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1 Introduction

In an auction theoretical game, the bidders’ private value cumulative distribution function

(c.d.f.) is a key element for analysing the demand that a seller faces. Because it is required in

the computation of the seller’s expected payoff, its knowledge is crucial for policy recommen-

dation, as e.g. the optimal reservation price policy. The issue here is that bidders’ private

values are not observed, thereby their distribution function is unknown for the econometri-

cians and policy makers. In the past 20 years, several structural researches in auction theory

have proposed parametric, semiparametric and nonparametric approaches to estimate such

a latent distribution function.

The goal of this paper is to propose an identification and estimation approach based

on quantile regression to recover the private value conditional distribution in ascending

auctions. The identification strategy is developed for the Independent Private Values (IPV)

setup, but can also be extended for other paradigms. The ascending auction is one of the

most common design in practice and is especially suitable for the identification of the private

value distribution under the IPV paradigm because, under mild assumptions, the transaction

price equals the second-highest private value. As a result, the private value distribution can

be nonparametrically identified through the winning bids distribution, as well known from

Athey and Haile (2002).

A first wave of researchers has focused on parametric identification and estimation ap-

proaches. Paarsch (1992) and Donald and Paarsch (1993, 1996) have proposed to estimate

the parameters of the private value distribution via the method of Maximum Likelihood

(ML) using the winning bids of a button auction. In an attempt to circumvent the diffi-

culties that arise from ML methods, Laffont, Ossard and Vuong (1995) suggested simulated

method of moments based on the revenue equivalence theorem, which can handle a larger

class of auction mechanisms and parametric models. A key observation of Rezende (2008) is
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that Laffont, Ossard and Vuong (1995)’s approach carries over with drastic simplifications

for simple semiparametric linear regression models which can still be identified through the

revenue equivalence theorem. More recently, taking into consideration endogenous entry and

unobserved heterogeneity, Li and Zheng (2009) propose a semiparametric Bayesian method

to estimate the distributions of costs, entry costs and of the unobserved auction hetero-

geneity. Athey, Levin and Seira (2011) also consider an entry stage and adopt a parametric

approach to estimate the distribution of the unobserved heterogeneity. Roberts and Sweeting

(2012) investigate parametrically the relative revenue performance of a simultaneous outcry

auction and a sequential game when entry is costly and selective.

Some works have proposed nonparametric identification and estimation approaches for

ascending auctions in an attempt to circumvent the misspecification bias of parametric ones.

Athey and Haile (2002) have shown that the c.d.f of the transaction price can nonparametri-

cally identify the private value distribution. Haile and Tamer (2003) identify bounds on the

private value distribution for a model of English auction in which bids are below bidder’s

value. They also suggest to use a median regression in the estimation as an alternative to

the nonparametric estimation method, but not really developed the idea.

Some other nonparametric approaches for first-price sealed-bid auctions have been built

on quantiles, starting from the insight of Haile, Hong and Shum (2003) that the quantiles of

the private value distribution can be written as a function of the quantiles of the observed

bids distribution and density function. Marmer and Shneyerov (2012) have shown that

adopting a quantile approach makes the estimation of the private value p.d.f. easier from a

technical point of view, whereas Guerre and Sabbah (2012) go one step further by proposing

to estimate quantile function instead of p.d.f.. Marmer, Shneyerov and Xu (2013) proposed a

nonparametric approach to test for alternative models of entry by exploring variation in the

quantiles of the private value distribution due to competition. Enache and Florens (2012)

developed a nonparametric approach for third-price auctions under risk aversion.
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To my knowledge, quantile approaches have not been systematically and throughly ap-

plied to ascending auctions so far. Although nonparametric approaches have the advantages

of being flexible in analysing the data at hand since no structure is imposed on that, it

has some disadvantages as the curse of dimensionality and the need to choose for a band-

width parameter. The curse of dimensionality can be indeed a relevant estimation issue in

view of important contributions to the empirical auction literature such as Haile and Tamer

(2003) and Aradillas-Lopez, Gandhi and Quint (2013), which consider, respectively, 5 and

6 explanatory variables for a sample size of a few thousands at best. Hastie and Tibshirani

(1990) give a convenient example of the curse of dimensionality. Suppose that 1000 points

are uniformly distributed over a 5-dimensional unit cube and we wish to construct a cube-

shaped neighbourhood containing 10 observations, that is, 1% of the data. The subcube is

then required to have length 0.40, on average. If instead of 5 the covariate dimension was

set to 1, the length required in a similar exercise would now be 1% of the covariate range,

which is much smaller and then local than the 40% of the 5 dimensional case. To improve

accuracy of the estimates, is then required to use kernels with very small bandwidths and

far more observations. This suggests that the bias in standard nonparametric approaches

can be high considering the usual auction sample sizes. By contrast, the quantile regression

model used in this paper can be in principle estimated with a parametric rate, independently

of the dimension of the covariate, and does not involve the choice of a smoothing parameter.

Addressing the curse of dimensionality is an important step to develop a nonparametric

framework allowing for many covariates. This is also a first step to better capture unob-

served heterogeneity by increasing the number of covariates in a nonparametric framework.

Specific quantile techniques have also been developed to deal with omitted variables using in-

strumental variables, see Chernozhukov and Hansen (2006) among others. Such approaches

have natural sieve extensions which could also fit in extensions of the framework studied

here. Although not so clearly related with the structure of auction data, quantile panel data
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estimation techniques has provided important recent development, see e.g. Canay (2011)

and Galvao Jr. (2011). This suggests that nonparametric quantile approach could be much

more useful regarding unobserved heterogeneity than other nonparametric methods.

The quantile regression approach is also more flexible than many of the parametric or

semiparametric methods mentioned above. Indeed, the model includes functional compo-

nents that may be helpful to reduce the impact of misspecification. Compared to the semi-

parametric regression approach of Rezende (2008), quantile regression is computationally

more difficult to perform but delivers an estimation of the full private value distribution,

as needed for instance to derive an optimal reservation price. As a consequence, quantile

regression is probably better suited for policy recommendations than a simpler regression

approach. Also in the context of policy analysis, the quantile regression approach allows to

highlight the screening level implied by the choice of a reservation price, a policy character-

istic that has been mostly ignored by previous empirical approaches. Based on data from

the United States Forest Service (USFS) timber auctions, the empirical application suggests

that practical implementation of the optimal reservation price derived from maximization of

the expected payoff may lead to a low probability of selling the auctioned good. That is due

to a strong variation observed in the private value conditional quantiles, which may then

incentive sellers to screen bidders with low valuation in the auction.

The paper is organized as follows. Section 2 describes the ascending auction considered,

the quantile regression identification approach and a quantile version for the seller’s expected

payoff with a corresponding screening level maximizer. Section 3 provides the estimation

methodology and studies the performance of the estimator in small and large-samples, al-

lowing for potential misspecification. Section 4 presents some specification tests. Section

5 provides an empirical application of the methodology proposed. Finally, section 6 con-

cludes the paper. Appendix A groups all the proofs of the results achieved, Appendix B

describes the random weighting bootstrap method considered in two of the hypotheses tests
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and Appendix C presents Monte Carlo experiments of the hypotheses tests.

2 Ascending Auctions in a Quantile Setup

A single and indivisible object with some characteristics Z ∈ Rd is auctioned to I ≥ 2 bidders

through an ascending auction. The seller sets a reservation price r prior to the auction that

is the minimum price that he would be willing to accept. Both the set of auction covariates

X = (1, Z) and the number of actual bidders I participating in the auction are common

knowledge. The object is sold to the highest bidder for the price of his last bid, provided

that it is at least as high as the reservation price r. Within the IPV paradigm, each bidder

i = 1, · · · , I is assumed to have a private value vi for the auctioned good, which is not

observed by other bidders. The bidder only knows his own private value, but it is common

knowledge for bidders and sellers that private values have been identically and independently

drawn from a common c.d.f. Fv (·|X, I) conditional upon (X, I), or equivalently, with a

conditional quantile function V (α|X, I), α ∈ [0, 1], defined as

V (α|X, I) := inf {v : Fv (v|X, I) ≥ α} . (2.1)

When the private value conditional distribution is absolutely continuous with a probability

density function (p.d.f) fv (·|X, I) positive on its support [V (0|X, I) , V (1|X, I)] ⊂ R+, as

considered from now on, V (α|X, I) is the reciprocal function F−1
v (α|X, I).

It is well known1 that ui = Fv (vi|X, I), which can be viewed as the rank of a bidder with

private value vi in the population, is independent of (X, I) with a uniform distribution over

[0, 1]. The IPV paradigm implies that the ranks ui, i = 1, · · · , I, are independent. In other

words, the dependence between the private values vi and the auction covariates (X, I) can

1By the Fundamental Theorem of Simulation.
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be fully captured by the nonseparable model

vi = V (ui|X, I) , ui
iid∼ U[0,1] ⊥ (X, I) . (2.2)

Therefore, bidders are identical up to the variable ui, which represents the bidder ith’s

position in the private value distribution.

The quantile regression approach, developed by Koenker and Bassett (1978), restricts

the quantile representation (2.2) to a regression specification, such as

V (α|X, I) = h (Xγ (α|I))

= h (γ0 (α|I) + Zγ1 (α|I)) ,

(2.3)

where h (·) is a given function, γ0 (α|I) the quantile regression intercept and γ1 (α|I) the

quantile regression slopes. In the basic specification, h (·) is equal to the identity. Note that

in (2.3), both the intercept and the slope quantile regression coefficients depend upon the

rank α of the bidder in the population2. Therefore, changes in the conditioning variables not

only shift the location of the conditional distribution of v, but may also affect its scale and

shape. A shock on the covariate X may affect a bidder with a low rank α in a different way

than a bidder with a higher rank. A large discrepancy of the coefficients across α indicates

strong heterogeneity3 among the bidders. As discussed later, taking into consideration such

heterogeneity among the bidders may have important implications for both seller and bidders.

I now turn to the assumptions of the model. In the considered ascending auction, bidders

raise continuously their prices and drop out of the auction as the prices reach their valuation.

Assumption 1 The transaction price in an auction is the greater of the reservation price

2Throughout this paper, the rank of the bidder can be interchangeably represented by α and u.
3Note that heterogeneity and asymmetry are two concepts that should not be confused. Heterogeneity is

concerned with the variation of γ (α) across quantile levels α, while asymmetry implies that different bidders
can have different coefficients γ (α).
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and the second-highest bidder’s willingness to pay.

Assumption 1 is an assumption on equilibrium play. This assumption was also used in

Aradillas-Lopez et al. (2013) and, as noted in Athey and Haile (2002) and Bikhchandani,

Haile and Riley (2002), is compatible with the multiple equilibria generated by the ascending

auctions. It is for instance the result of the dominant strategy equilibrium of a button4

auction, which is a stylized version of an ascending auction. Haile and Tamer (2003) use

stronger assumptions concerning bidder’s behaviour, which determine the joint distribution

of all the bids. This is not needed when using only the winning bid. This assumption would

also hold approximately in the context of Haile and Tamer (2003) if bidders do not use jump

bids at the end of the auction.

The ascending auction format is specially convenient for the identification of the bid-

ders’ private value distribution under the IPV paradigm5 because, under assumption 1 and

a nonbinding reservation price, the latent private value conditional distribution can be non-

parametrically identified from the winning bid conditional distribution. Such a nice feature

will be considered in the identification of the model.

The next two assumptions deal with the quantiles of the bidders’ private value distribu-

tion:

Assumption 2 V (α|X, I) is strictly increasing and continuous on its support [V (0|X, I) , V (1|X, I)]

for all (X, I).

Assumption 3 The private value conditional quantiles has a quantile regression specifica-

tion

V (α|X, I) = h (Xγ (α|I)) , (2.4)

4In a button auction, bidders hold down a button to remain active while the price rises continuously,
releasing the button to drop out of the game, and the willingness to pay of the losing bidders is learned from
their drop out prices.

5In the case of affiliated private values, the private value conditional quantiles cannot be nonparametrically
point-identified. It is possible however to extend the methodology to identify bounds on the private value
conditional quantiles using a strategy similar to Aradillas-Lopez et al. (2013).
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where h (·) is known by the econometrician.

Assumption 2 is usual in the quantile regression literature. Assumption 3 imposes correct

specification of the private value conditional quantiles as necessary for our identification

results. This will be relaxed when studying estimation of the model.

As shown in the next Lemma, the rank α of a bidder in the population has a direct

relationship with his probability of winning the auction, so that estimating V (α|X, I) can

be helpful for newcomers that do not know the market a priori and used as a benchmark to

achieve a desired probability of winning the auction.

Lemma 1 Under the IPV paradigm and assumptions 1-2, a bidder with private value V (α|X, I)

wins with probability αI−1.

The proof of Lemma 1 is given in Appendix A, which also groups the proof of all the results

stated in this paper.

Define

ΨI (t) = ItI−1 − (I − 1) tI .

and let B (α|X, I) be the α-quantile of the winning bids conditional distribution given (X, I).

It follows from Athey and Haile (2002, equation (5)) that ΨI (Fv (·|X, I)) is the distribution of

the second-highest private value, which is equal to the winning bid. This gives the following

cornerstone quantile identification result.

Lemma 2 Under IPV and assumptions 1-2, for each I and α ∈ [0, 1],

V (α|X, I) = B (ΨI (α) |X, I) . (2.5)

Lemma 2 shows that the private value conditional quantile function can be nonparametrically

identified by the conditional quantile of the observed winning bid. In the next section, a
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method to estimate V (·|X, I) will be proposed. Before introducing the quantile regression

identification result, the following assumption for the auction specific covariate X = (1, Z)

is required:

Assumption 4 The auction specific variable, Z, has dimension d, with a compact support

in Z ⊂ (0,+∞)d and a nonempty interior.

Assumption 4 ensures that if xγ1 = xγ2, for all x ∈ X , thus γ1 = γ2, and is necessary for the

quantile regression identification below.

Lemma 3 Under IPV and assumptions 1-4,

(i) There exists, for each α ∈ [0, 1], a vector of coefficients β (α|I) such that

B (α|X, I) = h (Xβ (α|I)) ;

(ii) β (α|I) is uniquely defined and satisfies

β (ΨI (α) |I) = γ (α|I) . (2.6)

Result (i) in Lemma 3 is a stability property of the quantile regression specification,

which is a consequence of Lemma 2. Indeed, Lemma 2 shows that the winning bid quantile

function admits the same specification that the one postulated for the private values, but

for a transformed quantile level. Lemma 3-(ii) gives the identification result of the quantile

regression approach. It shows that the coefficient γ (·|I) of the private value conditional

quantile function is identified through the coefficient β (·|I) of the winning bid conditional

quantile function, but evaluated at a different quantile level ΨI (·).
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2.1 Dependence upon Bidders Participation

It is assumed for now that the private value distribution is conditional upon the number of

bidders I participating in the auction. Although standard in many econometric works as

Guerre, Perrigne and Vuong (2000) among others, conditioning on I is not usual in theoretical

auction models, see e.g. Krishna (2010). This choice can be however motivated by the three

following reasons which consider either unobserved heterogeneity or an entry stage.

A first setting of interest is unobserved heterogeneity. Instead of the observed X, the

bidders use an auction characteristic (X,Xu) which includes a component Xu that is not

observed by the econometrician. Hence, the private value quantile relevant for policy analysis

is V (α|X,Xu), which cannot be estimated without further assumption. It can be for instance

assumed that the actual number of bidders depends upon the auction characteristic, that is

I = I (X,Xu), in a way that fully captures the impact of the unobserved characteristic, i.e.

V (·|X,Xu) = V (·|X, I (X,Xu)) so that the conditional quantile V (·|X, I) is fully relevant

for policy analysis purposes.

A second motivation is given by the recent econometric literature on entry, see Gentry

and Li (2012), Li and Zheng (2009) and Marmer et al. (2013). These models consider a

two stage game, where the first stage is entry and the second stage is the auction game.

The structural parameter is the joint distribution of the private values and signals given the

characteristic X, which is used in the entry stage of the game. The second stage involves

an actual number of bidders I, who have decided to participate in the auction, and the

conditional quantile V (·|X, I) of private values given X and I. A key contribution of the

aforementioned econometric literature is that the structural parameter is identified from I

and V (·|X, I), so that estimation of the model can be performed through estimation of the

conditional c.d.f. or quantile of private values given X and I.

A third motivation notes that, whereas the reality of the auction is physically clear, the

11



entry stage of the game described above may have a more conceptual nature. Therefore,

in some cases, the importance of a entry stage is an assumption that should be tested by

investigating whether V (·|X, I) depends indeed upon I. A test built on the null hypothesis

of independence, i.e. V (·|X) = V (·|X, I), is proposed in section 4.1 and then applied in the

empirical section.

2.2 Optimal Reservation Price

Consider a binding reservation price set by the seller, i.e. r (X, I) ∈ [V (0|X, I) , V (1|X, I)].

The reservation price thus plays the role of a screening level in the auction since bidders with

V (αi|X, I) < r (X, I) are prevented from participating in the game. Let αr be the screening

level in the private value conditional distribution, i.e. αr is such that r (X, I) = V (αr|X, I).

It thus represents the percentage of bidders in the population that are not participating in

the auction because of a low valuation. Note that the auctioned good will not be sold if all

the players have valuation below r (X, I), which implies that the probability of trading is

1−αIr . Therefore, for a given I, the probability of trading decreases with the screening level

αr.

Let the seller’s payoff be defined as

π (r (X, I)) = bwI (bw ≥ r (X, I)) + v0 (X) (1− I (bw ≥ r (X, I))) , (2.7)

where bw is the winning bid and v0 (X) the seller’s private value6. In what follows, let

v0 = v0 (X) and r = r (X, I). The following proposition gives a quantile version for the

seller’s expected payoff, a candidate for the optimal screening level α∗r = α∗r (X, I, v0) and

the corresponding optimal reservation price V (α∗r|X, I). Let Π (αr|X, I, v0) be the seller’s

expected payoff given (X, I) when the screening level is αr.

6The seller’s profit is given by his payoff minus his private value. I focus the analysis on the seller’s payoff.
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Proposition 4 Under IPV and assumptions 1-2,

(i) the seller’s expected payoff is

Π (αr|X, I, v0) = v0α
I
r + V (αr|X, I) IαI−1

r (1− αr)

+ I (I − 1)

∫ 1

αr

V (α|X, I)αI−2 (1− α) dα,
(2.8)

where v0 is the seller’s private value;

(ii) The optimal reservation price V (α∗r|X, I) satisfies

V (α∗r|X, I)− V (1) (α∗r|X, I) (1− α∗r) = v0, (2.9)

where V (1) (α∗r|X, I) is the private value quantile density7 function.

Equation (2.8) in Proposition 4 gives the seller’s expected payoff in a quantile setup.

It differs from the expression given in Riley and Samuelson (1981, Proposition 1) because

it does not involve the private value conditional density. It is nevertheless convenient for

estimation purposes because, in a nonparametric setup, V (·|X, I) can be estimated in a

faster rate than V (1) (·|X, I). Equation (2.9) is the first-order condition (FOC) associated

with the maximization of the seller’s expected payoff and represents a quantile version of a

well known formula that states that the optimal reservation price satisfies 1−Fv (r∗|X, I)−

(r∗ − v0) fv (r∗|X, I) = 0, see Krishna (2010, p.23), Riley and Samuelson (1981, Proposition

3) and Myerson (1981). An interesting implication of (2.9) is that when V (α|X, I) does

not depend upon I the optimal reservation price V (α∗r|X) and the optimal screening level

α∗r also do not depend on I, as well known from the aforementioned reference. In addition,

7The quantile density function is defined as the derivative of the quantile function with respect to α, i.e.
V (1) (α|X, I) = ∂V (α|X, I) /∂α = 1/fv (V (α|X, I) |X, I).
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since V (1) (·|X, I) > 0, it is clear that α∗r > α0, where v0 = V (α0|X, I). That is, the optimal

reservation price is above v0.

Although equation (2.9) in Proposition 4 gives a closed form to estimate the optimal

reservation price V (α∗r|X, I), it involves an estimation of the quantile density function

V (1) (·|X, I). It is, therefore, better to maximize an estimation of Π (αr|X, I, v0) to get

α̂∗r than to solve an estimation of the quantile FOC8. For the estimation of the seller’s ex-

pected payoff, I first estimate V (·|X, I) using the quantile regression methodology proposed

in the next section and then apply numerical integration via a trapezoildal rule over a grid

of quantiles A = {α1, α2 · · · , αK}9 to estimate the definite integral in (2.8). The optimal

screening level α̂∗r is then chosen over A such that Π̂ (αr|X, I, v0) is maximized, where the

latter is an estimation of Π (αr|X, I, v0). As mentioned above, when V (·|X) = V (·|X, I),

the optimal screening level does not depend upon I. In the empirical section, this case is

considered and α̂∗r is therefore estimated by maximizing an aggregate Π̂ (αr|X, v0), i.e.

α̂∗r = arg max
I∑
I=2

Π̂ (αr|X, I, v0)LI/L, (2.10)

where
{

2, · · · , I
}

is the support of I, LI is the number of auctions in the sample with I

bidders competing and L the total sample size. The intuition here is that aggregating over

I may potentially give a better estimation α̂∗r .

8Li, Perrigne and Vuong (2003) have also used the same strategy to estimate the optimal reservation
price in the case of affiliated private values, which includes the IPV as a special case. They define such a
strategy as semiparametric, since the optimal reservation price is obtained as the maximizer of an estimated
expected payoff in which the distributions and densities were nonparametrically estimated in a first step.

9In the empirical application, the grid of prescribed quantiles used for this numerical integration is
A = {0.12, 0.14, · · · , 0.80}.
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3 Estimation Methodology

Consider independent and identically distributed observations (bw` , Z`, ` = 1, . . . , L), where

bw` is the winning bid at auction `, and Z` a specific characteristic of the good auctioned

in auction `. Let X` = (1, Z`) ∈ X be a row vector of dimension d + 1 and X = {1} × Z.

Define LI as the number of auctions with I players,

LI =
L∑
`=1

I (I` = I)

for I ∈ I, where I is a bounded subset of {2, 3, . . .}.

The following assumption concerns the variables in our model:

Assumption 5 The variables {I`, X`, vi`, i = 1, 2, . . . I`, ` = 1, . . . , L} are independent and

identically distributed. Conditional on (X`, I`), the private values vi` are independent with

common c.d.f. Fv (·|X`, I`) and a density function fv (·|X`, I`) bounded away from zero.

Assumption 5 implies that each auction is independent and that, within an auction, the IPV

paradigm holds. Note that it is not assumed that I` is independent upon X`. Recall that

V (·|X`, I`) = F−1
v (·|X`, I`).

Assumption 3 from the preceding section was considering a correct specification of the

private value quantile regression model as necessary for identification. This is not required in

our estimation setup and Assumption 6 below, which does not assume a correct specification

and considers instead the function h (·), will be used10 instead of Assumption 3.

Assumption 6 The function h (t) used in the private values regression model is a given

continuous, monotonically increasing and twice differentiable function.

10In the empirical section, two functions in special will be studied: the identity function h (t) = t and the
exponential function h (t) = exp (t).
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Consider the winning bid bw` at the auction `, ` = 1, · · · , L, which is the amount paid

by the winner. From the quantile regression identification result (2.6) in Lemma 3, γ (α|I)

can be estimated through

γ̂ (α|I) = β̂ (ΨI (α) |I) .

I propose to estimate the winning bid quantile regression population parameter β (α|I) via

the method of quantile regression,

β̂ (α|I) = arg min
β∈Γ

1

LI

LI∑
`=1

I (I` = I) ρα (bw` − h (X`β))

where ρα (u) = u (α− I (u < 0)) and Γ is a compact subset of Rd+1. In other words,

γ̂ (α|I) = arg min
γ∈Γ

1

LI

LI∑
`=1

I (I` = I) ρΨI(α) (bw` − h (X`γ)) . (3.11)

The next two sections study the performance of the estimator (3.11) in small and large

samples, respectively. First, the performance of (3.11) in finite samples is illustrated in com-

parison with a nonparametric approach via Monte Carlo experiments and then its asymptotic

distribution is studied.

3.1 Finite-Sample Performance

In this section, the performance in small samples of the quantile regression estimator (3.11)

will be studied in comparison with the alternative and most used nonparametric approach

via a kernel function. The latter is widely used in the empirical auction literature due to its

flexibility in representing the data since no structure is imposed in the analysis. Comparing

a nonparametric revenue analysis with a quantile regression one is therefore a way to assess

whether the quantile regression is correct from a policy recommendation point of view.
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To achieve this goal, I carry out 5 different types of experiments. In each experiment, a

population private value quantile function V (α|X, I) is generated and i.i.d. samples of size

I are drawn from V (α|X`, I`) for each auction `, ` = 1, · · · , L. The winning bid is given by

the second-highest private value. The winning bids are used to estimate the seller’s expected

revenue and the correspoding optimal reservation price using both estimation approaches.

For the quantile regression approach, I estimate the seller’s expected revenue for a grid

of quantile levels A = {α1, α2 · · · , αK} an choose α̂r to maximize (2.8), as suggested in

Proposition 4. The optimal reservation price is given by V̂ (α̂r|X, I).

For the nonparametric approach, the conditional distribution of private values is used

instead of their quantiles. Write P (vI:I < r|X, I) = F I
v (r|X, I),

P (vI−1:I < r ≤ vI:I |X, I) = Fbw (r|X, I)− F I
v (r|X, I)

and

E [vI−1:II (r ≤ vI−1:I) |X, I] =

∫ v

r

vfbw (v|X, I) dv,

where Fbw (·|X, I) and fbw (·|X, I) are, respectively, the c.d.f. and p.d.f. of the winning bids

conditional on (X, I). From the proof of Proposition 4, the seller’s expected payoff can be

written as

Π (r|X, I, v0) = v0F
I
v (r|X, I) + r

(
Fbw (r|X, I)− F I

v (r|X, I)
)

+

∫ v

r

vfbw (v|X, I) dv.
(3.12)

To estimate Π (r|X, I, v0), I first estimate nonparametrically the winning bid conditional

c.d.f. and p.d.f., then apply the transformation Ψ−1
I (·) to find the solution for F̂v (·|Z, I) =

Ψ−1
I

(
F̂bw (·|Z, I)

)
and estimate the integral term via numerical integration as above. The
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nonparametric estimation of Fbw (·|X, I) and fbw (·|X, I) is done via

F̂bw (bw|Z, I) =

1
LIh

d
Z

∑LI
`=1 I (I` = I) I (bw` ≤ bw)K

(
Z−Z`
hZ

)
1

LIh
d
Z

∑LI
`=1 I (I` = I)K

(
Z−Z`
hZ

) (3.13)

and

f̂bw (bw|Z, I) =

1
LIh

d
Z

∑LI
`=1 I (I` = I) I (bw` ≤ bw)K

(
Z−Z`
hZ

)
1

LIh
d
Z

∑LI
`=1 I (I` = I)K

(
Z−Z`
hZ

) , (3.14)

where K (u) is a kernel function and hZ a vanishing bandwidth. For the four experiments

presented below, I consider L = 100 auctions with I = 2 bidders. The kernel function is an

Epanechnikov, K(u) = 3
4

(1− u2) I (|u| ≤ 1), and the bandwidth choice follows Silverman’s

rule of thumb, h∗j = Cq(k, d)σ̂jL
−1/(2q+d), where Cq(k, p) is a constant that depends on the

kernel order (q = 2), the kernel type (k = Epanechnikov) and the number of covariates (d);

σ̂j is the standard deviation of the variable Zj; and L is the sample size. To investigate

the effect of the bandwidth choice on the performance of the nonparametric estimator, five

variations11 of the optimal bandwidth h∗j are considered:
{
h∗j/3, 2h

∗
j/3, h

∗
j , 4h

∗
j/3, 3h

∗
j

}
.

The performance of both estimation approaches is evaluated through the Root Mean

Squared Error (RMSE)

RMSE
[
θ̂
]

=

√
E
[
(θ̂ − θ)2

]
,

where in the equation above θ̂ represents the corresponding estimate. Since the goal is

to evaluate the performance of the quantile regression and the nonparametric methods in

computing the optimal reservation price in each auction `, the RMSE is computed as

RMSE
[
V̂ (α̂r)

]
=

√√√√ 1

S × L

S∑
s=1

L∑
`=1

(
V̂ (α̂rs` |X`)− V

(
αr∗s` |X`

))2

,

11Recall that a large bandwidth increases the estimation bias but reduces its estimated variance.
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where V
(
αr∗s`|X`

)
is the true optimal reservation price at auction ` and S is the total

number of replications of the experiment. Therefore, the RMSE is evaluated over the number

of auctions (sample size) and number of simulations. The four experiments are discussed

below:

Experiment 1: Univariate correctly specified model.

Population Model: V (α|X) = γ0 (α) + 1× Z1, where

γ0 (α) = − log

(
1−

(
1− 1

e

)
α

)

and Z1 ∼ lnN (0, 0.5). The quantile function γ0 (α) is the one of an exponential dis-

tribution over [0, 1]. In this first experiment, the estimated quantile regression model is

correctly specified and the kernel function is a univariate kernel. The constant Cq(k, d)

C2(Epanechnikov, 1) = 2.34.

Experiment 2: Bivariate correctly specified model.

Population Model: V (α|X) = γ0 (α) + 1× Z1 + γ2 (α)× Z2, where γ0 (α) and Z1 are as

above,

γ2 (α) = 1− 1

eα

and Z2 ∼ Exp(λ = 1). The slope coefficient γ2 (α) is such that bidders in the lower part

of the distribution are not affected by the covariate Z2, whereas this effect increases with

α. In this second experiment, the estimation considers a correctly specified model and

because there are two covariates Z = (Z1, Z2) the constant used in the bandwidth choice

is C2(Epanechnikov, 2) = 2.20. Experiments 1 and 2 evaluate the effect of an additional

covariate on the estimation performance when the private value quantile function is correctly

specified.
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Experiment 3: Misspecified model (Z2 is omitted from the model).

Population Model: V (α|X) = γ0 (α) + 1× Z1 + γ2 (α)× Z2.

Quantile Regression Estimated Model: V (α|X) = γ0 (α) + 1× Z1.

Experiment 4: Misspecified model (Z1 is omitted from the model).

Population Model: V (α|X) = γ0 (α) + 1× Z1 + γ2 (α)× Z2.

Quantile Regression Estimated Model: V (α|X) = γ0 (α) + γ2 (α)× Z2.

Experiment 5: Misspecified model (functional form).

Population Model: V (α|X) = γ0 (α) + 1× Z1 + γ2 (α)× Z2
1 .

Quantile Regression Estimated Model: V (α|X) = γ0 (α) + 1× Z1.

Experiments 3, 4 and 5 investigate the effect of misspecifications in the private value

quantile function on the performance of both estimators. Experiment 3 considers a misspec-

ified model in the estimation by omitting the covariate Z2. Note that in the nonparametric

estimation, a univariate kernel is used. Since the slope coefficient γ2 (α) attenuates the effect

of Z2 on the lower part of the private value distribution, the effect of an omitted variable

on the estimation of the optimal reservation price (which very likely is in the lower part of

the private value distribution) may be subestimated. For this reason, experiment 4 consid-

ers a misspecified model by omitting Z1 from the model. Note that γ1 (α) = γ1 = 1, that

is, changes in Z1 affect all the quantiles of the private value distribution in the same way.

Finally, experiment 5 considers misspecification in the quantile functional form. The num-

ber of covariates in both the population and the estimated models is the same (univariate),

whereas the true model is nonlinear in Z.

The results of 1,000 replications of the five experiments described above are grouped on

Table 1. The root mean squared errors of the nonparametric estimation are given on the

second to sixth columns, whereas the one of the quantile regression is in the 7th column. In

20



Table 1
Results of the Monte Carlo Experiments

Root Mean Squared Error

Nonparametric Quantile Regression
h∗j/3 2h∗j/3 h∗j 4h∗j/3 3h∗j

Experiment 1 0.5061 0.4603 0.4373 0.4317 0.5824 0.0983
Experiment 2 0.9390 0.6851 0.5787 0.5366 0.6466 0.2399
Experiment 3 0.7792 0.6139 0.5328 0.5192 0.6590 0.3978
Experiment 4 1.0467 0.8500 0.7805 0.7326 0.7412 0.7037
Experiment 5 0.9680 0.8371 0.8001 0.7954 1.0153 0.3874

bold are the smallest root mean squared error of the nonparametric estimation and the one

computed using the quantile regression approach (which does not depend on a bandwidth

choice). Note that in all the experiments, the quantile regression approach gives smaller

(in most of the cases considerably smaller) root mean squared errors. A first remark is

for experiment 4, whose root mean squared error is very close to the minimium one of

the nonparametric approach: although omitting an important variable deteriorates both

estimation approaches, the quantile regression still gives a better result. A second remark is

for experiment 5: it is expected that nonparametric approaches offer a better fit when dealing

with misspecification in the functional form. However, the quantile regression approach still

gives a better result. This suggest that the variance of the nonparametric estimator is large

enough to dominate the misspecification bias of the quantile regression estimator.

3.2 Asymptotic Properties of the Estimator

In this section, the asymptotic properties of the private value quantile regression estimator

(3.11) are studied. In what follows, let

Q (γ|α, I) = E
[
ρΨI(α) (bw − h (Xγ)) |I

]
,
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Q̂ (γ|α, I) =
1

LI

LI∑
`=1

I (I` = I) ρΨI(α) (bw` − h (X`γ))

and

Q̂ (γ̂|α, I) = Q̂ (γ̂ (α|I) |α, I) = min
γ∈Γ

Q̂ (γ|α, I) (3.15)

be the population, the empirical and the optimized quantile regression objective functions.

The first and second derivatives of Q (γ|α, I) with respect to γ will be denoted, respectively,

by Qγ (γ|α, I) and Qγγ (γ|α, I), whereas h(1) (·) and h(2) (·) are respectively the first and

second derivatives of h (·).

In the case of a misspecified model, γ̂ (α|I) is expected to converge to a pseudo-true

private value quantile regression coefficient defined as

γ∗ (α|I) = arg min
γ∈Γ

Q (γ|α, I) , (3.16)

where the expectation is taken with respect to the true model distribution. In what follows,

it is assumed that the considered pseudo-true values are uniquely defined.

Theorem 5 gives the asymptotic distribution of the private value quantile regression

estimator (3.11). Its proof relies on arguments sketched in Newey and McFadden (1994) for

estimators optimizing non smooth objective functions.

Theorem 5 Under assumptions 1-2, 4-6 and if γ∗ (α|I) from (3.16) is an inner point of Γ,

√
LI (γ̂ (α|I)− γ∗ (α|I))

d−→ N
(
0, Q−1

γγ (γ∗|α, I) J (γ∗|α, I)Q−1
γγ (γ∗|α, I)

)
,

where

J (γ∗|α, I) = E
[{
Fbw (h (Xγ∗ (α|I)) |X, I)− 2ΨI (α)Fbw (h (Xγ∗ (α|I)) |X, I)

+ΨI (α)2
}
h(1) (Xγ∗ (α|I))2X ′X|I

]
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and

Qγγ (γ∗|α, I) = E
[
fbw (h (Xγ∗ (α|I)) |X, I)h(1) (Xγ∗ (α|I))2X ′X|I

]
+

E
[
(Fbw (h (Xγ∗ (α|I)) |X, I)−ΨI (α))h(2) (Xγ∗ (α|I))X ′X|I

]
,

Fbw (·|X, I) = ΨI (Fv (·|X, I)) and fbw (·|X, I) being the c.d.f. and p.d.f. of the winning bids

given (X, I).

Although γ (α|I) is a parameter of the private value distribution, the asymptotic variance

of γ̂ (α|I) in the Theorem is computed using the winning bids distribution. Note that if the

model is correctly specified, then γ∗ (α|I) = γ (α|I) and Fbw (h (Xγ∗ (α|I)) |X, I) = ΨI (α),

so that

J (γ|α, I) = ΨI (α) (1−ΨI (α))E
[
h(1) (Xγ (α|I))2X ′X|I

]
,

and

Qγγ (γ|α, I) = E
[
fbw (h (Xγ (α|I)) |X, I)h(1) (Xγ (α|I))2X ′X|I

]
.

The asymptotic variance of the quantile regression estimator can be estimated using tech-

niques described in Koenker (2005). The applications considered here uses bootstrap infer-

ence and for this reason the variance estimation aspects are not detailed.

If the private value distribution is independent upon I given X, then

γ∗ (α|I) = arg min
γ∈Γ

E
[
ρΨI(α) (bw − h (Xγ)) |I

]
= arg min

γ∈Γ
E
[
ρΨI(α) (bw − h (Xγ))

]
=γ∗ (α) ,

which opens space for a potential improvement in the estimation efficiency since samples
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with different number of bidders I` can be pooled, increasing the sample size to L ≥ LI .

This therefore leads to consider

γ̂ (α) = arg min
γ∈Γ

Q̂ (γ|α) , (3.17)

where

Q̂ (γ|α) =
1

L

L∑
`=1

ρΨI` (α) (bw` − h (X`γ)) .

Let

γ∗ (α) = arg min
γ∈Γ

Q (γ|α) where Q (γ|α) = E
[
ρΨI(α) (bw − h (Xγ))

]
.

The following Corollary gives the asymptotic distribution of the pooled quantile regression

estimator.

Corollary 6 Under assumptions 1-2 and 4-6,

√
L (γ̂ (α)− γ∗ (α))

d−→ N
(
0, Q−1

γγ (γ∗|α) J (γ∗|α)Q−1
γγ (γ∗|α)

)
,

where γ∗ (α) = arg minγ∈ΓQ (γ|α), with Q (γ|α) = E
[
Q̂ (γ|α)

]
, is the pseudo-true private

value quantile regression coefficient,

J (γ∗|α) = E
[{
Fbw (h (Xγ∗ (α)) |X, I)− 2ΨI (α)Fbw (h (Xγ∗ (α)) |X, I) + ΨI (α)2}

×h(1) (Xγ∗ (α))2X ′X
]

and

Qγγ (γ∗|α) = E
[
fbw (h (Xγ∗ (α)) |X, I)h(1) (Xγ∗ (α))2X ′X

]
+

E
[
(Fbw (h (Xγ∗ (α)) |X, I)−ΨI (α))h(2) (Xγ∗ (α))X ′X

]
,
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Fbw (·|X, I) = ΨI (Fv (·|X)) and fbw (·|X, I) being the c.d.f. and p.d.f. of the winning bids

given (X, I).

Since L can be substantially larger than LI , Corollary 6 suggests that γ̂ (α) can considerably

improve on γ̂ (α|I) when the private values distribution is independent from I given X.

The regression specification of Rezende (2008)12 can offer another interesting source of

improvement under special conditions. Assume for instance that, for h (·) as in Assumption

6,

vi` = h (γ0 + Z`γ1 + εi`) , (3.18)

where the εi` are i.i.d. and independent of (Z`, I`). In this case the conditional quantile

function of the private values is

V (α|Z) = h (γ0 (α) + Zγ1) where γ0 (α) = γ0 + F−1
ε (α) . (3.19)

For such specification, pooling over α can improve the estimation of the slope coefficients

γ1 as proposed by Zou and Yuan (2008) with the Composite Quantile Regression (CQR)

estimator

γ̂CQR = arg min
γ0,1,...,γ0,K ,γ1

1

K

K∑
k=1

{ 1

L

L∑
`=1

ρΨI` (αk) (bw` − h (γ0,k + Z`γ1))
}
, (3.20)

where γ̂CQR = (γ̂0 (α1) , . . . , γ̂0 (αK) , γ̂1)′ and αk ∈ [0, 1], k = 1, . . . , K, are some quantile

levels. Zou and Yuan (2008) have shown in particular that the CQR estimator can improve

on least squares estimation. That estimator is asymptotically normal with a limit variance

that can be derived with arguments similar to the ones used in Theorem 5. However,

implementing this strategy with the considered auction dataset has led to a rejection of the

correct specification of (3.19) (that is, a rejection of γ1 (α) = γ1 for all retained αk) so that

12For simplicity of notation, it is assumed independence of the private value distribution upon I.
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the limit distribution of the CQR estimator is not detailed here for the sake of brevity.

4 Auction Hypotheses Testing

The estimation methodology developed above enables us to investigate some interesting ques-

tions for the empirical auction literature that are grouped in the following three hypotheses

tests: exclusion participation restriction, functional form of the private values conditional

quantile function and constancy in the impact of the auction characteristics across the pri-

vate values distribution. In what follows, A = {α1, · · · , αK} is a set of prescribed quantile

levels used in the considered test statistics.

4.1 Testing the Exclusion Participation Restriction

As discussed in section 2.1, testing the condition V (·|X, I) = V (·|X) gives indication about

potential unobserved heterogeneity or presence of a entry stage in the auction game. An

important policy implication of that condition is that the optimal reservation price is also

not dependent upon the number of actual bidders I as usual in the auction literature. In

addition, as discussed in the previous section, the exclusion participation restriction enables

a potential improvement in the estimation efficiency. The considered null and alternative

hypotheses are

H0 : γ∗ (α|I) = γ∗ (α) for all α ∈ A and I ∈ I

H1 : not H0.

Note that even if V (·|X, I) differs from h (Xγ (·|I)), i.e. the function h (·) is misspecified,

the pseudo-true coefficients still satisfy γ∗ (·|I) = γ∗ (·) when V (·|X, I) = V (·|X).

A simple way of testing the null hypothesis above is via a Wald test, jointly for all
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the coefficients and quantile levels. However, the latter involves standardization of the

test-statistic by the variance-covariance matrix of the coefficients, which in turn involves

estimation of the unknown density function of the random errors. The estimation of the latter

requires either a bandwidth choice (see Powell (1991)) or bootstrap resampling methods (see

Buchinsky (1995)). Some preliminary experiments had suggested that an alternative strategy

as described below may give better results.

A strategy similar to a maximum likelihood ratio test can be implemented to avoid the

estimation of the variance-covariance matrix. Let Q̂ (γ̂|α) represents the optimized pooled

objective function, i.e.

Q̂ (γ̂|α) = Q̂ (γ̂ (α) |α) = min
γ∈Γ

Q̂ (γ|α)

and Q̂ (γ̂|α, I) the optimized individual objective function as defined in (3.15). Under the

null hypothesis of independence, Q (γ|α) =
∑

I∈I Q (γ|α, I)P (I). This leads to consider

the distance metric statistics in the terminology of Newey and McFadden (1994), or the

M-statistic in the terminology of Rao and Zhao (1992),

MInd = Q̂ (γ̂|α)−
∑
I∈I

Q̂ (γ̂|α, I)LI/L. (4.21)

In the application, the critical values and p-values of tests based on (4.21) will be calculated

using the random weighting bootstrap method proposed by Rao and Zhao (1992), Wang and

Zhou (2004) and Zhao, Wu and Yang (2007), which is detailed in the Appendix B. Appendix

C describes a Monte Carlo experiment of the test of exclusion participation restriction and

its corresponding rejection probabilities.
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4.2 Choice of Specification for the Bidders’ Private Values: Linear

versus Exponential

As mentioned earlier, the interest here is to choose between a linear or exponential function

for the quantile regression specification (2.4). While the linear specification is apparently

more popular and simpler to estimate, the exponential specification delivers positive private

values, which may not be the case of a linear one. Both models may be also misspecified for

the data at hand. An additional difficulty is that the retained specification must be valid

for several quantile levels. This section thus proposes a test to investigate which of the two

model specifications has a better measure of fit for a prescribed range of quantiles.

There is a extensive literature on testing hypotheses for model selection and goodness

of fit. See e.g. Koenker and Machado (1999) for nested quantile regression models, White

(1982) for conditional mean analysis, Zheng (1998), Horowitz and Spokoiny (2001) and

Whang (2006) for parametric against nonparametrics alternatives.

Considering model selection and non-nested hypothesis testing, Vuong (1989) has pro-

posed likelihood ratio tests using the Kullback-Leibler (1951) information criterion, which

measures the distance between a given distribution and the true distribution function. The

best model among a collection of competing models is defined to be the one that is closest

to the true distribution. The tests are derived for cases in which the models are non-nested,

overlapping, or nested and whether both, one, or neither is misspecified. The null hypoth-

esis is the equivalence of the two specifications, i.e. the two specifications are at the same

distance of the true distribution function, although dominance can also be considered.

Based on the insights of Vuong (1989), the test proposed in this section leads to compare

the population objective function measures of the linear and the exponential models. Let
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the population objective functions under the previous two models be defined respectively as

QL (γ|α, I) = E
[
ρΨI(α) (bw −Xγ) |I

]
and

QE (γ|α, I) = E
[
ρΨI(α) (bw − exp (Xγ)) |I

]
.

Define the pseudo-true private values quantile regression coefficients as γ∗j (α|I) = arg minγ∈Γ Qj (γ|α, I)

and the infimum of the population objective functions as

Qj

(
γ∗j |α, I

)
= Qj

(
γ∗j (α|I) |α, I

)
= inf

γ∈Γ
Qj (γ|α, I) ,

where j = E,L.

The next set of hypotheses considers dominance of the exponential specification:

H0 : QE (γ∗E|α, I)−QL (γ∗L|α, I) ≤ 0 for all α ∈ A and I ∈ I

H1 : not H0,

which in turn motivates the following test statistic:

V̂uong =
√
LI sup

α∈A

(
Q̂E (γ̂E|α, I)− Q̂L (γ̂L|α, I)

)
. (4.22)

Note that exchanging Q̂E (γ̂E|α, I) and Q̂L (γ̂L|α, I) in (4.22) gives a test statistic for domi-

nance of the linear specification.

In the application, the critical values and p-values of the test based on (4.22) will be

computed by the pairwise bootstrap method in each original subsample LI
13, i.e. samples of

13This form of bootstrap is also known as (X,Y)-pair bootstrap method and has been widely used in the
quantile regression literature.
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the (X`, bw`) pairs are drawn with replacement from the LI pairs {(X`, bw`) : ` = 1, · · · , LI}

of the original subsample, each with probability 1/LI . Appendix C describes a Monte Carlo

experiment of the specification test above and its rejection probabilities.

4.3 Constancy of the Slope Coefficients

In this section, the impact of changes in the auctioned good characteristics across the entire

distribution of private values is investigated. Consider the private values conditional quan-

tile specification given in (2.3), where the vector γ1 (α|I) groups all the slope coefficients,

excluding so the intercept. The hypothesis of interest is that γ1 (α|I) does not depend upon

α, in which case the model (2.3) with h (t) = t is the regression model of Rezende (2008).

The null and alternative hypothesis considered in this test are therefore:

H0 : γ∗1 (α|I) = γ∗1 (I) for all α ∈ A and I ∈ I

H1 : not H0.

Define the CQR empirical objective function as

Q̂CQR (γCQR|I) =
1

K

K∑
k=1

{ 1

L

L∑
`=1

ρΨI` (αk) (bw` − h (γ0,k + Z`γ1))
}
.

Under the null hypothesis, the CQR population objective function equals the average of

the individual objective functions over the set of prescribed quantiles A = {α1, · · · , αK}.

The test statistic proposed here will be constructed as in the test of exclusion participation

restriction by using the M-statistic defined as follows

MCQR = L

[
Q̂CQR (γ̂CQR|I)− 1

K

K∑
k=1

Q̂ (γ̂|αk, I)

]
, (4.23)
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where Q̂CQR (γ̂CQR|I) is the optimized CQR objective function.

The critical values and p-values of tests based on (4.23) will be calculated using the

random weighting bootstrap method as described in the Appendix B. A Monte Carlo exper-

iment for the test of constancy of slope coefficients above and the corresponding rejection

probabilities are given in the Appendix C.

5 Empirical Application

In this section, I illustrate empirically the methodology proposed in the paper using data

from ascending timber auctions run by the USFS. Timber auctions data have been used

in several empirical studies, see e.g. Baldwin, Marshall and Richard (1997), Haile (2001),

Athey and Levin (2001), Athey, Levin and Seira (2011), Li and Zheng (2012), Aradillas-

Lopez, Gandhi and Quint (2013), Li and Perrigne (2003) and others. Some other works have

investigated risk-aversion on timber auctions, as e.g. Lu and Perrigne (2008), Athey and

Levin (2001) and Campo, Guerre, Perrigne and Vuong (2011).

5.1 The Timber Auction Data

The dataset used here is publicly available on the internet14. It aggregates ascending auctions

from the states covering the western half of the US (regions 1-6 as labeled by the USFS)

occurred in 1979. It contains 472 auctions involving a total of 1175 bids and a set of variables

characterizing each timber tract including the estimated volume of the timber measured in

thousand of board feet (or mbf) and its estimated appraisal value given in Dollar per unit

of volume. The latter measures how much the tract worths at the present time, taking

into consideration a combination of factors as volume of each specie, quality and marketable

14The same dataset was used by Haile and Tamer (2003), Lu and Perrigne (2008) and Aradillas-Lopez
et al. (2013), and it is available at the JAE Data Archieve website: http://qed.econ.queensu.ca/jae/2008-
v23.7/lu-perrigne/
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price. Only scaled sales are considered, in which bids are per unit of timber. Therefore,

winning bids are given in Dollar per unit of volume.

The government conducts a cruise of the timber tract prior to the auction and publishes

a report with the characteristics of the tract uncovered by the cruise. The reservation price

is announced prior to the auction and equals the appraisal value of the tract15. The auction

is conducted in two rounds: in the first round, bidders submit sealed bids16 that must exceed

the appraisal value of the tract to be qualified for the auction; in the second round, bidders

compete in an ascending auction.

Table 2
Summary Statistics

Winning Bids Appraisal Value Volume Number of Bidders

Mean 129.17 72.34 3,171.10 2.49
Std. Deviation 119.76 52.92 4,418.20 0.50
25% 59.13 24.47 294 2
50% 113.81 68.38 967 2
75% 172.53 111.25 4,724 3
Min 0.30 0.25 12 2
Max 1,981.50 219.58 24,800 3
Skewness 8.16 0.44 1.99 0.04
Observations 472 472 472 472

Table 2 gives some descriptive statistics about the dataset. The auctioned tract displays

significant heterogeneity in quality and size. The mean of the variables are all above the

median, indicating tailored marginal distributions. In particular, the marginal distribution

of winning bids is highly positive skewed. In the dataset, the number of actual bidders

I takes values 2 and 3, with I = 2 more than 50% of the cases. Table 3 provides the

results of a median regression analysis of the winning bids on the timber appraisal value

per mbf and the volume. Lu and Perrigne (2008) performed a mean regression analysis and

15It is well known that the screening effect of the appraisal value in timber auctions is almost negligible,
being plausible to consider that the reservation price is nonbinding. See e.g. Campo, Guerre, Perrigne and
Vuong (2011), Haile and Tamer (2003) and Aradillas-Lopez at al. (2013).

16Note that the bids in the first round are not proper bids, but a proposal to be qualified for bidding in
the second round.
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concluded that the estimated appraisal value and the volume of the timber are the variables

that better explain the winning bid’s variability. Both variables are also highly significant in

the median analysis, which can be seen by the coefficient of determination Rα at the median

quantile17. For this reason, I consider a two-dimensional vector of covariates Z grouping

both the appraisal value per mbf and the volume of the timber18.

Table 3
OLS Estimation

Dependent Variable: Winning Bids
Regressors Coefficient Std. Deviation t-value p-value

Intercept 11.1265*** 3.8554 2.886 4.08E-03

Appraisal Value 1.2873*** 0.0505 25.514 0.000

Volume 0.0029*** 0.0008 3.503 0.0005
R0.5 0.4159

Significance level: * 10%, ** 5% and *** 1%.

5.2 Results

The choice of the set of prescribed quantiles A = {α1, · · · , αK} used in the tests is an impor-

tant issue. It would be ideal to estimate all the quantiles of the private values conditional

distribution. However, as noticed by Koenker (2005) and also seen from our estimation

results, the asymptotic precision of the quantile estimates in general, and the quantile re-

gression estimates in particular, depend on the quantile density function evaluated at the

quantile of interest. If the data are sparse at the quantile of interest, then the quantile

17The coefficient of determination is given by

Rα = 1−
Q̂
(
β̂0, β̂1, β̂2|α

)
Q̂
(
β̂0|α

) ,

and represents how much of the variability in the winning bids is explained by both covariates above at the
quantile level α.

18Nonlinearity with respect to the appraisal value and the volume of the timber were also investigated.
However, the results were not statistically significant.
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regression estimates will be less precise. This lack of precision was observed when estimat-

ing the quantiles closer to the boundary, leading to restrict the grid of quantile levels to

A = {0.12, 0.14, · · · , 0.80}. Another explanation for the lack of precision of the estimator

close to the boundaries α = {0, 1} is a technical feature of the quantile regression objec-

tive function. Since ρ0(u) = 0 for all u ≥ 0, the objective function is zero for all β such

that bw` ≥ h(X`β), for all `, leading to multiple minimizers. The same happens for α = 1.

Gimenes and Guerre (2014) solve19 this issue by smoothing the quantile regression objective

function, so that it becomes strictly convex for all α ∈ [0, 1].

The first sealed bid auction stage used to qualify bidders for the ascending auction may

select a certain number of bidders for the ascending auction stage, so that it might be

interesting to use V (·|X, I), which depends upon I, in the policy analysis to be conducted.

Roberts and Sweeting (2012) found evidences for a selective entry when studying timber

auctions in California. They consider in the model a significant entry cost affecting bidders

participation because bidders are allowed to conduct their own cruise. They argue that

conducting a private cruise responds for a large fraction of the bidder’s entry cost. Because

bidders in our application do not conduct their own cruise, the entry cost might be small

compared to the Californian timber auctions. There are nevertheless other costs that may

affect bidders participation, such as developing a market studying, preparing the bids and

attending to the auction. If indeed the entry costs are not relevant for the bidders’ decision

in participating, then the optimal reservation price policy could be chosen independently of

I, as shown in Proposition 4-(ii).

Testing the relevance of a private value quantile function conditional upon bidder’s par-

ticipation can thus be very useful in the analysis that follows. Table 4 gives the results of the

test of exclusion participation restriction suggested in section 4.1. There is not enough sta-

19Gimenes and Guerre (2014)’s approach can be easily extended to fit the ascending auction setup con-
sidered in this paper.
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Table 4
Test of the Exclusion Participation Restriction

Null Hypothesis Specification M-Statistic p-valuea,b

γ∗ (α|I) = γ∗ (α) for all α ∈ A and I ∈ I Linear 653.83 0.3096
Exponential 720.37 0.4136

a The p-value and critical values are computed using the random weighting bootstrap method. More
details about the test are given in section 4.1;

b The number of bootstrapping replications is 5,000; A = {0.12, 0.14, · · · , 0.80} and I = {2, 3}.

tistical evidences to reject the null hypothesis of independence in both specification models

(linear and exponential), implying that a possible improvement in efficiency can be achieved

by pooling both samples. In other words, it is possible to rule out unobserved heterogeneity

and entry stage affecting bidders participation. Note that an entry model as Levin and

Smith (1994), where bidders do not know their private values at the entry stage, would

generate private values independent upon I as observed in Table 4. However, the bidders’

participation decision in Levin and Smith (1994) is random, which may be considered a bit

unrealistic.

Table 5 gives the results of the choice of specification test described in section 4 that

investigates which of both regression specifications, linear or exponential, better represents

the private value conditional quantiles. In the first row of Table 5, the test considers a null

hypothesis in favour of the exponential specification, whereas in the second row the null

hypothesis is reversed in favour of the linear specification. Both tests conclude that the

linear specification dominates the exponential one over the set of prescribed quantiles A.

Therefore the linear specification is used in the rest of this section.

Table 6 provides the result of testing constancy of the slope coefficients. This test inves-

tigates whether changes in the auctioned characteristic Z affect the private values quantiles

similarly across the entire distribution. It may also show how heterogeneous20 are the bidders

across the population. The test gives strong statistical evidence to reject the null hypothesis

20Recall that heterogeneity is the term used in this paper to represent the different reaction of the bidders to
changes in the auctioned characteristics according to their rank in the private values conditional distribution.
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Table 5
Choice of Specification

Null Hypothesis Test Statistic p-valuea,b

QE (γ∗E|α)−QL (γ∗L|α) ≤ 0 for all α ∈ A 20,142.55 0.0000
QL (γ∗L|α)−QE (γ∗E|α) ≤ 0 for all α ∈ A -3,103.58 0.9938
a The p-value and critical values are computed by resampling with replacement the

(X`, bw` )-pair in each original subsample LI . Note however that the result of in-
dependence given by the test of exclusion participation restriction is considered, so
that both samples with I = {2, 3} are pooled in this analysis. More details about
the test are given in section 4.2;

b The number of bootstrapping replications is 5,000; A = {0.12, 0.14, · · · , 0.80}.

that the slope coefficients are constant across the quantiles α ∈ A. Therefore, bidders react

differently to changes in the quality and size of the timber tract, as also clearly illustrated

by Table 7 and Figures 1 and 2 below. Given the test result, the pooled quantile regression

estimator provides a better characterization of the private value conditional quantiles than

the CQR estimator defined in (3.20) and the mean analysis suggested by Rezende (2008).

Table 6
Constancy of the Slope Coefficients

Null Hypothesis M-Statistic p-valuea,b

γ∗1 (α) = γ∗1 for all α ∈ A 124.51 0.0048
a The p-value and critical values are computed using the ran-

dom weighting bootstrap method. Note however that the
results obtained in the previous two tests were considered for
this analysis. More details about the test are given in section
4.3;

b The number of bootstrapping replications is 5,000; A =
{0.12, 0.14, · · · , 0.80}.

The next Table and two following Figures describe the private values quantile regression

coefficients. The most important variable is the appraisal value, a quality measure released

by the seller, which is often interpreted as the seller’s private value, see Lu and Perrigne

(2008) and Aradillas-Lopez et al. (2013). The associated quantile regression coefficient is

given in the second column of Table 7 and Figure 1 for a median auction, where the volume

is 967 thousand of board feet and the appraisal value is about $68 per thousand of board

feet. Note that the coefficient is always significant and larger than 1, suggesting that it
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acts as a markup indicating how much more the auctioned good appraisal value is valued

by the bidders than the seller. The private values can be also interpreted as a measure

of how much the bidders would be willing to sell goods made with the timber bought at

the auction21. This suggests that the higher the bidder’s private value, the higher is his

efficiency in aggregating value to the timber. The coefficients increase over the quantile

levels, suggesting a relative increase in the markup of 75% when comparing bidders in the

quantiles α = 0.10 and α = 0.80 of the private value conditional distribution. This is also

evidence that bidders belonging to the upper tail of the private value distribution are more

highly affected by changes in the appraisal value than median bidders.

Figure 1 shows the quantile regression and the OLS estimates of the appraisal value slopes

with their corresponding 95% confidence intervals. Observe how the estimated markup in-

creases over the quantile levels. Figure 2 shows the quantile regression and OLS estimates

associated with the variable volume and their 95% confidence intervals. Although the coeffi-

cients seem to increase with the quantile level in Table 7, they lie inside the estimated OLS

95% confidence intervals, suggesting that the volume coefficient may not depend upon α. In

the upper tail of the distribution, the coefficients are larger, but the confidence intervals are

also wider.

In what follows X (τ) = (X1 (τ) , X2 (τ) , X3 (τ)), where Xj (τ) is the quantile of order

τ of the variable Xj, j = 1, 2, 3. With some abuse of terminology, X (τ) will be called the

quantile of order τ of the matrix of auction covariates X, X (0.50) being called its median.

Figure 3 gives the private value conditional quantile estimates for a median auction and their

95% confidence intervals. Figure 4 presents the quantile estimates for several quantile levels

of X (τ), where τ = {0.15, 0.25, 0.50, 0.75, 0.85}. In particular, it shows the change in the

shape of the private value quantiles due to variations in the quality and size of the timber

21In this interpretation, it is necessary to assume that timber is the most important component of the
goods produced by the bidders. This could be however modified to cover other cases where timber would
only be a part of these goods.
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Table 7
Private Value Quantile Regression Estimates

Quantile Level Intercept Appraisal Value Volume
0.1 0.95 1.01 0.0007

[-0.97,2.28] [0.99,1.04] [0.0004,0.0016]

0.2 3.00 1.04 0.0016
[-0.72,8.49] [0.99,1.13] [0.0005,0.0027]

0.3 9.39 1.15 0.0018
[2.05,15.01] [1.05,1.22] [0.0010,0.0033]

0.4 11.77 1.25 0.0034
[5.32,20.83] [1.14,1.33] [0.0013,0.0049]

0.5 21.03 1.29 0.0041
[10.92,29.24] [1.22,1.43] [0.0023,0.0054]

0.6 35.68 1.36 0.0041
[21.63,45.02] [1.27,1.56] [0.0029,0.0055]

0.7 44.28 1.57 0.0045
[29.94,77.15] [1.22,1.81] [0.0029,0.0071]

0.8 67.64 1.75 0.0060
[32.91,101.02] [1.31,2.02] [0.0024,0.0138]

0.9* 72.98 2.37 0.0167
[12.89,124.22] [1.54,4.56] [0.0031,0.0384]

The estimates are for a median auction and were computed using the pooled quantile
regression estimator defined in (3.17). The 95% confidence interval of the quantile
regression estimates in square brackets were computed by resampling with replacement
the (X`, bw` )-pair in each original subsample LI ;

* Note the loss in precision when α gets closer to the upper boundary. This is why such
higher quantile have been excluded from the test statistics.

tract.

Figure 4 indeed shows that the auction covariates change significantly the shape of the

private value distribution. This effect becomes even clear when comparing a high and a low

quantile of the private value conditional distribution. Consider in particular the quantiles

α = 0.12 and α = 0.80 of the private value conditional quantile curves and the quantiles of

order τ = 0.15, 0.50 and 0.85 of the auction covariates X, that is, auctions with low, median

and high quality and size. The relative increase in the private value is of about 600% in the
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Figure 1
Appraisal Value Slope Coefficients

Notes: The 95% confidence intervals for the OLS estimate consider the
heteroscedasticity-robust (White) standard errors. The ones for the quantile
regression estimates were computed by resampling with replacement the
(X`, bw`

)-pair in each original subsample LI .

auctions with low quality and size, whereas it reduces to 172% and 142% in the median and

high quality and size auctions, respectively. It seems that less productive bidders, i.e. the

ones with a low rank α, choose not to participate in auctions with higher quality and size22.

We now turn to the estimation of the seller’s expected payoff and the associated optimal

reservation price. The expected payoff of a seller with private values v0, Π (αr|X, v0), is

estimated using numerical integration via a trapezoidal rule to approximate the definite

integral given in Proposition 4-(i). Figures 5 and 6 give the expected payoff of the seller for

a median auction with the 95% confidence intervals for I = 2 and I = 3 bidders, respectively.

In both Figures, the estimation procedures given by the pooled and the individual estimators

defined respectively in (3.17) and (3.11) are compared. Observe that the former gives smaller

22Note that this suggests that the rank of the participant and the number of participants are simultaneously
determined, so that quantile regression estimation can be affected by endogeneity. Addressing this issue is
outside the scope of this paper.
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Figure 2: Volume Slope Coefficients

Notes: The 95% confidence intervals for the OLS estimate consider the
heteroscedasticity-robust (White) standard errors. The ones for the quantile
regression estimates were computed by resampling with replacement the
(X`, bw`

)-pair in each original subsample LI .

confidence intervals than the latter due to its higher estimation efficiency. Note that the only

difference between the seller’s expected payoffs estimated via (3.17) and (3.11) is given by the

way the private value conditional quantiles are estimated. In the former, both subsamples

with different number of bidders are pooled, whereas in the latter the estimation is done for

each I.

The sensitivity of the seller’s expected payoff and the associated optimal reservation

price to choices of the seller’s private value v0 will be now investigated. The choice of the

latter seems to be indeed important to determine the optimal screening level policy since it

represents the possible gains that the seller may have when selling the good in the outside

market. Note that v0 = 0 may represent the case in which the seller has no opportunity to

sell the good outside the auction. The most common choice for v0 is the appraisal value of
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Figure 3: Private Values Conditional Quantiles

Notes: The estimates are for a median auction. The 95% confidence intervals
were computed by resampling with replacement the (X`, bw`

)-pair in each
original subsample LI .

Figure 4: Private Values Conditional Quantiles and X (τ)

the timber23. The results obtained for v0 = Appraisal Value (AV) are compared with the

23As mentioned in Aradillas-Lopez et al. (2013), the seller’s private value may be even lower than the
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Figure 5
Pooled vs Individual (I = 2)

Notes: The estimates are for a median auction. The seller’s private value
considered here is v0 = AV , i.e. v0 = $68 per unit of timber. The 95%
confidence intervals were computed by resampling with replacement the
(X`, bw`

)-pair in each original subsample LI .

case with no outside option v0 = 0. It is also investigated the effect on the seller’s optimal

behaviour when the quality and size of the auction change.

Table 8 gives the optimal screening level α∗r , the corresponding optimal reservation price

r∗ = V (α∗r|X) and the seller optimal expected payoff Π (α∗r|X, v0) for the auctions with

quality and size specified by τ = 0.15, 0.50 and 0.85 and considering both choices of v0.

Recall that the optimal screening level α∗r is chosen as the maximizer of the seller’s expected

payoff over A. It is expected that α∗r that maximize the aggregate expected payoff, as

defined in (2.10), is the same as the one maximizing the expected payoff computed for each

I, i.e. α∗r = α∗r (I) for all I, given the independence result obtained in the test of exclusion

appraisal value of the timber if exercising an outside option (through, for example, a lump-sum contract)
entails additional cost to the seller. It is also possible that v0 is nevertheless higher than the appraisal
value since scaled sales require the timber service to measure the timber actually harvested to calculate the
payment. Therefore, by exercising the outside option the seller would avoid those costs.
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Figure 6
Pooled vs Individual (I = 3)

Notes: The estimates are for a median auction. The seller’s private value
considered here is v0 = AV , i.e. v0 = $68 per unit of timber. The 95%
confidence intervals were computed by resampling with replacement the
(X`, bw`

)-pair in each original subsample LI .

participation restriction. The estimation indeed confirms that α∗r is independent upon the

number of actual bidders participating in the auction. This will be then reflected in the

computation of the corresponding optimal reservation price, which will also not depend

upon I. Note however, that α∗r still depend upon (X, v0).

A general conclusion from Table 8, which is also expected, is that auctions with higher

quality and size provide larger expected payoffs for the seller. The optimal screening level in

turn reduces when the quality and size of the auction increase. A possible reason for that is

the low heterogeneity among bidders observed in better auctions. Recall from Figure 4 that

auctions with low quality and size show a significant increase in the markup over the timber

value. Therefore, as seen from Proposition 2.8, the seller has a stronger incentive to use

screening for low quality and size auctioned goods. For these low quality and size auctions,

the seller private value does not seem to change reservation price recommendations, which,
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Table 8
Optimal Reservation Price

Seller’s Private Value
0 AV

α∗r (v0, X (0.15)) 0.75 0.75
[0.52,0.80]a [0.56,0.80]

V (α∗r|X (0.15)) 83.08 83.08
[38.93,104.58] [45.34,109.03]

Π (α∗r|X (0.15) , I = 2, v0) 32.64 39.05
[26.16,44.78] [30.26,50.33]

Π (α∗r|X (0.15) , I = 3, v0) 38.98 43.80
[30.62,52.92] [33.32,56.73]

α∗r (v0, X (0.50)) 0.28 0.71
[0.12,0.36] [0.56,0.78]

V (α∗r|X (0.50)) 87.93 159.89
[67.73,101.96] [123.40,192.43]

Π (α∗r|X (0.50) , I = 2, v0) 91.71 108.49
[79.17,102.32] [95.11,122.13]

Π (α∗r|X (0.50) , I = 3, v0) 102.93 112.50
[99,126.57] [89.63,114.26]

α∗r (v0, X (0.85)) 0.24 0.56
[0.12,0.42] [0.47,0.80]

V (α∗r|X (0.85)) 163.65 243.97
[135.51,213.63] [220.03,376.25]

Π (α∗r|X (0.85) , I = 2, v0) 177.66 203.26
[163.40,192.73] [187.71,223.19]

Π (α∗r|X (0.85) , I = 3, v0) 196.37 208.61
[179.89,212.72] [191.63,231.26]

a The 95% confidence intervals in square brackets were computed by resampling
with replacement the (X`, bw` )-pair in each original subsample LI .

as the expected payoff, remains constant when v0 grows from 0 to the appraisal value. This

may also be related with the large heterogeneity among the bidders, which resulted in a

strong increase in the private value conditional quantiles.

As mentioned in Section 2.2, the probability of trading in the auction with a screening
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level αr is 1 − αIr . Table 9 groups the probabilities of trading in each of the three kinds of

auctions for the two choices of v0. Note that in the auctions with low quality and size, the

probability of selling the good is very low (44% and 58% for I = 2 and I = 3, respectively).

This is because bidders are very heterogeneous and the seller should set a high screening

level to avoid low bidders from participating. This somehow carries over for median and

higher quality and size auctions when the seller’s private value is the appraisal value. Policy

recommendations with such low probability of selling may not make sense in practice, espe-

cially for goods with a potential high storage cost. Note however that auctions with high

quality and size and I = 3 seem not to be so much affected by this issue.

Table 9: Probability of Trading

v0 = 0 v0 = AV
X (0.15) I = 2 44% 44%

I = 3 58% 58%

X (0.50) I = 2 92% 50%
I = 3 98% 65%

X (0.85) I = 2 94% 69%
I = 3 99% 82%

By reducing the seller’s private value, the probability of trading increase, but such a

consideration is mostly theoretical since it is not possible in practice to change the seller’s

private value. It nevertheless shows that the seller has a high incentive to decrease the optimal

screening level when he faces the case in which there is no trade outside the auction. As

can be seen, the practical implementation of the auction theory can be sometimes difficult

in the sense that usual choices for the seller’s private value may lead to recommendation

of mechanisms with very low probability of trading. This may question the relevance of

considering expected payoff in the maximization process.
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6 Conclusion

This paper proposes an identification and estimation approach based on quantile regres-

sion to recover the bidders’ private values conditional distribution. The quantile regression

framework provides a flexible and convenient parametrization of the private value distribu-

tion, with an estimation methodology easy to implement and with various specification tests

that can be derived. The latter includes tests of dependence between private values and

actual number of bidders, linear versus exponential specifications and constancy in the slope

coefficients across quantile levels.

The paper shows that a focus on the quantile level of the private values distribution and

on the seller’s optimal screening level can be both useful for policy recommendations. The

former helps newcomer bidders that do not know the market a priori to benchmark their bids

in order to achieve a desired probability of winning the auction, whereas the latter provides

a better understanding of how appropriate is the recommended policy from a seller’s point

of view. Both focuses above are new in the empirical auction literature.

The empirical application using timber auctions from the USFS shows that policy rec-

ommendations should be carefully examined before practical implementation. The screening

level associated with the optimal reservation price is usually high, resulting in a low proba-

bility of trading. The analysis of the shape of the private value conditional quantile curves

suggests that such inappropriate recommendations are due to a sharp increase in the private

value conditional quantiles, which may be evidence of large heterogeneity among the bidders.

As a consequence, the seller has a strong incentive to screen bidders’ participation by using

a high reservation price, leading then to a low probability of selling the auctioned good.

The private values estimated quantile shapes can be genuine but can also be the conse-

quence of a model misspecification. Some other works have also noticed such a high level

of the optimal reservation price in timber auctions. Aradillas-Lopez et al. (2013) suggest
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that neglecting private values affiliation can generate high reservation prices. However, their

nonparametric methodology may be affected by the curse of dimensionality. In addition, as

noted in Roberts and Sweeting (2012), timber auctions include a preliminary selection that

can affect the estimated shape of the private value quantile functions. The strong hetero-

geneity revealed by the estimation of the private value conditional quantile function can also

be an indication of asymmetry. As discussed in Cantillon (2008) and Gavious and Minchunk

(2012), sellers facing asymmetry have an incentive to increase competition by increasing

reservation prices.

However, analysing revenue with a risk neutral seller perspective may not be appropriate

to address issues such as high reservation prices and low probability of selling the auctioned

object. The results given in Hu, Matthews and Zou (2010) regarding risk aversion affecting

sellers can be useful to provide more relevant reservation price recommendations. Gimenes

(2014) proposes a numerical investigation of the variation in the optimal screening level when

the seller has a constant relative risk aversion utility function and concludes that considering

risk averse sellers is indeed sufficient to achieve reasonable policy recommendations.

Appendix A - Proofs

A.1 - Proof of Lemma 1:

From the definition (2.1), the α-quantile of the private values conditional distribution must

satisfies

Fv (V (α|X, I) |X, I) = α.
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Under the IPV paradigm, a bidder i with private value vi wins with probability F I−1
v (vi|X, I).

Therefore, in a quantile setup,

F I−1
v (V (α|X, I) |X, I) = αI−1,

which gives the result. �

A.2 - Proof of Lemma 2:

From the definitions of quantiles and ΨI (·), the α-quantile of the winning bids c.d.f. must

satisfies ΨI (Fv (B (α|X, I) |X, I)) = α. Because ΨI (·) is strictly increasing24 in [0, 1], the

winning bids conditional quantile can be written as

B (α|X, I) = F−1
v

(
Ψ−1
I (α) |X, I

)
,

where Ψ−1
I (·) is the inverse of ΨI (·). Hence, (2.1) gives (2.5). �

A.3 - Proof of Lemma 3:

If the private values conditional quantile has a quantile regression specification as in (2.4),

by Lemma 2 there exists a vector of coefficient β (α|I), for each α ∈ [0, 1], such that the

winning bids conditional quantile satisfies B (α|X, I) = h (Xβ (α|I)). This is a stability

property of the quantile regression approach. Since h(·) is continuous and strictly increasing,

24The first derivative of ΨI (t) is always positive for all t ∈ (0, 1):

Ψ
(1)
I (t) =

∂ΨI (t)

∂t
= I (I − 1) tI−2 (1− t) .
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the candidate γ(·|I) must solve

Xγ(α|I) = Xβ(ΨI(α)|I)

for all X = {1} × Z. Since Z has a nonempty interior by Assumption 4, this equation has

a unique solution and γ(.|I) is identified for all I. �

A.4 - Proof of Proposition 4:

Consider the seller’s payoff defined in (2.7). Under assumption 1, the seller possible payoffs

are

π (r) =


v0 if vI:I < r,

r if vI−1:I < r ≤ vI:I ,

vI−1:I if r ≤ vI−1:I .

,

where v1:I ≤ · · · ≤ vI:I are the ordered private values.

Rewriting π (r) using quantiles and the ordered ranks

α1:I ≤ · · · ≤ αI:I , vi:I = V (αi:I) for i = 1, . . . , I.

Recall that the non ordered αi are i.i.d. U[0,1] random variables. Because V (·|X, I) is strictly

increasing by assumption 2,

π (αr|X, I) =


v0, if αI:I < αr,

V (αr|X, I) , if αI−1:I < αr ≤ αI:I ,

V (αI−1:I |X, I) , if αr ≤ αI−1:I ,

where αr is the level of screening and V (αr|X, I) the reservation price. It follows that the

49



seller’s expected payoff is

Π (αr|X, I, v0) = v0P (αI:I < αr|I) + V (αr|X, I)P (αI−1:I < αr ≤ αI:I |I)

+ E [V (αI−1:I |X, I) I (αr ≤ αI−1:I) |X, I] .

(6.24)

Observe that:

(i) P (αI:I < αr|I) = αIr ;

(ii) Since
∑I

i=1 I (αi ≤ αr) is a binomial distribution with parameters I and αr,

P (αI−1:I < αr ≤ αI:I |I) = P

(
I∑
i=1

I (αi ≤ αr) = I − 1|I

)
= IαI−1

r (1− αr) ;

(iii) Since the c.d.f of αI−1:I given I is ΨI (α) with p.d.f. I (I − 1)αI−2 (1− α), α ∈ [0, 1],

E [V (αI−1:I |X, I) I (αr ≤ αI−1:I) |X, I] = I (I − 1)

∫ 1

αr

V (α|X, I)αI−2 (1− α) dα.

Therefore, substituting (i)-(iii) into (6.24) gives equation (2.8), which is a quantile version

of the seller’s expected payoff.

Now, if Π (αr|X, I, v0) achieves a maximum for α∗r = α∗r (X, I, v0) ∈ [0, 1], α∗r must satisfy

a first order condition ∂
∂α
{Π (α∗r|X, I, v0)} = 0. An expression for the first derivative of

Π (α∗r|X, I, v0) with respect to the rank α is

∂

∂α
{Π (α|X, I, v0)} = v0Iα

I−1 + V (1) (α|X, I) IαI−1 (1− α)

+ V (α|X, I)
{
I (I − 1)αI−2 (1− α)− IαI−1

}
− V (α|X, I) I (I − 1)αI−2 (1− α)

= IαI−1
{
v0 + V (1) (α|X, I) (1− α)− V (α|X, I)

}
.
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Hence, a candidate for the optimal level of screening α∗r is given by

V (α∗r|X, I)− V (1) (α∗r|X, I) (1− α∗r) = v0.

�

A.5 - Proof of Theorem 5 and Corollary 6:

Only the proof of the Theorem is detailed since the proof of the Corollary follows the same

steps. Changes needed for the proof of the Corollary are discussed at the end of the section.

I show first that the private values quantile regression estimator in (3.11) is consistent.

Since −1 ≤ ∂ρΨI(α) (t) /∂t ≤ 1, the Taylor inequality gives

∣∣ρΨI(α) (bw` − h (X`γ))− ρΨI(α) (bw`)
∣∣ ≤ |h (X`γ)| ≤ C0,

because X`γ ∈ X × Γ compact, and for this reason stays bounded from above. Hence,

sup
γ∈Γ

∣∣∣Q̂ (γ|α, I)−Q (γ|α, I)
∣∣∣ P−→ 0,

by the Uniform Law of Large Numbers in Newey and McFadden (1994, Lemma 2.4), where

Q (γ|α, I) and Q̂ (γ|α, I) are defined in section 3. Therefore, by (ii) in Lemma 3 and Newey

and McFadden (1994, Theorem 2.1), γ∗ (α|I) is uniquely identified and γ̂ (α|I)
P−→ γ∗ (α|I).

For the sake of brevity, the dependence on α and I is removed, that is Q̂ (γ|α, I),

Q (γ|α, I), γ̂ (α|I) and γ∗ (α|I) become Q̂ (γ), Q (γ), γ̂ and γ∗. Observe that the first and

51



second-order derivatives of Q (γ) are

Qγ (γ) = E
[
{I (bw < h (Xγ))−ΨI (α)}h(1) (Xγ)X ′|I

]
= E

[
{P (bw < h (Xγ) |X, I)−ΨI (α)}h(1) (Xγ)X ′|I

]
= E

[
{Fbw (h (Xγ) |X, I)−ΨI (α)}h(1) (Xγ)X ′|I

]
,

Qγγ (γ) = E
[
fbw (h (Xγ) |X, I)h(1) (Xγ)X ′X|I

]
+E

[
{Fbw (h (Xγ) |X, I)−ΨI (α)}h(2) (Xγ)X ′X|I

]
,

as stated in the Theorem. Define

u` = bw` − h (X`γ
∗) ,

Ŵ =
1

LI

L∑
`=1

I (I` = I) (I (u` < 0)−ΨI (α))h(1) (X`γ
∗)X ′`,

R̂ (γ) =

√
LI

{
Q̂ (γ)− Q̂ (γ∗)− (γ − γ∗)′ Ŵ − (Q (γ)−Q (γ∗))

}
‖γ − γ∗‖

,

where ‖·‖ is the usual Euclidean norm. Since γ∗ is an interior point of Γ and because γ̂ is

consistent, the asymptotic normality of the Theorem follows from

√
LIŴ

d→ N (0, J (γ∗|α, I)) , (6.25)

sup
γ∈Γ;‖γ−γ∗‖≤εL

∣∣∣∣∣ R̂ (γ)

1 +
√
LI‖γ − γ∗‖

∣∣∣∣∣ = oP (1) for any εL = o (1) , (6.26)

see Theorem 7.1 in Newey and McFadden (1994). I first establish (6.25). Note that the

summands in Ŵ are centered since

E
[
(I (u < 0)−ΨI (α))h(1) (Xγ∗)X ′|I

]
= Qγ (γ∗) = 0,
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because γ∗ in the interior of Γ minimizes Q (·), and with a variance given I which is

E
[
(I (u < 0)−ΨI (α))2 h(1) (Xγ∗)2X ′X|I

]
=

E
[(
P (u < 0|X, I)− 2ΨI (α)P (u < 0|X, I) + ΨI (α)2)h(1) (Xγ∗)2X ′X|I

]
= J (γ∗|α, I) ,

since P (u < 0|X, I) = Fbw (h (Xγ∗) |X, I). Hence (6.25) follows from the Central Limit

Theorem.

The rest of the proof consists then in showing (6.26). First some useful notations are

introduced. Note that Qγγ (γ) = Q1
γγ (γ) +Q2

γγ (γ) with

Q1
γγ (γ) = E

[
{Fbw (h (Xγ) |X, I)−ΨI (α)}h(2) (Xγ)X ′X|I

]
,

Q2
γγ (γ) = E

[
fbw (h (Xγ) |X, I)h(1) (Xγ)2X ′X|I

]
.

Write

Q̂ (γ)− Q̂ (γ∗) =
1

LI

L∑
`=1

I (I` = I)
{
ρΨI(α) (u` − v`)− ρΨI(α) (u`)

}
where,

v` = v` (δ) = h (X`γ)− h (X`γ
∗) , where δ = γ − γ∗.

By an identity from Knight (1998),

ρΨI(α) (u` − v`)− ρΨI(α) (u`) =

v` {I (u` < 0)−ΨI (α)}+

∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds.

53



Hence, for δ = γ − γ∗,

Q̂ (γ)− Q̂ (γ∗)− (γ − γ∗)′ Ŵ − (Q (γ)−Q (γ∗)) =
5∑
j=1

∆j (δ) ,

where ∆j (δ) =
∑L

`=1 ∆j` (δ) /LI with

∆1` (δ) = I (I` = I)
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)}

−E
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)} |I`

]]
,

∆2` (δ) = I (I` = I)
[
E
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)} |I`

]
−
δ′Q1

γγ (γ∗) δ

2

]
,

∆3` (δ) = I (I` = I)

[
E
[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds|I`
]
−
δ′Q2

γγ (γ∗) δ

2

]
,

∆4` (δ) = I (I` = I)

[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds

−E
[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} |I`
]]
,

∆5` (δ) = I (I` = I)

[
Q (γ)−Q (γ∗)−

δ′Q1
γγ (γ∗) δ

2
−
δ′Q2

γγ (γ∗) δ

2

]
.

Now, since v` = h (X` (γ∗ + δ))− h (X`γ) satisfies,

v` = X`δ

∫ 1

0

h(1) (X` (γ∗ + tδ)) (1− t) dt,

v` − h(1) (X`γ
∗)X`δ =

δ′X ′`X`δ

2

∫ 1

0

h(2) (X` (γ∗ + tδ)) (1− t) dt,
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then

∂

∂δ

[
v` − h(1) (X`γ

∗)X`δ

‖δ‖

]
=

v`
‖δ‖
−
δ
(
v` − h(1) (X`γ

∗)X`δ
)

‖δ‖2

=
δ

‖δ‖
X`

∫ 1

0

h(1) (X` (γ∗ + tδ)) (1− t) dt−

δ
δ′X ′`X`δ

2 ‖δ‖2

∫ 1

0

h(2) (X` (γ∗ + tδ)) (1− t) dt.

This first differential is bounded when ‖δ‖ ≤ 1. Hence the set of functions {∆1` (δ) / ‖δ‖ , ‖δ‖ ≤ 1}

can be covered with a number less than O
(
ε−C
)

of functional brackets with length ε. To see

that the same holds for {∆4` (δ) / ‖δ‖ , ‖δ‖ ≤ 1}, observe

1

‖δ‖

∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds =
v`
‖δ‖

∫ 1

0

{I (u` ≤ s+ tv`)− I (u` ≤ 0)} dt

=

(
X`

δ

‖δ‖

)
×
(∫ 1

0

h(1) (X` (γ∗ + tδ)) (1− t) dt
)

×
(∫ 1

0

{I (u` ≤ s+ tv`)− I (u` ≤ 0)} dt
)
.

Each of the three functions of δ in this product can be covered with O
(
ε−C
)

of functional

brackets with length ε, implying that the same covering property holds for {∆4` (δ) / ‖δ‖ , ‖δ‖ ≤ 1}.

Hence, since {∆j` (δ) / ‖δ‖ , ‖δ‖ ≤ εL} admits an envelope ∆j (X`) satisfying E
[
∆2

j (X`)
]

=

o (1), j = 1, 4, Lemma 19.38 in van der Vaart (1998) gives that, with Γδ = {δ; γ∗ + δ ∈ Γ}

E
[

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣√LI
∆j (δ)

‖δ‖

∣∣∣∣ |I`, 1 ≤ ` ≤ L

]
= oP (1) , j = 1, 4.

This gives, by the Markov inequality,

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣√LI
∆j (δ)

‖δ‖

∣∣∣∣ = oP (1) , j = 1, 4. (6.27)
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Now elementary expansions give, for the items in ∆j` (δ), j = 2, 3, 5, uniformly in ` since

X` lies in a compact set,

I (I` = I)E
[(
v` − h(1) (X`γ

∗)X`δ
)
{I (u` < 0)−ΨI (α)} |I`

]
=

I (I` = I)E
[(

h(2) (X`γ
∗) δ′X`X`δ

2
+ o

(
‖δ‖2)) {P (u` < 0|X`, I`)−ΨI (α)} |I`

]
= I (I` = I)

δ′Q1
γγ (γ∗) δ

2
+ o

(
‖δ‖2) ,

I (I` = I)E
[∫ v`

0

{I (u` ≤ s)− I (u` ≤ 0)} ds|I`
]

=

I (I` = I)E
[∫ v`

0

{P (u` ≤ s|X`, I`)− P (u` ≤ 0|X`, I`)} ds|I`
]

=

I (I` = I)E
[∫ v`

0

{fbw (h (X`γ
∗) |X`, I`) + o (1)} sds|I`

]
=

I (I` = I)E
[
{fbw (h (X`γ

∗) |X`, I`) + o (1)} v
2
`

2
|I`
]

=

I (I` = I)E

[
fbw (h (X`γ

∗) |X`, I`)

(
h(1) (X`γ

∗)X`

)2

2
|I`

]
+ o

(
‖δ‖2)

= I (I` = I)
δ′Q2

γγ (γ∗) δ

2
+ o

(
‖δ‖2) ,

Q (γ)−Q (γ∗)−
δ′Q1

γγ (γ∗) δ

2
−
δ′Q2

γγ (γ∗) δ

2
= o

(
‖δ‖2) .

This gives by definition of ∆j (δ), j = 2, 3, 5,

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣∆j (δ)

‖δ‖2

∣∣∣∣ = oP (1) , j = 2, 3, 5. (6.28)
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Therefore (6.27), (6.28), γ − γ∗ = δ, and R̂ (γ) =
√
LI
∑5

j=1 ∆j (δ) imply

sup
γ∈Γ;‖γ−γ∗‖≤εL

∣∣∣∣∣ R̂ (γ)

1 +
√
LI‖γ − γ∗‖

∣∣∣∣∣ ≤ 2 max
j=1,4

max
δ∈Γδ;‖δ‖≤εL

∣∣∣∣√LI
∆j (δ)

‖δ‖

∣∣∣∣
+3 max

j=1,3,5
max

δ∈Γδ;‖δ‖≤εL

∣∣∣∣∆j (δ)

‖δ‖2

∣∣∣∣
= oP (1) .

Hence (6.26) is true.

For Corrollary 6, the first derivative of Q̂0 (γ) = Q̂ (γ|α) is

Q̂0
γ (γ) =

1

L

L∑
`=1

(I (bw` ≤ h (X`γ))−ΨI` (α))h(1) (X`γ)X ′`.

Let γ∗ = γ (α). As seen from the proof of Theorem 5, the matrix J (γ∗|α) is the variance of

Ŵ 0 = L1/2Q̂0
γ (γ∗) and because E

[
Ŵ 0
]

= 0 asymptotic normality follows. Hence J (γ∗|α) is

equal to

E
[(
I (bw ≤ h (Xγ∗))− 2I (bw ≤ h (Xγ∗)) ΨI (α) + Ψ2

I (α)
)
h(1) (Xγ∗)X ′X

]
=

E
[(
P (bw ≤ h (Xγ∗) |X, I)− 2P (bw ≤ h (Xγ∗) |X, I) ΨI (α) + Ψ2

I (α)
)

×h(1) (Xγ∗)X ′X
]
,

which gives the expression of the Corollary since P (bw ≤ h (Xγ∗) |X, I) = Fbw (h (Xγ∗) |X, I).

Now, similar computations give that

Q0
γγ (γ∗) = E

[
Q̂0
γγ (γ∗)

]
= E

[
(fbw (h (Xγ∗) |X, I)−ΨI` (α))h(1) (Xγ∗)X ′X

]
+ E

[
(Fbw (h (Xγ∗) |X, I)−ΨI` (α))h(2) (Xγ∗)X ′X

]
.
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Appendix B - Random Weighting Bootstrap Method

This section describes the random weighting bootstrap method used in the tests of exclusion

participation restriction and constancy of the slope coefficients. Let Q̂H0 (γ̂H0|α, I) and

Q̂H1 (γ̂H1 |α, I) be the optimized value of the quantile regression objective function under the

null and alternative hypothesis, respectively. The M-test statistic defined in Rao and Zhao

(1992), Wang and Zhou (2004) and Zhao, Wu and Yang (2007) is

M = LI

[
Q̂H0 (γ̂H0 |α, I)− Q̂H1 (γ̂H1|α, I)

]
. (6.29)

Let π` be i.i.d. random weights multinomially distributed with parameters (LI , 1/LI).

Define the random weighting empirical objective function under the null and alternative

hypotheses as Q̂H0 (γH0|α, I, π) and Q̂H1 (γH1|α, I, π), where

Q̂Hj

(
γHj |α, I, π

)
=

1

LI

LI∑
`=1

I (I` = I) π`ρΨI(α) (bw` − h (X`γ)) , (6.30)

for j = {0, 1}. The aforementioned reference suggests to random weighting bootstrap the

M-statistic (6.29) by using the random weights π`. Let b be the index for a draw πb of the

weights. For each j = {0, 1}, define

γ̂bHj (α|I) = arg min
γHj∈Γ

Q̂Hj

(
γHj |α, I, πb

)
.
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Then, the bth draw of the bootstrapped statistic is

M b = LI

[
Q̂H0

(
γ̂bH0
|α, I, πb

)
− Q̂H1

(
γ̂bH1
|α, I, πb

)]
− LI

[
Q̂H0

(
γ̂H0|α, I, πb

)
− Q̂H1

(
γ̂H1|α, I, πb

)]

where γ̂Hj are the estimators obtained from the initial population.

The null hypothesis H0 is rejected at a significance level τ if M is larger than the sample

(1− τ)-quantile of the bootstrapped statistic M1, · · · ,MB and accepted otherwise, where B

is the number of bootstrap replications.

Appendix C - Monte-Carlo Experiments

This section presents some Monte Carlo experiments used to illustrate the hypotheses tests

and their performance in terms of size. For all the experiments below, letA = {0.50, 0.60, 0.70, 0.80}.

C.1 - Exclusion Participation Restriction.

Data Generating Process. Two samples of auction covariates and error terms are gen-

erated. One sample corresponds to L2 auctions with I = 2 actual bidders and the other

to L3 auctions with I = 3, where L2 = L3 = 100. For the auction covariates, LI ran-

dom Normal (0, 1) variables are generated and replicated I times. The I × LI error terms

are randomly generated considering three different parametric distributions: Uniform (0, 1),

Standard Exponential and Standard Normal. The bidders’ private values are generated

via two possible regression specifications: linear vi` = 1 + X1` + X2` + ui` and exponential

vi` = exp (0.3 + 0.3X1` + 0.3X2` + ui`)
25. The winning bid is given by the second-highest

25The values of the intercept and slope coefficients are not an important issue and were chosen simply to
speed up the estimation process.
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private value: bw` = vI−1:I,`.

Estimation and Test. The winning bids are used to estimate γ (α|I = 2) and γ (α|I = 3),

via the individual quantile regression estimator (3.11), and γ (α), via the pooled quantile re-

gression estimator (3.17), for all α ∈ A. The statistic

M = Q̂ (γ̂|α)−
∑

I∈{2,3}

Q̂ (γ̂ (α|I) |α, I)LI/L

is computed for each quantile level α and summed over A.

Bootstrap. L2 and L3 i.i.d. random weights π multinomially distributed with parame-

ters (LI , 1/LI) are generated and used to estimate Q̂
(
γ̂b (α) |α, πb

)
and Q̂

(
γ̂b (α|I) |α, I, πb

)
for each bootstrap draw b, where the former corresponds to the pooled optimized objec-

tive function and the latter to the individual one. I then compute the random weighting

bootstrap statistic

M b =
[
Q̂
(
γ̂b (α) |α, πb

)
−
∑

I∈{2,3}

Q̂
(
γ̂b (α|I) |α, I, πb

)
LI/L

]
−

[
Q̂
(
γ̂ (α) |α, πb

)
−
∑

I∈{2,3}

Q̂
(
γ̂ (α|I) |α, I, πb

)
LI/L

]
,

where γ̂ (α) and γ̂ (α|I) are the estimates of the original population, and sum over the

quantile levels. The number of bootstrap replications is B = 500.

Bootstrap Critical Values. The significance level τ is chosen for the test. The boot-

strap critical value c∗ (τ) is an approximation of the c (τ) critical value of the test statistic

M and is given by the (1− τ)th quantile of the empirical distribution of the bootstrapped

statistic.

Rejection Rule. If M < c∗ (τ), then the null hypothesis is not rejected at τ% signifi-

cance level.
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Table 10
Rejection Probability - Linear Specification

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 1.06% 1.18% 0.87%
5% 5.09% 5.47% 3.62%
10% 9.84% 10.84% 7.30%

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80}.

Table 11
Rejection Probability - Exponential Specification

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 1.32% 1.62% 1.17%
5% 5.14% 6.16% 4.61%
10% 9.94% 11.54% 9.34%

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80}.

Rejection Probability. The procedure above is repeated N = 10, 000 times and the

proportion of rejections of the null hypothesis is computed.

The results from the Monte Carlo experiment above are given in Tables 10 and 11.

The rejection probabilities are very close to the nominal levels in both cases. It is slightly

undersized in the case in which the errors follow a standard exponential distribution and the

model has a linear specification.

C.2 - Choice of Specification

Data Generating Process. As in the previous experiment, two samples of auction co-

variates and error term with L2 and L3 auctions are generated, where L2 = L3 = 200. The

auction covariates are random Standard Normal variables that are replicated I times. For

the error terms, the following distributions are considered: Standard Normal, Uniform (0, 1)

and Standard Exponential. The bidders’ private values are generated via two possible regres-

sion specifications: linear vL
i` = γ0 + γ1Z1` + ui` and exponential vE

i` = exp (γ0 + γ1Z1` + ui`),
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where (γ0, γ1) = (1, 1) in the case the errors are normally distributed and (γ0, γ1) = (0, 0.5)

when the errors are either uniformly or exponentially distributed26. Under the null hypoth-

esis, the exponential specification is equivalent to the linear specification for a given α0 ∈ A

and dominates the latter for all α ∈ A\{α0}. In order to have equivalence at α0 ∈ A,

a private value vi`, which is a linear combination of both private values above, is created:

vi` = λvL
i` + (1− λ) vE

i`. To find the weight λ that satisfies the equivalence property, I split

λ ∈ [0, 1] into 1, 000 equal spaces and compute the relative difference between both optimized

objective functions,

∆ (α, λt) =

(
Q̂E (γ̂E|α, λt)− Q̂L (γ̂L|α, λt)

)
Q̂L (γ̂L|α, λt)

,

for t = {1, · · · , 1, 000}. λ∗ is chosen over t such that to minimize ∆ (α, λt) for a given α.

The equivalence property must hold for a given α0 ∈ A and the exponential specification

should be better than the linear one for all α ∈ A\{α0}. Therefore, λ∗max is chosen such

that supα∈A∆ (α, λ∗) = 0. The winning bid is given by the second-highest private value:

bw` = vI−1:I,`.

Estimation and Test. A DGP using λ∗max is generated and the test statistic V̂uong

computed as in (4.22).

Bootstrap. The pair (X`, bw`) is resampled with replacement from its joint sample

distribution in each original subsample LI . The number of bootstrap replications is B = 500.

Bootstrapping the Test Statistic. For each bootstrap replication b, the recentered

bootstrapped test statistic V̂uong
b

is computed as

V̂uong
b

= sup
α∈A

√
L
{(
Q̂E

(
γ̂bE|α

)
− Q̂L

(
γ̂bL|α

))
−
(
Q̂E (γ̂E|α)− Q̂L (γ̂L|α)

)}
,

26The values of the intercept and slope parameters were chosen according to the distribution of the errors
in an attempt to find a DGP that satisfies the equivalence property for a given quantile level.
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Table 12
Rejection Probability - Test of Specification

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 2.23% 0.94% 0.91%
5% 5.67% 4.50% 4.22%
10% 8.31% 9.04% 8.22%

λ∗max 0.6547 0.5846 0.5095

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80};
It is assumed independence of the private values distribution upon I in this Monte
Carlo experiment.

where γ̂E and γ̂L are the estimates of the original population generated by λ∗max.

The bootstrap critical values, rejection rule and rejection probability are computed as

in Appendix C.1. Table 12 gives the rejection probabilities and the values for λ∗max used

in each experiment. The test performs well although a bit undersized. That is because

the supremum is used over the quantiles in the formula, which means that the rejection

probability could be higher for a given quantile level.

C.3 - Constancy of the Slope Coefficients

Data Generating Process. As in the previous two experiments, two samples of auction

covariates and error terms with L2 and L3 auctions are generated, where L2 = L3 = 100. For

the auction covariates, LI random Standard Normal variables are generated and replicated I

times. The I × LI error terms are randomly generated considering the parametric distribu-

tions: Uniform (0, 1), Standard Exponential and Standard Normal. The private values are

generated using a linear regression model due to the results of the empirical application, i.e.

vi` = 0+Z`+ui`. The winning bid is given by the second-highest private value: bw` = vI−1:I,`.

Estimation and Test. The winning bids are used to estimate (γ0k , γ1), k = 1, · · · , K,

via the CQR estimator defined in (3.20), and γ (α) via the pooled quantile regression esti-

mator (3.17). Under the null hypothesis, the CQR population objective function equals the
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Table 13
Rejection Probability - Constancy of the Slope Coefficients

Nominal Level Std. Normal Uniform (0, 1) Std. Exponential

1% 1.25% 1.15% 1.09%
5% 6.25% 6.73% 5.59%
10% 11.74% 12.27% 10.95%

The number of bootstrap replications is B = 500; The experiment was repeated
N = 10, 000 times; The set of prescribed quantiles is A = {0.50, 0.60, 0.70, 0.80};
It is assumed independence of the private values distribution upon I in this Monte
Carlo experiment.

average of the individual objective functions over A. The M-statistic

M = L

[
Q̂CQR (γ̂CQR)− 1

K

K∑
k=1

Q̂ (γ̂|αk)

]
,

is computed, where K = 4 since A = {0.50, 0.60, 0.70, 0.80}.

Bootstrap. L2 and L3 i.i.d. random weights π multinomially distributed with param-

eters (LI , 1/LI) are generated and used to estimate Q̂CQR

(
γ̂bCQR|πb

)
and Q̂

(
γ̂b (αk) |αk, πb

)
at each bootstrap draw b and quantile level αk. The random weight bootstrap statistic is

then computed as

M b = L
[
Q̂CQR

(
γ̂bCQR|πb

)
− 1

K

K∑
k=1

Q̂
(
γ̂b (αk) |αk, πb

)]
−

L

[
Q̂CQR

(
γ̂CQR|πb

)
− 1

K

K∑
k=1

Q̂
(
γ̂ (αk) |αk, πb

)]
,

where γ̂CQR and γ̂ (αk) are the estimates of the original population. The number of bootstrap

replications is B = 500.

The bootstrap critical values, rejection rule and rejection probability are computed as in

Appendix C.1. Table 13 gives the rejection probabilities of the test. The test performs well

although a bit oversized, which is due to the tolerance level asigned for the convergence of

the algorithm.
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