃÄÅ·¸Å $ \+ Y º̈gÁ�f�Nº̈] �Á�º = Á�f%À = _½)  Y Á�f%À = _½) (14) 

where Á�f is the estimated risk factor covariance matrix25, while Á�º is the regular estimated 

factor risk premia covariance matrix26. 

 

                                                
23 See Campbell et al. (1997), Cochrane (2009), and Goyal (2012) for methods used to estimate low-

dimensional factor risk premia models. 
24 We set _½ $ {b in our research paper, using the same value employed by Fama-MacBeth (1973). 

25 Á�f $ ¿ \fÆ�fÇ]\fÆ�fÇ]kkÆÈÆ½ %g�T½)É . 

26 Á�º $ ¿ \º̈Æ�º̈]\º̈Æ�º̈]kkÆÈÆ½ %g�T½)É . 
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2.3!Standard models and alternative methodologies 

We select four well-known “standard sparse models” from the asset pricing 

literature to compare the FM results to our own findings. We choose to employ the Fama-

French three-factor model (FF3)27; the Novy-Marx four-factor model (NM4)28; the 

Carhart four-factor model (C4)29; and a fourth model (P5) contemplating every risk factor 

from FF3 NM4 and C4. Since the first step of our methodology relies on a large set of 

potential risk factor candidates, we feel it would not be fair to make a direct comparison 

with standard models. Thus, aimed at seeking a fair comparison for purposes of 

evaluating our research, we select a number of other approaches documented by the factor 

zoo literature.  

Kozak, Nagel, and Santosh's (2020) paper on the factor zoo suggests that a small 

group of principal components30 (PCs) of risk factors are able to achieve highly 

satisfactory results in explaining cross-sectional returns. Bearing this in mind, we also 

proceed to test an FM procedure using two alternative risk factor sets. The first set relates 

to the PCs from the original high-dimensional risk factor set. As previously mentioned, 

the principal component analysis poses a disadvantage since it lacks a directed economic 

interpretation. The second set concerns the risk factors that yield the highest factor 

loadings on the first principal component of the original risk factor distribution (-©+)31. 

Since the first principal component is a latent factor, which individually explains the 

largest proportion of the risk factor covariance matrix, each of these selected risk factors 

is a preeminent candidate to explain the cross-section of expected returns. 

 

2.4!Out-of-sample evaluation 

Finally, we compute the one-step-ahead forecast for each model, with the aim of 

evaluating and comparing out-of-sample (OOS) results among them. Since we are able 

to calculate the estimator O¾�6'TPTMT½g
 as well as Oº̈TPTMT½g

 for each methodology we propose 

                                                
27 Risk factors are Mkt, SMB, and HML. See Fama and French (1993). 
28 Risk factors are Mkt, SMB, HML, and GP. See Novy-Marx (2013). 
29 Risk factors are Mkt, SMB, HML, and MOM. See Carhart (1997). In this paper, we apply the six-month 

MOM risk factor (see Jegadeesh and Titman (1993).  
30 See Kelly, Pruitt and Su (2019); and Gu, Kelly, and Xiu (2019) for principal component analysis 

applications regarding the factor zoo.  
31 Factor loading is the correlation coefficient between the principal component and the original random 

variable.  
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herein, and our interest lies in explaining the cross-section of expected returns, we 

estimate the one-step-ahead forecast as follows: 

S®6'TÊN $ µ̂�'T Y¾�6'Tº̈Ë'T (15) 

It is worth noting that the forecast computed with %+z) is entirely out-of-sample. 

For each cross-section, we calculate the root-mean-square-error (!Ì�[T)32 for _ $_½' , ' À = +, and then compare root-mean-square-error averages («ÍÎ !Ì�[)33 and root-

mean-square-error medians (ÌÎ !Ì�[)34 across all models. It also worth mentioning that 

inputs for (15) are obtained using the model described by (11) and (12), which is focused 

on explaining – and not forecasting –, the cross-section of expected returns. Thus, our 

interest lies only on the comparative performance among OOS models. 

 

3.! Dataset 

We apply our research to the factor zoo dataset compiled by Kozak, Nagel, and 

Santosh (2020), with monthly data ranging from January 1981 to December 201635. It 

consists of 51 risk factors, the first being the Excess Market Return gathered from the 

French Library36, while the remaining 50 are zero-investment, long-short portfolios 

composed of well-known traits described in the asset pricing literature. Table A1 of the 

Appendix summarizes risk factor descriptions and statistics.  

In regards to cross-sectional returns, although portfolios do not produce missing 

data by construction (balance panel), they do have a tendency of showing a bias towards 

traits used to build them, as highlighted by Harvey and Liu (2019). Consequently, and 

due to the fact that the FM procedure supports a large unbalanced panel, we choose to 

focus on individual assets from the CRSP stock return dataset. To compose excess asset 

returns, we set one-month maturity USD LIBOR interest rates as risk-free. Since we adopt 

a 60-month time window for the first-pass of our FM procedure, we accordingly disregard 

assets with less than 60 observations. Additionally, we remove stocks from the financial 

                                                

32 !Ì�[T $ Ï¿ \Ð®�'Æ�Ð�'Æ]ÉÑ�ÈÒ Ó , where Ô is the number of assets presents on the cross-section in the period _. 
33 «ÍÎ!Ì�[ $ ¿ hÕqjÆkÖÒÆÈÆ½g�T½�N . 

34 ÌÎ !Ì�[ $ L¼×9?Ø%!Ì�[T)' _ $ _½' , ' À = +. 
35 Data can be downloaded from: https://www.serhiykozak.com/data.!
36 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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sector. Using these procedures, our dataset accounts for 14,317 individual stocks (CSRP). 

Considering that this first dataset also comprises small-caps, which may yield 

significantly illiquid stocks, we create a second dataset which exclude stocks whose 

prices are lower than USD 5.00, thereby leading to a dataset encompassing 10,221 

individual assets (CRSP without small-caps). 

 

4.! Results 

4.1!CPDAG roots and selected risk factors 

Figure 2 shows the graphic representation of -%f) as #µ�4EFG $ \f' (��4EFG]. In 

this illustration, each node represents a risk factor; blue lines denote direct edges; and red 

lines denote undirected edges. Since #µ�4EFG 7describes the factorization of -%f) with its 

Markovian parents, Figure 2 allows us to infer the conditional dependence relationship 

among all risk factors. A blue directed edge %9 ; :) indicates that 9 2 B8, meaning that 

X6 2 L8. In other words, if Figure 2 presents %9 ; :), this entails that X6 belongs to the 

Markovian parent set of X8  given for every other risk factor and, consequently, X8  is 

conditionally dependent on X6. A red undirected edge %9 = :) signals that X6 2 L8, and 

X8 2 L6, meaning that we are unable to infer a direct conditional relationship between X6 
and X8  since both risk factors belong to each other’s Markovian parent sets. Still 

concerning this illustration, if the 9 node is red, it therefore indicates that 9 2 -̈#��stu , 

meaning that L6 $ C. In other words, the Markovian parent set of X6 is empty, signaling 

that X6 does not present any dependency on any other risk factor, thereby making it one 

of our risk factor candidates to explain cross-sectional returns. Thus, as we mentioned 

before, our final risk factor selection is given by fghij $ -̈#��stu .  

Results attained with #µ�4EFG  lead to some interesting features for -%f). First, our 

final risk factor set poses only six elements from an original set of 51, and succeeds in 

performing the significant shrinkage we are pursuing herein. This selected set, as 

described in Table 1, consists of the following risk factors: Accruals, Short Interest, Value 

Profitability, Gross Margins, Debt Issuance, and Return on Equity. Figure 2 shows us 

that none of the risk factors are conditional dependents on either Accruals or Short 

Interest, which might lead us to conclude that these two risk factors pose a very unique 

type of information. Additionally, according to #µ�4EFG : i), Return on Equity partially 
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spans Return on Book Equity and Return on Assets; ii) Value Profitability partially spans 

Sales to Price, Asset Turnover and Value Momentum Profitability; iii) Gross Margins 

partially span Sales to Price; and iv) Debt Issuance partially spans Firm Age and Share 

Repurchases. Besides the #µ�4EFG  root set, all the remaining risk factors pose, on average, 

1.6 conditional dependence edges and span an additional 1.4 risk factors, given all other 

factors. 

The optimal regularization parameter (�) is bÎbb+ from a grid of � $%bÎbbb+' bÎbb+' bÎb+' bÎbz'bÎ+). These five values for hyperparameter � are defined in 

accordance with the fact that � is also the significance level for the hypothesis test 

described in (9). Figure A1 of the Appendix displays the #µ�4EFG  object for the entire � 

grid, and as we can see – with the exception of � $ bÎbbb+ –, the theoretical results 

described by Kalisch and Bühlmann (2007) are verified since the number of roots 

decreases insofar as the value of � increases. Table A2 of the Appendix describes the 

selected risk factor pursuant to each value of �, as well as its respective BIC values. As 

we can see, � $ bÎbb+ reaches the lowest BIC value, which therefore makes it our 

selected model. It is interesting to note that certain risk factors, such as Accruals, Short 

Interest, Value-Profitability and Gross Profitability, are selected using more than one 

model, suggesting strong evidence in favor of their conditional independence in regards 

to other risk factors. 

 

Table 1: Risk factor selected using the Ù�ÚÛÜÝÞ root 

Description Ret. S.R. Reference Code 

Accruals  -0.029 -0.188 Sloan (1996) accruals 

Short Interest  -0.006 -0.048 Dechow, Kothari, and Watts (1998)  shortint 

Value-Profitability  0.131 0.845 Novy-Marx (2013)  valprof 

Gross Margins  -0.011 -0.068 Novy-Marx (2013)  gmargins 

Debt Issuance  0.016 0.098 Spiess and Affleck-Graves (1999)  debtiss 

Return on Equity (annual)  0.038 0.235 Haugen and Baker (1996)  roea 

Note: The table above displays the selected risk factors based on the estimated Ù��4EFG root set 

(-̈#��stu ) for the optimal alpha, according to the BIC criteria (� $ bÎbb+). For each selected risk 

factor, the table includes annualized average excess returns, annualized Sharpe ratios, literature 

references, and code names. 
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Figure 2: Graphic representation of joint risk factor distribution with Ù�ÚÛÜÝÞ 

 

Note: The figure above displays the graphic representation of the joint risk factor distribution usingÙ��4EFG. As described in section 2.1.4, we estimate the joint risk factor distribution with Ù��4EFG $#�4EFG ¤& $ f'(��4EFG%�)¥. To select the tuning parameter alpha, we set an alpha grid as � $%bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+), and then proceed to evaluate the BIC criteria (described by (10)). We 

find an optimal regularization parameter � $ bÎbb+. In this illustration, each node represents a risk

factor; blue lines denote direct edges; and red lines denote undirected edges. Nodes in red are graph 

roots (-̈#��stu ). 

 

4.2!FM Results 

After estimating #µ�4EFG  and selecting the risk factor with -̈#��stu, we are able to 

verify whether this methodology is in fact capable of explaining the cross-section of 

expected returns. Table 2 displays the estimated factor risk premia attained with the FM 

approach used for our selected risk factors. When we examine these results, we verify 

that the intercept is significant for CRSP samples both with and without small-caps, 

therefore signaling that certain idiosyncratic risks remain in cross-sectional returns even 

after they are controlled by our risk factors. Nevertheless, both regressions pose the 

highest average adjusted !" comparing to all others alternatives models. (around 15.8% 

and 17.8% for CRSP samples both with and without small-caps, respectively), as well as 

significant factor risk premia for Short Interest and Debt Issuance. Following Dechow, 

Kothari, and Watts (1998), Short Interest is the ratio between sorted and outstanding 
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shares. As described by Spiess and Affleck-Graves (1999), Debt Issuance is an indicator 

function equal to 1 if the firm’s cash flow statement issues long-term debt or, otherwise, 

zero. The high average adjusted !" and the significant Short Interest and Debt Issuance 

factor risk premia for CRSP samples both with and without small-caps favor our selection 

methodology. Table A3 of the Appendix displays the FM procedure’s results for models 

with risk factors selected using alternative alphas. Furthermore, it shows us that our 

optimal value for alpha provides the best average adjusted !" for CRSP samples both 

with and without small-caps. This result favors the BIC criteria alpha selection 

methodology. 

 

Table 2: FM results for risk factor model selected with the Ù�ÚÛÜÝÞ root  

Coefficient CRSP CRSP without Small-Caps 

Intercept Estimate 0.0033** 0.0046** 

S. Error 0.0014  0.0011  

p-value 0.0157  0.0000  

Accruals  Estimate 0.0017  0.0030  

S. Error 0.0026  0.0024  

p-value 0.5176  0.2210  

Short Interest  Estimate 0.0034***  0.0070*** 

S. Error 0.0012  0.0021  

p-value 0.0076  0.0011  

Value-Profitability  Estimate 0.0009  0.0009  

S. Error 0.0025  0.0023  

p-value 0.7269  0.6791  

Gross Margins  Estimate 0.0003  0.0023  

S. Error 0.0027  0.0026  

p-value 0.9060  0.3813  

Debt Issuance  Estimate 0.0039*  0.0048* 

S. Error 0.0022  0.0027  

p-value 0.0875  0.0838  

Return on Equity 

(annual)  

Estimate (0.0019) (0.0027) 

S. Error 0.0028  0.0026  

p-value 0.5010  0.3010  

Av. adjusted !" 0.158 0.178 

Note: The table displays the Fama-MacBeth (FM) results for models whose risk factors were selected 

based on the estimated Ù��4EFG root set (-̈#��stu ). The full FM procedure is described in Section 

2.2. To select the tuning parameter alpha, we set an alpha grid as � $%bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+)' and then evaluate the BIC criteria (described by AS (10). We find 

an optimal regularization parameter � $ bÎbb+. Results are reported for CRSP datasets both with 

and without small-caps. The average number of securities in each cross-sectional regression is 4,041 

and 2,885, respectively, for CRSP datasets both with and without small-caps. For each model and 
dataset, the table includes the estimated risk premia, standard error and the p-value for null 

hypothesis ��D ^ $ b, as opposed to the alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ 
entail that the null hypothesis is rejected at 10%, 5% and 1% levels of significance, respectively. 
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Table 3 brings the standard models. All of these pose lower average adjusted !" 

when compared to our methodology. We notice that the intercept is also significant across 

all models and samples. When we consider the full CRSP sample, we find that standard 

models do not show any significant estimated factor risk premia. In turn, when we remove 

small-caps from the CRSP dataset, the risk premium for the Excess Market Return 

becomes significant for FF3 and NM4 models, although it remains insignificant in the C4 

model. Gross Profitability is significant in the NH4 model, whereas Momentum is 

insignificant in the C4 model. 

 

Table 3: FM Results for standard models 

Base CRSP CRSP without Small-Caps 

Coefficient FF3 NM4 C4 P5 FF3 NM4 C4 P5 

Intercept Estimate 0.0032** 0.0035*** 0.0029** 0.0031** 0.0039*** 0.0038*** 0.0037** 0.0036** 

S. Error 0.0013  0.0013  0.0012  0.0012  0.0009  0.0009  0.0008  0.0008  

p-value 0.0182  0.0070  0.0197  0.0106  0.0000  0.0000  0.0000  0.0000  

Excess 

Market 

Return  

Estimate 0.0026  0.0025  0.0028  0.0026  0.0046* 0.0046* 0.0045  0.0044  

S. Error 0.0027  0.0027  0.0027  0.0026  0.0025  0.0025  0.0025  0.0025  

p-value 0.3372  0.3610  0.2963  0.3213  0.0715  0.0697  0.0690  0.0717  

Size  Estimate (0.0025) (0.0029) (0.0031) (0.003) -0.0059** -0.0065** -0.006** (0.006) 

S. Error 0.0028  0.0028  0.0027  0.003  0.0026  0.0026  0.0026  0.003  

p-value 0.3823  0.3002  0.2571  0.217  0.0253  0.0124  0.0199  0.012  

Value  Estimate (0.0024) (0.0025) (0.0021) (0.0024) (0.0037) (0.0037) (0.0038) (0.0039) 

S. Error 0.0028  0.0028  0.0027  0.0027  0.0027  0.0027  0.0026  0.0026  

p-value 0.3986  0.3700  0.4321  0.3886  0.1640  0.1609  0.1475  0.1441  

Gross 

Profitability  

Estimate   0.0034    0.0035    0.0047*   0.0047  

S. Error   0.0028   0.0027    0.0026   0.0026  

p-value   0.2205    0.1981    0.0707    0.0703  

Momentum 

(6m)  

Estimate     (0.0002) 0.0000      0.0003  0.0005  

S. Error    0.0030  0.0029     0.0028  0.0028  

p-value     0.9343  0.9987      0.9101  0.8476  

Av. adjusted !" 0.048 0.060 0.060 0.071 0.058 0.071 0.066 0.082 

Note: The table above displays the Fama-MacBeth (FM) results for standard models. Section 2.2 

describes the full FM procedure. Columns FF3, NM4, C4 and P5 refer to standard models described 

in Section 2.3. Results are reported for CRSP datasets both with and without small-caps. The average 

number of securities in each cross-sectional regression is 4,041 and 2,885, respectively, for CRSP 

datasets both with and without small-caps. For each model and dataset, the table includes the 

estimated risk premia, standard error and the p-value for null hypothesis ��D ^ $ b, as opposed to the 

alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ entail that the null hypothesis is rejected 

at 10%, 5% and 1% levels of significance, respectively.  

 

For our next step, we compute the FM procedure for the first four PCs of f, whose 

results are described in Table 4. The first four PCs account for approximately 80% of the 

total cumulative variance of f, as we can see in Figure A2 of the Appendix, resulting in 

promising risk factor candidates to explain cross-sectional returns. Again, the intercept is 

significant across all models and samples. Considering the average adjusted !", our 
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methodology still poses a better performance when compared to PC models. Table 4 

below evidences how none of the PCs are significant for full CRSP samples. In regards 

to the dataset sample without small-caps, only the first principal component is significant 

across all models, while the fourth principal component is significant in the PC4 model.  

 

Table 4: FM Results for PC models 

Base CRSP CRSP without Small-Caps 

Coefficient PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Intercept Estimate 0.0042** 0.0035** 0.0021  0.0024* 0.0057*** 0.0046*** 0.0035*** 0.0035*** 

S. Error 0.0019  0.0016  0.0015  0.0014  0.0017  0.0013  0.0013  0.0011  

p-value 0.0286  0.0296  0.1735  0.0912  0.0007  0.0007  0.0053  0.0011  

PC1 Estimate 0.0191  0.0167  0.0148  0.0148  0.0263** 0.0263** 0.0243** 0.0237** 

S. Error 0.0129  0.0129  0.0126  0.0125  0.0119  0.0122  0.0121  0.0120  

p-value 0.1397  0.1948  0.2410  0.2372  0.0278  0.0319  0.0455  0.0499  

PC2 Estimate   (0.0047) (0.0018) (0.000)   (0.0056) (0.0027) 0.000  

S. Error   0.0080  0.0076  0.007    0.0073  0.0072  0.007  

p-value   0.5582  0.8148  0.986    0.4390  0.7055  0.962  

PC3 Estimate     0.0045  0.0035      0.0050  0.0044  

S. Error    0.0066  0.0065     0.0058  0.0057  

p-value     0.4985  0.5916      0.3866  0.4441  

PC4 Estimate       (0.0063)       -0.0098** 

S. Error     0.0050      0.0044  

p-value       0.2081        0.0273  

Av. adjusted !" 0.042 0.074 0.100 0.124 0.055 0.088 0.116 0.143 

Note: The table above displays the Fama-MacBeth (FM) results for PC models. Section 2.2 describes 

the full FM procedure. Columns PC1, PC2, PC3 and PC4 refer to principal component models 

described in Section 2.3. Results are reported for CRSP datasets both with and without small-caps. 

The average number of securities in each cross-sectional regression is 4,041 and 2,885, respectively, 

for CRSP datasets both with and without small-caps. For each model and dataset, the table includes 

the estimated risk premia, the standard error and the p-value for null hypothesis ��D ^ $ b, as opposed 

to the alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ indicate that the null hypothesis 

is rejected at 10%, 5% and 1% levels of significance, respectively.  

 

In regards to the PC1 (first principal component) risk premium significance in the 

CRSP sample without small-caps, we also test models with the four-risk factors that yield 

the highest factor loadings for the first principal component for f, leading to models that 

we dub “PC1 loadings”. Figure A3 of the Appendix shows factor loadings for the first 

principal component of f. It is worth pointing out that none of the four factors with the 

highest loadings (Firm Age, Investment to Capital, and Share Issuance [Monthly and 

Annual]) belong to -̈#��stu . Table 5 summarizes estimated results for PC1 loadings 

models, allowing us to conclude that the regression from Model 3 in the full CRSP dataset 

is the only situation in which an insignificant intercept is achieved, in spite of its average 

adjusted !" (near 8.9%) being considerably lower than the 15.8% percentage verified in 

our methodology for the same samples. As we can see, unlike previous alternative models 
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- and with the only exception being Model 1 -, PC1 loadings models yield significant 

factor risk premia estimators for CRSP samples both with and without small-caps. 

Nevertheless, the average adjusted !" from all PC1 models is lower than the one 

submitted by our methodology. 

 

Table 5: FM Results for PC1 loadings models 

Base CRSP CRSP without Small-Caps 

Coefficient Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

Intercept Estimate 0.0032* 0.0031* 0.0027  0.0033** 0.0049*** 0.005*** 0.0047*** 0.0052*** 

S. Error 0.0018  0.0017  0.0017  0.0016  0.0015  0.0014  0.0014  0.0014  

p-value 0.0771  0.0728  0.1086  0.0454  0.0014  0.0007  0.0011  0.0002  

Firm Age  Estimate (0.0053) (0.0051)* (0.0046) (0.0047) (0.006)*** (0.0071)** (0.0068)** (0.0071)** 

S. Error 0.0032  0.0031  0.0030  0.0030  0.0029  0.0028  0.0027  0.0028  

p-value 0.1011  0.0942  0.1272  0.1155  0.0187  0.0119  0.0138  0.0108  

Investment-

to-Capital  

Estimate   0.007** 0.0065** 0.0064**   0.0081*** 0.0077*** 0.008*** 

S. Error   0.0031  0.0031  0.003    0.0029  0.0028  0.003  

p-value   0.0258  0.0350  0.037    0.0048  0.0057  0.005  

Share 

Issuance 

(monthly)  

Estimate     0.0051* 0.0051*     0.0057** 0.006** 

S. Error    0.0030  0.0031     0.0028  0.0028  

p-value     0.0967  0.0965      0.0437  0.0347  

Share 

Issuance 

(annual)  

Estimate       0.0050        0.0058** 

S. Error     0.0031      0.0029  

p-value       0.1130        0.0459  

Av. adjusted !" 0.043 0.065 0.089 0.107 0.057 0.081 0.106 0.125 

Note: The table above displays the Fama-MacBeth (FM) results for the PC1 loadings models. Section 

2.2 describes the full FM procedure. Columns Model1, Model2, Model3 and Model4 refer to PC1 

loadings models described in Section 2.3. Results are reported for CRSP datasets both with and 

without small-caps. The average number of securities in each cross-sectional regression is 4,041 and 

2,885, respectively, for CRSP datasets both with and without small-caps. For each model and dataset, 

the table includes the estimated risk premia, the standard error and the p-value for null hypothesis ��D ^ $ b'7as opposed to the alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ indicate 

that the null hypothesis is rejected at 10%, 5% and 1% levels of significance, respectively. 

 

Generally speaking, we find that our methodology is the only approach that poses 

significant estimated factor risk premia parameters for the full CRSP sample, with the 

exception of PC1 Model 1. After comparing our methodology to all other models, we 

verify that our results generate a higher average adjusted !" in both samples. Thus, FM 

results support our model when we take into consideration each sparse model tested so 

far. In regards to in-sample average adjusted !" numbers, our final result amounts, on 

one hand, to approximately 15.8% for the full CRSP sample; and, on the other, to 17.8% 

for the CRSP sample with small-caps, a satisfactory outcome according to Campbell and 

Thompson (2008). 
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4.3!Time-Varying Robustness 

Variations on the explanatory power of individual factors in the cross-section of 

expected returns over time are something commonly described in research papers 

addressing the factor zoo37. Taking such a fact into consideration, and seeking to examine 

this well-known issue, we proceed to split our samples in two so that the first part ranges 

from January 1981 to December 1998, while the second encompasses the time frame from 

January 1999 to December 2016. For these samples we apply the same methodology 

described in Section 2.1. Figure 3 displays the graphic representation of -%f) as #µ�4EFG  

for the first and second half samples. 

 

Figure 3: Graphic representation of joint risk factor distribution using Ù�ÚÛÜÝÞ for 

different sample periods 

First half sample 

 

Second half sample 

Note: The figure above displays the graphic representation of joint risk factor distribution using Ù��4EFG. As described in section 2.1.4, we estimate the joint risk factor distribution with Ù��4EFG $#�4EFG ¤& $ f'(��4EFG%�)¥. To select the tuning parameter alpha, we set an alpha grid as � $%bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+), and then evaluate the BIC criteria (described by (10)). Results are 

presented for the first and second half sample periods. The first half ranges from January 1981 to 

December 1998, while the second half ranges from January 1999 to December 2016. We find an 

optimal regularization parameter � $ bÎbz for the first half, and � $ bÎb+ for the second half. In each 
figure, each node represents a risk factor; blue lines denote direct edges; and red lines denote 

undirected edges. The nodes in red refer to graph roots (-̈#��stu ). 

 

                                                
37 See Freyberger, Neuhierl, and Weber (2020); and Green, Hand, and Zhang (2017). 
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For the first half, the optimal alpha is 0.05, leading to a less sparse graph and, 

consequently, to fewer roots when compared to the full-size sample results. Although the 

selected alpha for the second half is 0.01, or 0.001 higher than the same full-size sample 

alpha, the number of selected risk factors for the second half samples is the same as in 

the full-size sample. Table 6 compares the risk factor selected using our methodology to 

these three different sample periods. This allows us to observe a very low intersectional 

among these selected risk factor sets. None of the risk factors are selected by samples at 

the same time. We only have two common selected risk factors that are common to both 

the second half and the full sample (Short Interest and Gross Margins), and one element 

common to both the first and second half samples (Size), as well as between the first half 

and the full-size sample (Value Profitability). 

 

Table 6: Risk factor selected using the Ù�ÚÛÜÝÞ root for different sample periods 

Description Ret. S.R. 
Sample Period 

All First Half Second Half 

Accruals  -0.029 -0.188 X   

Short Interest  -0.006 -0.048 X  X 

Value-Profitability  0.131 0.845 X X  

Gross Margins  -0.011 -0.068 X  X 

Debt Issuance  0.016 0.098 X   

Return on Equity (annual)  0.038 0.235 X   

Size  -0.027 -0.170  X X 

Seasonality  0.076 0.482  X  

Return on Market Equity  0.073 0.441   X 

Momentum-Reversal  -0.074 -0.451   X 

Growth in LTNOA  -0.017 -0.132   X 

Selected Alpha 0.001 0.05 0.01 

Note: The table above displays the selected risk factors based on the estimated Ù��4EFG root set 

(-̈#��stu ) and the alpha selected using BIC criteria. To select the tuning parameter alpha, we set an 

alpha grid as � $ %bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+), and then evaluate the BIC criteria (described by 

(10)). Results are shown for all three different sample periods. The first half ranges from January 

1981 to December 1998, while the second half ranges from January 1999 to December 2016. For 

each selected risk factor, the table includes annualized average excess returns and annualized Sharpe 

ratios. 

 

In regards to the FM procedure, and given that we keep using the 60-month time 

window for the first-pass, results from the second-pass regression apply to cross-sections 

estimated from January 1986 to December 1998 in the first half, and from January 2004 

to December 2016 for the second half. Table 7 brings the FM procedure’s results for the 

first part of the sample, where we can see that regressions for the CRSP dataset both with 

and without small-caps do not pose any significant risk factor premia. For the second part 
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of the sample (Table 8), only regressions for the CRSP dataset without small-caps provide 

significant factor risk premia (Size and Return on Market Equity). 

Splitting the dataset in two enables us to verify the factor zoo evidence on the 

time-varying explanatory power of individual factors in the cross-section of expected 

returns. Nevertheless, results are considerably poorer when compared to those obtained 

using the full sampling period, thereby suggesting that 13-year monthly data time frames 

for FM second-pass regressions may be too short a sample to reach satisfactory results38. 

 

Table 7: FM results for risk factor models selected using the Ù�ÚÛÜÝÞ root for the first half 

sample 

Coefficient CRSP CRSP without Small-Caps 

Intercept Estimate 0.0022 0.0057** 

S. Error 0.0031 0.0023 

p-value 0.4751 0.0169 

Value-Profitability  Estimate 0.0019 -0.0004 

S. Error 0.0030 0.0025 

p-value 0.5273 0.8817 

Size  Estimate -0.0011 -0.0023 

S. Error 0.0035 0.0030 

p-value 0.7535 0.4585 

Seasonality  Estimate 0.0049 0.0053 

S. Error 0.0040 0.0038 

p-value 0.2232 0.1643 

Av. adjusted !" 0.0738 0.0850 

Note: The table above displays the Fama-MacBeth (FM) results for models whose risk factors were 

selected based on the estimated Ù��4EFG root set (-̈#��stu ) for the first part of our sample. Section 

2.2. describes the full FM procedure. To select the tuning parameter alpha, we set an alpha grid as � $ %bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+), and then evaluate the BIC criteria (described by AS (10)). We 

find an optimal regularization parameter � $ bÎbz. Results are reported for CRSP datasets both 

with and without small-caps. The average number of securities in each cross-sectional regression is 

3,825 and 2,527, respectively, for CRSP datasets both with and without small-caps. For each model 

and dataset, the table includes the estimated risk premia, the standard error and the p-value for null 

hypothesis ��D ^ $ b, as opposed to the alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ 
indicate that the null hypothesis is rejected at 10%, 5% and 1% levels of significance, respectively. 

 

 

 

 

 

 

                                                
38 See Cavalcante Filho et al. (2020) for interesting observations on sample sizes required to obtain robust 

risk premium estimators. 
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Table 8: FM results for risk factor models selected using the Ù�ÚÛÜÝÞ root for the second 

half sample 

Coefficient CRSP CRSP without Small-Caps 

Intercept Estimate 0.0033* 0.0032** 

S. Error 0.0017 0.0014 

p-value 0.0567 0.0252 

Short Interest  Estimate -0.0003 0.0045 

S. Error 0.0033 0.0034 

p-value 0.9173 0.1906 

Gross Margins  Estimate -0.0030 -0.0017 

S. Error 0.0030 0.0029 

p-value 0.3284 0.5462 

Size  Estimate -0.0008 -0.0046* 

S. Error 0.0028 0.0028 

p-value 0.7801 0.0995 

Return on Market Equity  Estimate -0.0015 -0.0033* 

S. Error 0.0020 0.0017 

p-value 0.4418 0.0501 

Momentum-Reversal  Estimate -0.0007 -0.0014 

S. Error 0.0030 0.0027 

p-value 0.8246 0.6060 

Growth in LTNOA  Estimate -0.0004 -0.0017 

S. Error 0.0025 0.0025 

p-value 0.8899 0.5081 

Av. adjusted !" 0.1412 0.1631 

Note: The table above displays the Fama-MacBeth (FM) results for models whose risk factors were 

selected based on the estimated Ù��4EFG root set (-̈#��stu ) for the second part of our sample. Section 

2.2 describes the full FM procedure. To select the tuning parameter alpha, we set an alpha grid as � $ %bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+), and then evaluate the BIC criteria (described by AS (10)). We 

find an optimal regularization parameter � $ bÎb+. Results are reported for CRSP datasets both 
with and without small-caps. The average number of securities in each cross-sectional regression is 

4,128 and 3,103, respectively, for CRSP datasets both with and without small-caps. For each model 

and dataset, the table includes the estimated risk premia, the standard error and the p-value for null 

hypothesis ��D ^ $ b, as opposed to the alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ 
indicate that the null hypothesis is rejected at 10%, 5% and 1% levels of significance, respectively. 

 

4.4!Out-of-Sample Results 

It is widely known in the high-dimensional statistics literature that, as the model’s 

complexity increases, the in-sample performance (IN) follows suit and permanently 

increases. On the other hand, out-of-sample performances (OOS) will start to decrease 

after the training model first stops fitting the data structure, then starts fitting the data 

noise39. We can therefore state that a desirable result is a model posing both IN and OOS 

                                                
39 See Abu-Mostafa, Magdon-Ismail, and Lin (2012) for more information. 
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satisfactory results. Thus, we examine out-of-sample (OOS) results from the computed 

one-step-ahead forecast, as described in section 2.4.  

Table 9 displays statistics for the «ÍÎ!Ì�[ (root-mean-square-error averages) 

and ÌÎ !Ì�[ (root-mean-square-error medians) of each model tested in the previous 

sections. As already pointed out, our methodology poses the lowest statistics for the OOS 

results across all metrics and datasets. This outperform is statistically significant in both 

samples as we observe the Diebold-Mariano test results in Table A4 and A5 on the 

Appendix. Table A6 of the Appendix summarizes the OOS results for models with 

alternative values for the alpha shrinkage parameter with, as noted before, the model with 

the optimal alpha presenting the best results. Thus, the OOS analysis also favors our 

methodology when compared to every other approach. 

 

Table 9: All out-of-sample model results 

Base CRSP CRSP without Small-Caps 

Model/Metric ÝßÎàá�» áÎ àá�» ÝßÎàá�» áÎàá�» 

Ù��4EFG roots 0.1715 0.1542 0.1258 0.1118 

Standard  

FF3 0.1763 0.1620 0.1298 0.1173 

NM4 0.1775 0.1627 0.1306 0.1185 

C4 0.1776 0.1632 0.1307 0.1183 

P5 0.1787 0.1632 0.1314 0.1192 

PCs 

PC1 0.1726 0.1600 0.1278 0.1171 

PC2 0.1747 0.1611 0.1290 0.1174 

PC3 0.1763 0.1626 0.1299 0.1177 

PC4 0.1776 0.1629 0.1307 0.1182 

PC1 Loadings 

Model1 0.1728 0.1596 0.1278 0.1169 

Model2 0.1740 0.1610 0.1286 0.1174 

Model3 0.1755 0.1618 0.1296 0.1185 

Model4 0.1767 0.1628 0.1303 0.1188 

Note: The table above displays the root mean square error averages («ÍÎ !Ì�[) and medians 

(ÌÎ !Ì�[) across all models for the out-of-sample one-step-ahead forecast described in Section 2.4. In 

regards to our Ù��4EFG root, we set an alpha grid as � $ %bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+) to select the 

tuning parameter alpha, after which we evaluate the BIC criteria (described by (10)). We find an optimal 

regularization parameter � $ bÎbb+. 

 

5.! Conclusion 

The risk factor literature has produced hundreds of potential candidates to explain 

the cross-section of expected returns, which has led to the issue of the factor zoo. 

Fortunately, the combination of advanced computational power, enhanced datasets and 

novel econometric methods has allowed economists to start addressing this matter.  
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With this paper, we propose a new methodology aimed at reducing the original 

risk factor candidate set dimension by applying a CPDAG to estimate the joint risk factor 

distribution, as well as selecting the CPDAG root as the new candidate set to explain 

cross-sectional returns. We therefore achieve sparsity since the CPDAG root set poses a 

much lower dimension than its original risk factor set. As we pointed out before - in 

accordance with Ross’s (1976) APT model structure -, the CPDAG root is a natural 

candidate to span the remaining risk factors and, consequently, the cross-section of 

expected returns. After the shrinkage selection, we then apply the FM procedure to 

evaluate our methodology based on the CRSP monthly stock return dataset ranging from 

January 1981 to December 2016, in addition to Kozak, Nagel, and Santosh (2020) risk 

factor datasets. 

Our findings indicate that our methodology yields better both in and out-of-

sample results when compared to standard models or related principal component 

analysis methods documented in the factor zoo literature. This satisfactory result shows 

that CPDAG analysis may prove to be a useful tool in helping to understand joint risk 

factor distribution, in addition to how its properties can be applied to select risk factors, 

with the purpose of reaching a sparse risk factor model aimed at explaining the cross-

section of expected returns. 
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Appendix  

 

Table A1: Descriptive statistics of risk factors 

Description  Ret. S.R. Reference Code 
Excess Market Return  0.064 0.418 (Sharpe, 1964) Rme 

Size  -0.027 -0.170 (Fama and French,1993) Size 

Value  0.039 0.242 (Fama and French, 1993) value 

Gross Profitability  0.024 0.151 (Novy-Marx, 2013) prof 

Value-Profitability  0.131 0.845 (Novy-Marx, 2013) valprof 

Piotroski’s F-score  0.038 0.221 (Piotroski, 2000) fscore 

Debt Issuance  0.016 0.098 (Spiess and Affleck-Graves, 1999) debtiss 

Share Repurchases  0.029 0.172 (Ikenberry, Lakonishok, and Vermaelen, 1995) repurch 

Share Issuance (annual)  -0.100 -0.563 (Pontiff and Woodgate, 2008) nissa 

Accruals  -0.029 -0.188 (Sloan, 1996) accruals 

Asset Growth  -0.090 -0.556 (Cooper, Gulen, and Schill, 2008) growth 

Asset Turnover  0.036 0.246 (Soliman, 2008) aturnover 

Gross Margins  -0.011 -0.068 (Novy-Marx, 2013) gmargins 

Dividend Yield  0.022 0.155 (Naranjo, Nimalendran, and Ryngaert, 1998) divp 

Earnings/Price  0.052 0.313 (Basu, 1977) Ep 

Cash Flow/Market Value of Equity  0.048 0.295 (Lakonishok, Shleifer, and Vishny, 1994) Cfp 

Net Operating Assets  0.004 0.026 (Hirshleifer et al., 2004) Noa 

Investment  -0.098 -0.594 (Chen, Novy-Marx, and Zhang, 2011) Inv 

Investment-to-Capital  -0.053 -0.302 (Xing, 2008) invcap 

Investment Growth  -0.107 -0.630 (Xing, 2008) igrowth 

Sales Growth  -0.071 -0.427 (Lakonishok, Shleifer, and Vishny, 1994) sgrowth 

Leverage  0.033 0.195 (Bhandari, 1988) Lev 

Return on Assets (annual)  0.010 0.067 (Chen, Novy-Marx, and Zhang, 2011) roaa 

Return on Equity (annual)  0.038 0.235 (Haugen and Baker, 1996) roea 

Sales-to-Price  0.066 0.394 (Barbee Jr, Mukherji, and Raines, 1996) Sp 

Growth in LTNOA  -0.017 -0.132 (Fairfield, Whisenant, and Yohn, 2003) gltnoa 

Momentum (6m)  0.004 0.023 (Jegadeesh and Titman, 1993) mom 

Industry Momentum  0.042 0.244 (Moskowitz and Grinblatt, 1999) indmom 

Value-Momentum  0.029 0.178 (Novy-Marx, 2013) valmom 

Value-Momentum-Profitability  0.051 0.308 (Novy-Marx, 2013) Valmomprf 

Short Interest  -0.006 -0.048 (Dechow, Kothari, and Watts, 1998) shortint 

Momentum (1y)  0.043 0.259 (Jegadeesh and Titman, 1993) mom12 

Momentum-Reversal  -0.074 -0.451 (Jegadeesh and Titman, 1993) momrev 

Long-term Reversals  -0.058 -0.374 (De Bondt and Thaler, 1985) lrrev 

Value (monthly)  0.027 0.161 (Asness and Frazzini, 2013) valuem 

Share Issuance (monthly)  -0.096 -0.533 (Pontiff and Woodgate, 2008) nissm 

PEAD (SUE)  0.072 0.481 (Foster, Olsen, and Shevlin, 1984) sue 

Return on Book Equity  0.084 0.541 (Chen, Novy-Marx, and Zhang, 2011) roe 

Return on Market Equity  0.073 0.441 (Chen, Novy-Marx, and Zhang, 2011) rome 

Return on Assets  0.047 0.316 (Chen, Novy-Marx, and Zhang, 2011) roa 

Short-term Reversal  -0.069 -0.413 (Jegadeesh, 1990) strev 

Idiosyncratic Volatility  -0.054 -0.323 (Ang, Chen, and Xing, 2006) ivol 

Beta Arbitrage  -0.034 -0.207 (Cooper, Gulen, and Schill, 2008) betaarb 

Seasonality  0.076 0.482 (Heston and Sadka, 2008) season 

Industry Relative Reversals  -0.133 -0.808 (Da, Liu, and Schaumburg, 2014) indrrev 

Industry Rel. Rev. (Low Vol.)  -0.225 -1.542 (Da, Liu, and Schaumburg, 2014) indrrevlv 

Industry Momentum-Reversal  0.143 0.885 (Moskowitz and Grinblatt, 1999) indmomrev 

Composite Issuance  -0.086 -0.543 (Daniel and Titman, 2006) ciss 

Price  -0.015 -0.092 (Blume and Husic, 1973) price 

Firm Age  0.013 0.074 (Barry and Brown, 1984) age 

Share Volume  -0.037 -0.222 (Datar, Naik, and Radcliffe, 1998) shvol 

Note: The table above displays the descriptive statistics of our risk factor dataset compiled by Kozak, 

Nagel, and Santosh (2020), with monthly data ranging from January 1981 to December 2016. For 

each risk factor, the table includes annualized average excess returns, annualized Sharpe ratios, 

literature references, and code names. 
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Figure A1: Risk factor distribution using Ù�ÚÛÜÝÞ, according to the alpha parameter 

  

  

 

Note: The figure above displays the graphic representation of the joint risk factor distribution asÙ��4EFG for different alpha values. As described in section 2.1.4, we estimate the joint risk factor 

distribution with Ù��4EFG $ #�4EFG ¤& $ f'(��4EFG%�)¥. We set an alpha grid as � $%bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+). In each figure, each node represents a risk factor; blue lines denote

direct edges; and red lines denote undirected edges. The nodes in red refer to graph roots 

(-̈#��stu%�)). 
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Table A2: Risk factor selected using the Ù�ÚÛÜÝÞ root, according to different alphas 

Description Ret. S.R. 

Alpha 

0.0001 0.001 0.01 0.05 0.1 

Accruals  -0.029 -0.188 X X X  

none 

Short Interest  -0.006 -0.048 X X   

Value-Profitability  0.131 0.845 X X   

Growth in LTNOA  -0.017 -0.132 X    

Gross Margins  -0.011 -0.068  X   

Debt Issuance  0.016 0.098  X   

Return on Equity (annual)  0.038 0.235  X   

Gross Profitability  0.024 0.151   X X 

Excess Market Return  0.064 0.418   X  

Share Issuance (monthly)  -0.096 -0.533    X 

BIC 30,747.4 29,549.7 30,864.3 30,838.9 30,754.0 

Note: The table above displays the selected risk factors based on the estimated Ù��4EFG root set 

(-̈#��stu ), as well as the BIC criteria for models with different alpha values. We set an alpha grid 

as � $ %bÎbbb+' bÎbb+' bÎb+' bÎbz' bÎ+). For each selected risk factor, the table includes annualized 

average excess returns and annualized Sharpe ratios. 
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Table A3: FM results for risk factor models selected using the Ù�ÚÛÜÝÞ root, according to 

different alphas 

Base CRSP CRSP without Small-Caps 

Coefficient Alpha 0.0001 0.001 0.01 0.05 0.0001 0.001 0.01 0.05 

Intercept Estimate 0.0037** 0.0033** 0.0036*** 0.0038* 0.0043*** 0.0046** 0.004*** 0.0059* 

S. Error 0.0015  0.0014  0.0013  0.0020  0.0013  0.0011  0.0009  0.0017  

p-value 0.0140  0.0157  0.0057  0.0557  0.0007  0.0000  0.0000  0.0006  

Accruals  Estimate 0.0023  0.0017  0.0009    0.0035  0.0030  0.0030    

S. Error 0.0027  0.0026  0.0029    0.0025  0.0024  0.0025    

p-value 0.3973  0.5176  0.7596    0.1576  0.2210  0.2328    

Short 

Interest  

Estimate 0.0046** 0.0034***      0.0081*** 0.007***     

S. Error 0.0023  0.0012     0.0022  0.0021     

p-value 0.0480  0.0076      0.0003  0.0011      

Value-

Profitability  

Estimate 0.0017  0.0009      0.0011  0.0009      

S. Error 0.0025  0.0025     0.0024  0.0023     

p-value 0.4912  0.7269      0.6301  0.6791      

Growth in 

LTNOA  

Estimate 0.0011        (0.0010)       

S. Error 0.0024      0.0023      

p-value 0.6544        0.6575        

Gross 

Margins  

Estimate   0.0003        0.0023      

S. Error   0.0027      0.0026     

p-value   0.9060        0.3813      

Debt 

Issuance  

Estimate   0.0039*        0.0048*     

S. Error   0.0022      0.0027     

p-value   0.0875        0.0838      

Return on 

Equity 

(annual)  

Estimate   (0.0019)       (0.0027)     

S. Error   0.0028      0.0026     

p-value   0.5010        0.3010      

Gross 

Profitability  

Estimate     0.0035  0.0029      0.0051* 0.0051* 

S. Error    0.0028  0.0029    0.0026  0.0026  

p-value     0.2222  0.3161      0.0564  0.0467  

Excess 

Market 

Return  

Estimate     0.0030        0.0055**   

S. Error    0.0027      0.0025    

p-value     0.2744        0.0288    

Share 

Issuance 

(monthly)  

Estimate       0.0040        0.0053* 

S. Error     0.0032     0.0029  

p-value       0.2048        0.0715  

Av. adjusted !" 0.111 0.158 0.093 0.068 0.128 0.178 0.110 0.082 

Note: The table above displays the Fama-MacBeth (FM) results for models whose risk factors were 

selected based on the estimated Ù��4EFG root set (-̈#��stu ). Section 2.2 describes the full FM 

procedure. Columns refer to models with different alpha values. Results are reported for CRSP 

datasets both with and without small-caps. The average number of securities in each cross-sectional 

regression is 4,041 and 2,885, respectively, for CRSP datasets both with and without small-caps. For 

each model and dataset, the table includes the estimated risk premia, the standard error and the p-

value for null hypothesis ��D ^ $ b, as opposed to the alternative hypothesis �ND ^ e b. Subscriptions ½,½½ and ½½½ indicate that the null hypothesis is rejected at 10%, 5% and 1% levels of significance, 

respectively. 
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Figure A2: Principal component cumulative risk factor variance 

 

Note: This figure displays the cumulative risk factor variance explained by its principal components %-©â). 
 

 

Figure A3: First principal component risk factor loadings’ absolute values  

 

Note: This figure displays the absolute values for the first principal component’s risk factor loadings, 

arranged by value. 
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Table A4: Modified Diebold-Mariano test results for the CRSP dataset 

Model 1! Ù��4EFG !
Classic! PCs! PC1 Loadings!

FF3! NM4! C4! P5! PC1! PC2! PC3! PC4! M1! M2! M3! M4!

M
o

d
el

 2
!

Ù��4EFG  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
C

la
ss

ic
 FF3   0.000 0.000 0.000 0.000 0.000 0.936 0.000 0.000 0.000 0.000 0.675 

NM4    0.000 0.000 0.000 0.000 0.576 0.000 0.000 0.000 0.000 0.000 

C4     0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

P5      0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

P
C

s 

PC1       0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PC2        0.000 0.000 0.000 0.000 0.000 0.000 

PC3         0.000 0.000 0.000 0.000 0.328 

PC4          0.000 0.000 0.000 0.000 

P
C

1
 

L
o

ad
in

g
s M1           0.000 0.000 0.000 

M2            0.000 0.000 

M3             0.000 

M4              

Note: The table displays the p-value from the modified Diebold-Mariano test for predictive accuracy 

among two models proposed by  D. Harvey, Leybourne, and Newbold (1997). The null hypothesis is 

given by ��D `\¼N'T] $ `\¼"'T] against the alternative hypothesis ��D `\¼N'T] e `\¼"'T], where ¼6'T  is the 

out-of-sample one-step-ahead forecast error described in Section 2.4 from model 9 and  ` is a quadratic 

function.!

 

 

Table A5: Diebold-Mariano test results for the CRSP dataset without small caps 

Model 1! Ù��4EFG !
Classic! PCs! PC1 Loadings!

FF3! NM4! C4! P5! PC1! PC2! PC3! PC4! M1! M2! M3! M4!

M
o

d
el

 2
!

Ù��4EFG  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C
la

ss
ic
 FF3   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NM4    0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
C4     0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
P5      0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

P
C

s 

PC1       0.000 0.000 0.000 0.786 0.000 0.000 0.000 
PC2        0.000 0.000 0.000 0.000 0.000 0.000 
PC3         0.000 0.000 0.000 0.000 0.000 
PC4          0.000 0.000 0.000 0.000 

P
C

1
 

L
o

ad
in

g
s M1           0.000 0.000 0.000 

M2            0.000 0.000 
M3             0.000 
M4              

Note: The table displays the p-value from the modified Diebold-Mariano test for predictive accuracy 

among two models proposed by  D. Harvey, Leybourne, and Newbold (1997). The null hypothesis is 

given by ��D `\¼N'T] $ `\¼"'T] against the alternative hypothesis ��D `\¼N'T] e `\¼"'T], where ¼6'T  is the 

out-of-sample one-step-ahead forecast error described in Section 2.4 from model 9 and  ` is a quadratic 

function.!

 

 

Table A6: Out-of-sample results for risk factor models selected using the Ù�ÚÛÜÝÞ root, 

according to different alphas 

Base CRSP CRSP without Small-Caps 

Model/Metric ÝßÎàá�» áÎ àá�» ÝßÎàá�» áÎàá�» 

Ù��4EFG  roots 

0.0001 0.1769 0.1629 0.1301 0.1183 

0.001 0.1715 0.1542 0.1258 0.1118 

0.01 0.1724 0.1536 0.1270 0.1116 

0.05 0.1744 0.1611 0.1288 0.1178 

Note: The table above displays the root mean square error averages («ÍÎ !Ì�[) and medians 

(ÌÎ !Ì�[) across Ù��4EFG root models concerning the out-of-sample one-step-ahead forecast described 

in Section 2.4. for different alpha values. 
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