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convergência na emissão de CH4 em setores ligados à agricultura, indústria de alimentos, e 
serviços. Com relação à emissão de CO2, encontramos evidencias moderadas na agricultura, 
indústria de alimentos, indústria de bens-duráveis e serviços. Em todos os casos, o tempo para 
convergência foi menor do que quinze anos. Nas emissões relevantes pelo uso de energia, uma 
das maiores fontes causadoras do efeito estufa, encontramos evidências moderadas apenas na 
indústria extrativa. Todos os demais poluentes apresentaram evidência fraca ou ausência de 
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publication of the World Input Output Database. The empirical strategy applies conventional 
estimators of random and fixed effects, and Arellano and Bond’s (1991) GMM to the main 
pollutants related to the greenhouse effect. We found robust evidence of convergence in CH4 
emissions in sectors linked to agriculture, food industry and services. Regarding CO2 emissions, 
we found moderate evidence in agriculture and food industry, manufacturing of non-durable 
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in the extractive industry sector. All other pollutants presented weak or lack of evidence. 



1 

 

Multi-Sectorial Convergence in Greenhouse Gas Emissions 

 

Guilherme de Oliveira 

Department of Economics, University of São Paulo, Brazil. 

E-mail: guilherme.decon@usp.br 

& 

Deise Bourscheidt 

Colegiado de Ciências Econômicas, Federal University of Fronteira Sul, Brazil. 

E-mail: deise.bourscheidt@uffs.edu.br 

 

Resumo: Este artigo usa um painel dinâmico multi-setorial para testar a hipótese de convergência 

per capita na emissão de gases do efeito-estufa. Tal teste tornou-se possível com a recente 

publicação da World Input Output Database. A estratégia empírica aplica estimadores 

convencionais de efeitos aleatórios e fixos, e também um GMM de Arellano e Bond (1991), para os 

principais poluentes relacionados ao efeito estufa. Encontramos evidências robustas de 

convergência na emissão de CH4 em setores ligados à agricultura, indústria de alimentos, e 

serviços. Com relação à emissão de CO2, encontramos evidencias moderadas na agricultura, 

indústria de alimentos, indústria de bens-duráveis e serviços. Em todos os casos, o tempo para 

convergência foi menor do que quinze anos. Nas emissões relevantes pelo uso de energia, uma das 

maiores fontes causadoras do efeito estufa, encontramos evidências moderadas apenas na indústria 

extrativa. Todos os demais poluentes apresentaram evidência fraca ou ausência de evidências. 

 

Palavras-chave: Gases do efeito-estufa; Convergência multi-setorial; dados em painel. 

 

Abstract: This paper uses a multi-sectorial dynamic panel to test the hypothesis of per capita 

convergence in greenhouses gas emissions. This has been made possible through the recent 

publication of the World Input Output Database. The empirical strategy applies conventional 

estimators of random and fixed effects, and Arellano and Bond’s (1991) GMM to the main 

pollutants related to the greenhouse effect. We found robust evidence of convergence in CH4 

emissions in sectors linked to agriculture, food industry and services. Regarding CO2 emissions, we 

found moderate evidence in agriculture and food industry, manufacturing of non-durable goods and 

services.  In all cases, the time for convergence was less than fifteen years. In the emissions for 

energy use, the largest source of global warming, we found moderate evidence only in the 

extractive industry sector. All other pollutants presented weak or lack of evidence. 

 

Keywords: Greenhouse gas emissions; multi-sectorial convergence; panel data. 

 

JEL: Q5; Q52; C33. 

 

 

 



2 

 

1. Introduction 

 

The relationship between economic growth and the environment has received renewed 

attention in the environmental literature. Some of the main empirical controversies in the topic are 

related to the Environmental Kuznets Curve (EKC) - which suppose an U-shaped relation between 

per capita emissions and income -, and the convergence hypothesis in greenhouse gases (GHG) 

emissions - which aims to verify whether countries are converging to a steady-state of emissions. 

This paper is related to the latter issue. 

The pioneering work on this topic is credited to Strazicich and List (2003), who use an 

ordinary least squares (OLS) estimator and unit root tests for panel data, for a sample of OECD 

countries. Evidence in favor of the convergence hypothesis was found. From that work, a similar 

controversy in the empirical literature on economic growth can currently be observed in the 

environmental literature: papers such as Romero-Avila (2008) Westerlund and Basher (2007) and 

others found significant evidence in favor of convergence. However, Aldy (2006) and Criado and 

Grether (2011), among others, do not support such a hypothesis. 

One of the sources of divergence in the results is the sample size: as it increases, the 

evidence of convergence decreases. Another is the technique used: OLS and unit root tests for panel 

data tend to confirm it. However, more elaborate techniques, such as Markov chains and other 

dynamic analysis do not. Another point is related to the concentration of studies examining only a 

cross-country dimension of CO2 emissions, while other relevant perspectives are left out, such as 

the analysis of sectorial convergence, and other sources of GHG emissions. This can partially be 

explained by the scarcity of multi-sectorial databases to enable a comprehensive and consistent 

estimation of the hypothesis across countries and sectors. 

Such a situation changes with the availability of some new databases such as the World 

International Input-Output Database (WIOD) (Timmer et al., 2015), which estimates inter-sectorial 

data for intermediate consumption, value added, employment, investment, depreciation and capital 

stock, used for economic impact analysis via input-output matrixes. WIOD also has social and 

environmental annexes. The latter collects sectorial environmental data, including emissions of the 

main GHG. It provides enough variation to estimate convergence between sectors in the main world 

economies. 

A multi-sectorial test for the convergence hypothesis in GHG emissions is particularly 

relevant to check whether there is heterogeneity between sectorial samples, e.g. are the durable 

goods industrial sectors converging? And if they are, are they doing so faster than the agricultural 

and food sectors? Furthermore, many models of computable general equilibrium, for instance, 
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assume a certain degree of convergence between countries and sectors to estimate trend scenarios 

for climate change. If however, per capita emissions are not converging, these models can be 

seriously incorrect, generating bad policy recommendations. 

This paper contributes to the environmental economics literature by estimating a dynamic 

multi-sectorial panel data that that sheds some light on the debate of convergence hypothesis in per 

capita GHG emissions (not only CO2). For this purpose, a theoretical convergence function is 

derived based on a joint production mechanism, and then, a model is estimated using a panel of 33 

sectors of WIOD, which are available for a set of 39 countries between 1996 and 2007. 

The rest of this paper is organized as follows: Section 2 briefly outlines the literature. 

Section 3 presents the identification strategy, while Section 4 presents the sample and the data 

source. Section 5 discusses the main results and finally some conclusions are presented. 

 

2. Related literature 

 

The empirical literature on the convergence hypothesis in GHG emissions is recent, dating 

back to the early 2000s, and it focuses mainly on CO2 emissions. Regarding econometric 

techniques, the literature is less-autonomous as it is influenced by past developments in the theory 

of economic growth. This is not by chance since emissions and income are strongly correlated in 

time. 

Strazicich and List (2003) conducted the first empirical test in which cross-section and time 

series models were estimated using data of CO2 emission for 21 industrialized countries from 1960 

to 1997. The authors found significant evidence that CO2 emissions converged, although they did 

not set their speed or time. Aldy (2006) focused on expanding the sample of the pioneers for 88 

countries from 1960 to 2000. The author found no evidence of convergence for this sample, only for 

a subset of OECD countries. Furthermore, forecasts based on a Markov transition matrix provided 

weak evidence of future convergence for the global sample, indicating that emissions could be 

diverging in the short-run. 

Westerlund and Basher (2007) increased the period studied from 1870 to 2002, using similar 

econometric techniques and sample sets. They found support for empirical convergence, both in 

absolute and conditional terms. Their main contribution was to estimate the convergence rate which 

increased after the 1970s. In turn, Romero-Avila (2007) examined the existence of stochastic and 

deterministic convergence in CO2 emissions for 23 countries using unit root tests for panel data. 

Overall, the analysis supported strong stochastic and deterministic convergence in emissions.  
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Pen and Sévi (2010) analyzed the energy intensity convergence for 97 countries between 

1971 and 2003 using the criteria for stochastic convergence proposed by Pesaran (2007). Unit root 

tests rejected the hypothesis of global convergence. For the Midwest OECD’s members, and for 

subsets of European countries, the non-convergence is “less strongly rejected”. The control for 

structural breaks in the time series offers marginal gains in favor of convergence. 

Karanfil and Tykhonenko (2010) used a Bayesian estimator for the analysis of convergence 

of CO2 emissions for a sample of 22 European countries between 1971 and 2006. First, they found 

that the hypothesis of absolute convergence is supported, and a slight upward convergence is 

observed. Secondly, the fact that the countries differ considerably in their convergence speed and 

volatility makes it possible to identify groups of countries with common features. 

Another work that sought to analyze the hypothesis was carried out by Herrerias (2012), 

using a distributive dynamic approach. The sample set was limited to 25 European Union (EU) 

countries between 1920-2007. It examined whether the convergence patterns may differ if weighted 

by the population and economic indicators of each country (unobservable effects are not 

controlled). The unweight analysis indicated that the convergence patterns differ among countries 

before and after the Second World War, tending to further convergence after the 1970s. Weighting 

results shown that the convergence is much faster when these characteristics are explicitly 

considered, and thus, convergence may be conditional. 

Li and Lin (2013) evaluated the global convergence of per capita CO2 emissions between 

1971-2008. They observed absolute convergence within subsamples classified according to income 

level. However, a global sample containing 110 countries provided weak evidence of absolute 

convergence. In addition, the empirical strategy uses per capita income to control for conditional 

convergence. In this case, the relationship between an increase in income and CO2 emission is 

different. In particular, per capita emissions in developed countries remain at steady state as income 

increases. Hence, its main result contradicts EKC. 

Camarero, Picazo-Tadeo and Tamarit (2013) tested the convergence in the intensity of CO2 

emissions (CO2 emissions relative to GDP) across OECD countries between 1960-2008, based on 

determinants of energy intensity (energy consumption/GDP), and a carbonization index (CO2 

emissions/energy consumption). Estimating convergence clubs, they shown that differences in 

convergence of CO2 emission are determined mostly by differences in the convergence of the 

carbonization index, and not by differences in convergence in energy intensity. 

This brief literature review shows divergent results. In general, simple models of cross-

section and unit root tests for panel data found significant convergence evidence, while different 
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statistical techniques, such as Markov chains, for instance, do not support convergence. Another 

issue is the sample size: large samples do not report convergence evidence, which is found only in 

small groups of homogeneous countries, such as the OECD members. When heterogeneous 

characteristics between countries are considered, the rate of convergence loses strength. 

This work examines three of the aspects mentioned in the literature. Firstly, the sample size 

is expanded to 33 sectors among 39 countries, during 11 years of observations. Secondly, as well as 

CO2, other GHG are explicitly modeled, and finally a dynamic panel estimator circumvents 

inconsistency problems of estimation based on conventional methods. 

 

3. The identification strategy 

 

This section describes the identification strategy, an approach based on Islam (1995). A joint 

production mechanism is supposed, in which the use of labor and capital in a production function 

generates two outputs: one good (economic growth) and one bad (GHG emissions). Therefore, 

 

    𝑌𝑖𝑗 = 𝐾𝑖𝑗
𝛼(𝐴𝑖𝑗𝐿𝑖𝑗)

1−𝛼 → 𝐸𝑖𝑗,                                                       (1) 

 

in which Y is the output, K is the capital stock, A is the technological level, L is the number of 

workers and E is the bad output, i and j describe sectors and countries, respectively. In fact, the 

logic is similar to the green Solow model set out in Brock and Taylor (2010). However, given the 

difficulty of obtaining data on abatement investment, the Green Solow model is not taken into 

account for the present theoretical derivation, but as the reader may notice, the empirical equation is 

equivalent. 

Therefore, due to the strong empirical correlation between income and emissions, the 

generating process of GHG emissions can be assumed to be the same as the one that generates 

income for the economy, 𝐸𝑖𝑗 = 𝐾𝑖𝑗
𝛼(𝐴𝑖𝑗𝐿𝑖𝑗)

1−𝛼. 

As in the canonical Solow model, it is supposed that the population and technology growth 

rates are exogenously given by 𝐿𝑖𝑗𝑡 = 𝐿𝑖𝑗(0)𝑒
𝑛𝑖𝑗𝑡 and 𝐴𝑖𝑗𝑡

= 𝐴𝑖𝑗(0)𝑒
𝑔𝑖𝑗𝑡, respectively. Since a 

fraction s of the sectorial income is saved and automatically reverted into investment, and emissions 

and capital per effective worker are defined as 𝑒𝑖𝑗 =
𝐸𝑖𝑗

𝐴𝑖𝑗𝐿𝑖𝑗
⁄  e 𝑘𝑖𝑗 =

𝐾𝑖𝑗
𝐴𝑖𝑗𝐿𝑖𝑗

⁄ , respectively, the 

capital-labor ratio changes over time according to: 
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𝑑𝑘𝑖𝑗

𝑑𝑡
= 𝑠𝑖𝑗𝑘𝑖𝑗

𝛼 − (𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗)𝑘𝑖𝑗.                                               (2) 

 

Solving (2) for the capital stock per effective worker, the value of capital stock per worker 

in steady-state is obtained:  

 

𝑘𝑖𝑗
∗ = [

𝑠𝑖𝑗

(𝑛𝑖𝑗+𝑔𝑖𝑗+𝛿𝑖𝑗)
]

1
(1−𝛼)⁄

.                                                     (3) 

 

In steady-state, capital stock growth is determined by the population growth rate, savings 

rate, technical progress and an exogenous parameter of depreciation 𝛿. Substituting the balanced 

capital stock on the emissions by effective worker, per capita emission in steady state is obtained 

(which is determined by the same parameters as in Eq. (3)). Applying the logarithm to the 

expression of per capita emissions, Eq. (4) is reached, a linear expression for the emissions in 

balance. Hence,  

 

𝑙𝑛 [
𝐸𝑖𝑗

𝐿𝑖𝑗
] = 𝑙𝑛𝐴𝑖𝑗0

+ 𝑔𝑖𝑗𝑡 +
𝛼

1−𝛼
ln(𝑠𝑖𝑗) −

𝛼

1−𝛼
ln⁡(𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗).                         (4) 

 

 Now the emissions are normalized by the number of workers, and not by the number of 

effective workers; thus, the technological level, A, is on the right hand of equation. If the intention 

were to estimate Eq. (4) for analyzing the sensibility of per capita emissions for a group of 

countries at some moment in time with OLS, it is possible to assume that 𝑙𝑛𝐴𝑖𝑗0
= 𝑎 + 𝜇, a 

constant plus stochastic perturbation. The following model would be estimated: 

 

𝑙𝑛 [
𝐸𝑖𝑗

𝐿𝑖𝑗
] = 𝑎 +

𝛼

1−𝛼
ln(𝑠𝑖𝑗) −

𝛼

1−𝛼
ln(𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗) + 𝜇𝑖𝑗.                               (5) 

 

Using OLS, the linear adjustment in Eq. (5) is inconsistent, since the variables in the error 

term that explains emissions and which are correlated with the savings and population growth rates 

affect the consistency of the parameters defined as 
𝛼

1−𝛼
. The basic conjecture in this article is about 

modeling emissions per capita, considering that "𝑎" can be estimated for each country, the fixed 

effect, and that gt by a set of time dummies in panel data.  
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Thus, the equation of per capita convergence, adapted from Mankiw, Romer and Weil 

(1992), is derived assuming that ϵij* is the per capita emissions in steady-state and ϵij  the current 

emissions in t. Approaching the steady-state, the equation for convergence in time is given by: 

 

𝑑𝑙𝑛𝜖𝑖𝑗𝑡
𝑑𝑡

= 𝜑[𝑙𝑛𝜖𝑖𝑗
∗ − 𝑙𝑛𝜖𝑖𝑗],                                                        (6) 

 

in which 𝜑 = (𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗)(1 − 𝛼). Integrating Eq. (6), it follows that: 

 

𝑙𝑛𝜖𝑖𝑗𝑡2 =
(1 − 𝑒−𝜑𝜏)𝑙𝑛𝜖𝑖𝑗

∗ + 𝑒−𝜑𝜏𝑙𝑛𝜖𝑖𝑗𝑡1,                                          (7) 

 

in which 𝜖𝑖𝑗𝑡1 is the emissions at the initial time and 𝜏 = (𝑡2 − 𝑡1). Deducting the initial per capita 

emissions from the both sides of Eq. (7) and rearranging, it follows that: 

 

𝑙𝑛𝜖𝑖𝑗𝑡2 − 𝑙𝑛𝜖𝑖𝑗𝑡1 =
(1 − 𝑒−𝜑𝜏)(𝑙𝑛𝜖𝑖𝑗

∗ − 𝑙𝑛𝜖𝑖𝑗𝑡1).                                      (8) 

 

 Deducting ϵij*, inserting the technological parameter to the right-hand side, and collecting  

𝜖𝑖𝑗𝑡1, it follows that: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙𝑛𝜖𝑖𝑗𝑡2 =
(1 − 𝑒−𝜑𝜏)

𝛼

1−𝛼
ln(𝑠𝑖𝑗) − (1 − 𝑒−𝜑𝜏)

𝛼

1−𝛼
ln(𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗) + 𝑒−𝜑𝜏𝑙𝑛𝜖𝑖𝑗𝑡1 +

(1 − 𝑒−𝜑𝜏)𝑙𝑛𝐴0 + ⁡𝑔(𝑡2 − 𝑒−𝜑𝜏𝑡1).                                                                                                 (9) 

 

Eq. (9) is the main equation in this paper because it covers the equation of conditional 

convergence that will be modeled by a dynamic panel. When modeling in Eq. (9) (1 − 𝑒−𝜑𝜏)𝑙𝑛𝐴0, 

technology, as a fixed effect in time, and 𝑔(𝑡2 − 𝑒−𝜑𝜏𝑡1) - technical progress, as a set of dummy 

variables of time, a dynamic panel can be defined according to: 

 

𝑦𝑖𝑗𝑡 = 𝛾𝑦𝑖𝑗𝑡−1 +
∑ 𝛽𝑘𝑥𝑖𝑗𝑡

𝑘2
𝑙=1 + 𝜋𝑡 + 𝜃𝑖 + 𝜗𝑖𝑗𝑡 ,                                       (10) 

in which: 

𝑦𝑖𝑗𝑡 = ⁡𝑙𝑛𝜖𝑖𝑗𝑡2: logarithm of GHG emissions per worker in t2, in sector i of country j; 
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𝑦𝑖𝑗𝑡−1 = 𝑙𝑛𝜖𝑖𝑗𝑡1: logarithm of GHG emissions per worker in the initial time, in sector i of country j; 

𝛾 = 𝑒−𝜑𝜏: parameter used for estimating the convergence rate; it measures the impact that the initial 

emission has on the current multi-sectorial level; 

𝛽1 = (1 − 𝑒−𝜑𝜏)
𝛼

1−𝛼
: elasticity of the savings rate on the emissions; 

𝛽2 = (1 − 𝑒−𝜑𝜏)
𝛼

1−𝛼
: elasticity of population growth, technology and depreciation rate; 

𝑥𝑖𝑗𝑡
1 = ln(𝑠𝑖𝑗): logarithm of the savings rate; 

𝑥𝑖𝑗𝑡
2 = ln(𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗): logarithm of the population growth rate, technology and depreciation; 

𝜋𝑡 = ⁡𝑔(𝑡2 − 𝑒−𝜑𝜏𝑡1): effect of  technical progress at the time, modeled with a set of temporal 

dummies; 

𝜃𝑖 = (1 − 𝑒−𝜑𝜏)𝑙𝑛𝐴0: sectorial fixed effect; 

𝜗𝑖𝑗𝑡: idiosyncratic perturbation term that varies among sectors, countries and time. 

A dynamic panel estimation enables the control of the results of conditional convergence in 

the emissions of GHG by observable and unobservable effects specific for each sector in each 

country in the sample composed of 39 countries in the 1996-2007 period. 

 

3.1 A panel data approach 

 

The main issue here in Eq. (10) is how to model specific effects of each sector in each 

country. Three techniques were used: the first considers the sector-specific effects as random (GLS-

RE), while the others considers these effects as fixed. Finally, and given the possible endogeneity of 

a lagged dependent variable, a GMM is used. The first estimator supposes, by construction, which 

the random effect is uncorrelated with other explanatory variables in the model (10). The second 

approach estimates fixed effects (FE) via dummies, as in Islam (1995), a specific-sector effect, 

allowing its correlation with other explanatory variables. The third estimator uses the lag-dependent 

variable as instruments to control a possible endogenous effect. 

The identification hypothesis from the FE model is: the absence of a serial correlation 

between the idiosyncratic error and the explanatory variables plus the fixed effect, that is, strict 

exogeneity, 𝐹𝐸1: 𝐸[𝜗𝑖𝑡|𝑥𝑖𝑗 , 𝜃𝑖] = 0; Full rank, that is, the variables vector x must have an inverse 

𝐹𝐸2: 𝑟𝑎𝑛𝑘𝐸[𝑥𝑖𝑗′𝑥𝑖𝑗] = 𝑘; Finally, homoscedasticity between individuals in cross-sections is 
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assumed; however, this hypothesis is related to the correlation among the error terms in time, 

𝐹𝐸1: 𝐸[𝜗𝑖𝑡𝜗𝑖𝑡′|𝑥𝑖𝑗 , 𝜃𝑖] = 𝜎2𝜗𝐼𝑡. 

It is expected that the estimated convergence rate, using the model of effects at random, is 

underestimated as the intrinsic country effects are correlated with the explanatory variables. 

Considering the model of FE, the rate must change considerably because the characteristics are 

explicitly modeled. In general, details from both estimates are very well known and may be verified 

in Greene (2000) and Wooldridge (2002).   

In this context, the estimates are not based on Hausman’s test because this research does not 

identify these ad hoc from the right model, rather from an empirical history about a convergence 

hypothesis on per capita carbon dioxide emissions. In addition, in this paper Hausman’s test is not 

essential because each model is estimated for comparative purposes.  

As Eq. (10) has a lagged dependent variable, fixed and random effects estimates can be 

inconsistent given the violation of the hypothesis of strict exogeneity, arising from the correlation 

between the residue and the lagged dependent variable. If the time is long enough, the fixed effects 

via a dummy would not report a biased estimation, but this estimate is performed for 12 years, from 

1996 to 2007, and thus may be influenced by some endogeneity. To account for this, a GMM 

estimator from Arellano and Bond (1991) is used. 

As the lagged variable is a central point in the identification strategy, two time intervals are 

adopted. According to the literature, first one lagged year is used. However, it is possible that one 

year is too short a period to evaluate convergence, so four years are used. 

 

3.2. Sample 

 

The data used in this article were collected in WIOD (2015) – Timmer et al. (2015), a recent 

database, which as well as enabling new economic analysis via input-output models, also brings 

together a set of information for multi-sectorial econometric analysis. In this work, we use two 

WIOD’s annexes. The first has socioeconomic information on the number of workers, capital stock 

and depreciation rate for the 39 sectors of 40 countries listed in this dataset. 

WIOD has data available for the 27 EU-economies, and the 13 largest economies around the 

world, covering all Continents around the globe. Nevertheless, the base still has some incomplete 

data, which have resulted in the exclusion of some cross-section units: as is the case of inter-

sectorial employment in China, excluded from the sample. Moreover, we decided not to use the 

"Rest of the World" as a unit of analysis. 
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To compute the savings rate in (10), it is supposed that all savings are automatically 

transformed into investment. In this case, we estimate the savings rate isolating investment, I, in 

(11), and normalizing by income: 

 

𝐾𝑖𝑗𝑡
= (1 − 𝛿𝑖𝑗)𝐾𝑖𝑗𝑡−1

+ 𝐼𝑖𝑗𝑡.                                                     (11) 

 

Depreciation rates are different for each of the 39 sectors and were considered when 

calculating the savings rate following the description in Timmer et al. (2015). Regarding population 

growth rate, n, we used a proxy variable defined by the growth rate of the labor force. Moreover, a 

rate of technical progress was used, g, 4% (standard in the empirical literature). Thus, we have 

(𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗) in (10). 

All inventory data and capital investment are at 1995 prices, deflated according to Timmer 

et al. (2015). This approach has two drawbacks: 2.1% of the observations for the savings rate varied 

negatively in the period, i.e. there was disinvestment. To estimate (10) we must linearize (3), and 

thus, we consider divestment as zero savings; nevertheless, we use employment data to compute n. 

Thus, 5.32% of the observations had a negative change in (𝑛𝑖𝑗 + 𝑔𝑖𝑗 + 𝛿𝑖𝑗), given the high 

unemployment rate from one year to another in countries such as Latvia. In these cases, the 

observations were excluded.  

The second annex includes environmental information, the GHG emissions in tons per 

sector over 1995 and 2007. To represent them, we selected the following gases: methane emissions 

CH4; carbon monoxide CO; CO2 emissions by sector; and the emissions relevant energy use, 

which represent some of the gases most responsible for climate change (IPCC, 2014). 

Once again, we faced problems with data limitation as some sectors had no information 

record and were excluded. In total, beside the full sectorial WIOD sample (14,553 observations in 

the series of emission relevant energy use; 15,432 in CO2 emissions; 15,443 in CH4; 15,048 in 

CO), which are already aggregates for cross country comparison, we aggregate the WIOD sectors in 

the following samples: 

Sample-A – [1] Agriculture, Hunting, Forestry and Fishing + [2] Food, Beverages and Tobacco – 

948 observations (emissions for energy use), 924 (CO2 and CH4), 912 (CO);  

Sample-B – [6] Mining and Quarrying + [7] Wood and Cork + [8] Coke, refined petroleum and 

nuclear fuel + [9] Chemicals + [10] Rubber and plastics + [11] Other non-metallic mineral – 2.808 

(emissions for energy use), 2.784 (CO2), 2.776 (CH4), 2.712 (CO); 
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Sample-C – [3] Textiles and textile + [4] Leather, and footwear + [5] Pulp, paper, printing and 

publishing – 1.404 (emissions for energy use), 1.356 (CO2 and CO), 1.352 (CH4); 

Sample-D - [12] Basic metals and fabricated metal + [13] Machinery + [14] Electrical and optical 

equipment + [15] Transport equipment + [16] Manufacturing nec, recycling + [16] Electricity, gas 

and water supply + [17] Construction – 3.288 (emissions for energy use), 3.240 (CO2), 3.232 

(CH4), 3.216 (CO); 

Sample-E – [18] Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of fuel 

+ [19] Wholesale trade and commission trade + [20] Retail trade, except of motor vehicles and 

motorcycles; repair of household goods + [21] Hotels and restaurants + [22] Inland transport + [23] 

Water transport + [24] Air transport + [25] Other supporting and auxiliary transport activities; 

activities of travel agencies; [26] Post and Telecommunications + [27] Financial intermediation + 

[28] Real estate activities + [29] Renting and other business activities + [30] Public administration + 

[31] Education + [32] Health and social work + [33] Other personal services + [34] Domestic 

services – 7,476 (emissions for energy use), 7.176 (CO2), 7.188 (CH4), 6.900 (CO). 

Therefore, Sample-A consists of sectors related to production and industrialization of food; Sample-

B is the extractive industry; Sample-C is the non-durable goods industry; Sample-D consists of sectors of 

durable goods; and Sample-E are all services. Finally, 144 regressions for these 6 sample sets were done and 

the main results are presented below. 

 

4. Results 

 

Table 1 shows the estimated parameters of RE, FE, and GMM for the whole sample. First, 

considering one lag, both models correctly predict the signs of parameters associated with the 

savings rate, population, depreciation and technical progress growth rates. The statistical 

significance in most of them also suggests that they are important in explaining emissions 

variations. Note, however, that they fail to be statistically identical, as required by the canonical 

Solow model1. 

Regarding convergence, the GLS estimator of RE reports low rates resulting in a long time-

horizon for convergence in both pollutants. Note that the use of FE and GMM increased the rate of 

convergence in all gases, making it statistically equivalent in number of years. Both returned a time 

of 4-6 years for convergence in the emissions of CO2, about 5-3 in CH4, and approximately 2-3 

years for CO. Regarding emissions relevant energy use, the largest source of GHG, the convergence 

                                                           
1 The entire sample set was estimated restricting the parameters of the savings and population growth rates to be 

statistically identical, as the Solow model predicts. However, the results in terms of convergence were similar, and are 

not presented. 
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rate was significant only in models of random and fixed effects. From the GMM estimate, there is 

no evidence of convergence in the whole sample. 

 

Table 1 – Results for the whole sample 1996 – 2007. 

A – with k=1 

  Random effects Fixed effects GMM 

Regressors 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

ln(yt-n) 0.9933 0.9995 0.9997 0.9793 0.7143 0.7497 0.7342 0.5109 0.0976 0.6736 0.5373 0.3847 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.102] [0.000] [0.000] [0.000] 

ln(s) 0.0209 0.0185 0.0014 0.0136 0.0307 0.0075 0.0147 0.0269 0.0423 0.0069 0.0046 -0.0192 

 

[0.000] [0.000] [0.649] [0.007] [0.025] [0.065] [0.005] [0.002] [0.452] [0.1551] [0.385] [0.073] 

ln(n+d+g) -0.0630 -0.0789 0.0120 -0.0976 -0.0536 -0.0711 0.0132 -0.6972 -0.0375 -0.0591 0.0025 -0.0762 

 

[0.000] [0.000] [0.020] [0.000] [0.000] [0.000] [0.016] [0.000] [0.000] [0.000] [0.654] [0.000] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0029 0.0002 0.0001 0.0091 0.1461 0.1251 0.1342 0.2916 - 0.1716 0.2698 0.4149 

Time (years) 236.35 346.83 531.30 76.45 4.74 5.54 5.17 2.38 - 4.04 2.57 1.67 

B – with k=4 

ln(yt-n) 0.9384 0.9334 0.9672 0.8684 0.0179 0.1288 0.1591 -0.2170 -0.1618 -0.0004 0.0159 -0.0168 

 

[0.000] [0.000] [0.000] [0.000] [0.672] [0.000] [0.000] [0.000] [0.278] [0.976] [0.358] [0.000] 

ln(s) 0.0476 -0.0431 0.0209 -0.0193 0.0304 0.0013 0.0379 0.0423 0.0026 0.0035 0.0057 -0.0370 

 

[0.014] [0.959] [0.014] [0.179] [0.134] [0.869] [0.000] [0.006] [0.718] [0.576] [0.389] [0.018] 

ln(n+d+g) -0.0569 -0.0608 0.0163 -0.0690 -0.2217 -0.0423 0.0078 -0.0456 -0.0433 -0.0677 0.0050 -0.5462 

 
[0.000] [0.000] [0.077] [0.000] [0.039] [0.000] [0.237] [0.000] [0.000] [0.000] [0.464] [0.000] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0092 0.0100 0.0048 0.0204 - 0.2967 0.2662 - - - - - 

Time (years) 75.35 69.47 143.57 33.93 - 2.34 2.60 - - - - - 

*P-values between brackets. *Convergence rate was estimated only for significant parameters. 

 

The convergence evidence with a lag of four years is not strong. First, it fails to estimate the 

correct signals for the controls, s, and n+d+g, for some pollutants. This pattern also appears in other 

samples. Furthermore, 7 of the 12 models reported statically significant convergence rates. It is 

important to note that even the estimator RE reported higher rates, 11 to 47 years convergence for 

all pollutants. The FE estimates report high rates of CO2 and CH4 emissions, resulting in less than 

three years for convergence. The GMM did not report statistically significant rates for any of the 

GHG. Therefore, for the full sample we found moderate evidence of convergence in per capita 

emissions of CO2, and CH4 because FE reported parameters that were statistically significant in 

both time-intervals. 

The same result for the controls was observed in Sample-A which includes agriculture and 

food industrial sectors (Table 2). GMM and FE models estimated similar parameters showing a 

tendency of convergence with one lag. With a time interval of four years, the emissions per energy 

use and carbon monoxide emissions presented weak evidence of convergence (statistically 
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significant only with RE), while evidence for CO2 emissions was moderate (reported by FE). We 

found strong evidence of CH4 emissions among sectors of Sample-A, less than two (with k=1) and 

less than two years (with k=4) as GMM and FE shown statistically significant convergence rates. 

  

Table 2 – Results for sample-A 1996 – 2007. 

A – with k=1 

  Random effects Fixed effects GMM 

Regressors 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

ln(yt-n) 0.9873 0.9828 1.0011 0.9720 0.4548 0.7901 0.7728 0.4449 0.1503 0.6462 0.5078 0.3251 

 
[0.000] [0.000] [0.000] [0.000] [0.004] [0.000] [0.000] [0.000] [0.014] [0.000] [0.005] [0.000] 

ln(s) 0.0192 0.0048 0.1370 -0.0073 0.0171 0.0178 0.0038 0.0032 0.0316 0.0379 -0.0116 -0.1981 

 

[0.057] [0.830] [0.158] [0.804] [0.553] [0.517] [0.771] [0.959] [0.196] [0.411] [0.581] [0.134] 

ln(n+d+g) -0.0518 -0.0613 0.0098 -0.0815 -0.0516 0.6243 0.0107 -0.0741 -0.0424 -0.0561 0.0053 -0.0474 

 

[0.000] [0.000] [0.0876] [0.008] [0.000] [0.007] [0.0973] [0.018] [0.000] [0.000] [0.305] [0.138] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0055 0.0075 - 0.0123 0.3422 0.1023 0.1119 0.3517 0.8230 0.1896 0.2943 0.4880 

Time (years) 125.17 92.15 - 56.20 2.03 6.77 6.19 1.97 0.84 3.66 2.35 1.42 

B – with k=4 

ln(yt-n) 0.8991 0.8482 0.9975 0.8981 -0.0569 0.2453 0.3873 -0.4058 -0.0249 0.0637 0.0336 -0.5481 

 

[0.000] [0.000] [0.000] [0.000] [0.367] [0.031] [0.000] [0.0001] [0.474] [0.2335] [0.000] [0.000] 

ln(s) 0.0622 0.0376 0.0373 -0.0317 -0.0037 0.0798 0.0372 -0.0075 0.0070 0.4458 -0.0056 -0.3568 

 

[0.162] [0.472] [0.308] [0.798] [0.942] [0.145] [0.1881] [0;960] [0.780] [0.446] [0.880] [0.012] 

ln(n+d+g) -0.0529 -0.4067 0.0036 0.0053 -0.0360 -0.0388 0.0087 -0.2793 0.3437 -0.0547 0.0037 -0.0116 

 
[0.000] [0.023] [0.7772] [0.910] [0.000] [0.000] [0.221] [0.533] [0.000] [0.000] [0.385] [0.629] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0154 0.0238 0.0004 0.0156 - 0.2034 0.1373 - - - 0.4912 - 

Time (years) 45.03 29.09 1912.84 44.57 - 3.41 5.05 - - - 1.41 - 

*P-values between brackets. *Convergence rate was estimated only for significant parameters. 

 

Methane, CH4, is present in most of the nitrogen fertilizers used in agriculture. Since the 

increased use of GM seeds in the 1990s in particular, agricultural techniques have been 

standardized around the world, and now peasants and farmers have to follow a rigorous process of 

fertilizer application (and cultivation, in general) recommended by the producers of the seeds. This 

might help explain this strong evidence of convergence in CH4 in the agricultural sector. 

Table 3 shows the results for Sample-B, the Mining industry. The number of times that the 

signal of each control-variable was predicted incorrectly increased, whereas the statistical 

significance decreases. The RE model incorrectly predicts convergence in the emission of CO2 and 

CH4 with a one year lag, but reported significant estimates with k=4. Regarding FE, it found 

evidence of convergence for GHG with k=1, but only for the emissions for energy use and CH4 

with a time interval of four years. Note that this macro-sector includes the largest global pollutants: 

the mineral extraction activities, wood, and the petrochemical industry. Even so, a high rate of 
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convergence in emissions relevant for energy use was found in the FE model, from 7 to less than 1 

year, depending on the time horizon. However, as these are the major pollutants, their rates are even 

higher in an eventual steady-state. 

 

Table 3 – Results for sample-B 1996 – 2007. 

A – with k=1 

  Random effects Fixed effects GMM 

Regressors 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

ln(yt-n) 0.9915 1.0003 1.0001 0.9716 0.7880 0.7819 0.7398 0.4937 0.0229 0.7022 0.3220 0.2823 

 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.648] [0.044] [0.001] [0.000] 

ln(s) 0.0327 0.0242 0.0094 0.0264 0.0209 0.1056 0.0185 0.0413 0.0128 -0.0283 -0.0039 -0.0544 

 

[0.06] [0.0584] [0.205] [0.109] [0.206] [0.289] [0.125] [0.101] [0.449] [0.847] [0.768] [0.033] 

ln(n+d+g) -0.0603 -0.0920 

-

0.0030 -0.1030 -0.0550 -0.0794 

-

0.0088 -0.0618 -0.0321 -0.0596 -0.0083 -0.0510 

 
[0.000] [0.000] [0.832] [0.000] [0.000] [0.000] [0.535] [0.000] [0.000] [0.000] [0.387] [0.001] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0037 - - 0.0125 0.1035 0.1069 0.1309 0.3065 - 0.1536 0.4922 0.5492 

Time (years) 186.75 - - 55.48 6.70 6.49 5.29 2.26 - 4.51 1.41 1.26 

B – with k=4 

ln(yt-n) 0.8282 0.9440 0.9783 0.8225 0.1578 0.0603 0.0864 -0.2993 -0.0068 -0.0489 -0.0252 -0.3015 

 

[0.000] [0.000] [0.000] [0.000] [0.008] [0.218] [0.382] [0.000] 0.7950 [0.258] [0.0731] [0.000] 

ln(s) 0.0155 -0.0093 0.0459 0.0061 -0.0674 -0.0139 0.0331 0.0724 -0.0087 -0.0097 0.0010 -0.1191 

 

[0.615] [0.716] [0.019] [0.905] [0.823] [0.469] [0.129] [0.084] [0.694] [0.527] [.0.946] [0.002] 

ln(n+d+g) -0.0565 -0.0977 
-

0.0168 -0.0542 -0.0472 -0.0671 
-

0.0121 -0.0421 -0.0327 -0.0644 -0.0063 -0.0380 

 
[0.000] [0.000] [0.408] [0.087] [0.001] [0.002] [0.358] [0.048] [0.000] [0.000] [0.654] [0.048] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0273 0.0083 0.0032 0.0283 0.2673 - 0.3545 - - - - - 

Time (years) 25.40 83.10 218.25 24.50 2.59 - 1.96 - - - - - 

*P-values between brackets. *Convergence rate was estimated only for significant parameters. 

 

There is no evidence of convergence in GHG emission in the GMM model with k=4, only 

with k=1. In this case, the high value of convergence rates is noteworthy, following previous 

results. It is also interesting to note the increase in the convergence rate of emissions for energy use 

in the RE and FE models, which changed from 0.0037 to 0.0819, and 0.1035 to 0.8019, 

respectively. 

The estimated behavior follows a different pattern in Sample-C, the Manufacturing of non-

durable goods (Table 4). With RE, and k=4, the convergence rate changes from virtually null values 

to similar results estimated by FE, primarily in the sectorial emissions for energy use, and CO2 

emissions, in general. However, in none of the gases we found strong evidence of convergence, 

only moderate in the emission of CO2 and CH4 (reported only by the FE model). In both cases, the 

time for convergence is less than 6 and 12, with k=1, and less than 4 and 7 with k=4. 
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Table 4 – Results for sample-C 1996 – 2007. 

A – with k=1 

  Random effects Fixed effects GMM 

Regressors 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

ln(yt-n) 0.9950 0.9950 1.0053 0.9770 0.6042 0.7667 0.8799 0.5442 0.0910 0.4742 0.4898 0.2855 

 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.339] [0.008] [0.000] [0.000] 

ln(s) 0.0268 0.0099 0.0024 0.0074 0.0028 0.0040 -0.0051 -0.0088 -0.0064 -0.0025 -0.0147 -0.0144 

 

[0.006] [0.260] [0.819] [0.627] [0.796] [0.737] [0.686] [0.631] [0.373] [0.8122] [0.292] [0.424] 

ln(n+d+g) -0.0419 -0.0391 0.0464 -0.0761 -0.0358 -0.0449 0.0392 -0.0714 -0.0291 -0.0345 0.0231 -0.0591 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.001] [0.001] [0.000] [0.078] [0.001] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0022 0.0022 - 0.0101 0.2188 0.1154 0.0556 0.2642 - 0.3240 0.3100 0.5444 

Time (years) 315.87 317.77 - 68.59 3.17 6.01 12.47 2.62 - 2.14 2.24 1.27 

B – with k=4 

ln(yt-n) 0.8002 0.8532 1.0001 0.8173 0.0089 0.2145 0.3612 -0.2675 0.0635 -0.0209 0.0171 -0.3572 

 

[0.000] [0.000] [0.000] [0.000] [0.902] [0.003] [0.000] [0.005] [0.224] [0.657] [0.684] [0.000] 

ln(s) 0.0251 0.0098 0.0308 0.0049 0.0032 -0.0008 0.0473 0.0221 -0.0099 0.0005 -0.0065 -0.0302 

 

[0.226] [0.612] [0.237] [0.885] [0.825] [0.962] [0.093] [0.476] [0.216] [0.967] [0.782] [0.123] 

ln(n+d+g) -0.0282 -0.0675 0.0532 -0.0224 -0.0042 -0.0375 0.0920 -0.0335 -0.0238 -0.0350 0.0121 0.0051 

 
[0.082] [0.000] [0.019] [0.517] [0.773] [0.006] [0.613] [0.240] [0.086] [0.001] [0.428] [0.851] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0323 0.0230 - 0.0292 - 0.2229 0.1474 - - - - - 

Time (years) 21.48 30.17 - 23.73 - 3.11 4.70 - - - - - 

*P-values between brackets. *Convergence rate was estimated only for significant parameters. 

 

Regarding GMM, there is only statically significant evidence of convergence with a time lag 

of 1 year. It is also appropriate to note that in this case, the parameters associated with the savings 

rate were biased, with the opposite sign, in all greenhouse gases. In both cases, however, the 

estimated time for convergence is less than 3 years. 

A similar biased pattern occurs in the GMM estimate of the Sample-D, the Manufacturing of 

"durable goods" industry (Table 5), and only CH4 and CO parameters are statistically significant 

with k=1. FE and RE estimations shown statically significant convergence rates for all GHG. As 

expected RE found low rates of convergence, while the control of the specific characteristics of 

sectors increases evidence of convergence. However, with k=4, we found moderate evidence of 

convergence in CH4 per capita emissions, less than 1 year. 

In both industrial sectors (sample C, and D), the percentage of times that models predicts the 

parameters of savings, population, technical change, and depreciation rates incorrectly increased 

considerably, which may suggest that our Solow-type specification is not the best to model GHG 

emissions in such sectors. However, this pattern is now present in RE and FE models.  
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Table 5 - Results for sample-D 1996 – 2007. 

A – with k=1 

  Random effects Fixed effects GMM 

Regressors 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

ln(yt-n) 0.9944 0.9948 0.9971 0.9791 0.5594 0.6527 0.6809 0.5021 0.0832 0.1904 0.3684 0.3293 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.148] [0.360] [0.001] [0.000] 

ln(s) 0.0014 0.0066 -0.0116 -0.0179 0.0059 0.0966 0.0249 0.0732 -0.0159 -0.0087 0.0143 -0.1026 

 
[0.867] [0.526] [0.436] [0.439] [0.642] [0.575] [0.281] [0.049] [0.427] [0.529] [0.418] [0.070] 

ln(n+d+g) -0.0597 -0.0734 0.0197 -0.0751 -0.0542 -0.0636 0.0241 -0.0544 -0.0223 -0.0378 0.0091 -0.0559 

 

[0.000] [0.000] [0.060] [0.000] [0.000] [0.000] [0.015] [0.003] [0.003] [0.000] [0.285] [0.004] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0024 0.0023 0.0013 0.0092 0.2523 0.1853 0.1669 0.2992 - - 0.4337 0.4824 

Time (years) 284.97 303.21 540.23 75.60 2.75 3.74 4.15 2.32 - - 1.60 1.44 

B – with k=4 

ln(yt-n) 0.9394 0.9219 0.9254 0.8606 0.0437 0.0850 0.1930 -0.1169 0.0061 -0.0584 -0.0047 -0.1525 

 

[0.000] [0.000] [0.000] [0.000] [0.429] [0.232] [0.011] [0.160] [0.794] 0.0770 [0.865] [0.012] 

ln(s) -0.0319 -0.0294 -0.0012 -0.0287 -0.0267 -0.0169 0.0659 0.0998 -0.0276 -0.0144 0.0158 -0.1386 

 

[0.280] [0.361] [0.975] [0.548] [0.2760] [0.5553] [0.087] [0.098] [0.244] [0.354] [0.438] [0.052] 

ln(n+d+g) -0.0706 -0.0560 0.0151 -0.0801 -0.0401 -0.0443 0.0122 -0.0586 -0.0323 -0.0412 0.0013 -0.0571 

 

[0.000] [0.000] [0.477] [0.001] [0.000] [0.000] [0.262] [0.005] [0.005] [0.000] [0.838] [0.014] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0091 0.0118 0.0112 0.0217 - - 0.2382 - - - - - 

Time (years) 76.54 58.87 61.78 31.89 - - 2.91 - - - - - 

*P-values between brackets. *Convergence rate was estimated only for significant parameters. 

 

Regarding Services sector, Sample-E, the parameters of the neoclassical model were 

correctly estimated in both time intervals. The GLS estimator of RE tends to show low convergence 

rates with k=1, increasing with the rise in the time interval, which in turn, resulted in a marked 

decrease in the time of convergence for all pollutants. Note that the time for convergence varies 

from less than 25 to 12 years in the RE model. 

GMM and FE models shown high rates of convergence when considering the interval of one 

year, approaching steady-state in about 2-7 years for each gas. With a four-year lag, only the 

emission of CO2 and CH4 are statistically significant in the FE model, and CH4 in GMM. It is 

surprising that in both cases, the speed of convergence is less than one year, for the period 

immediately prior to the global economic crisis of 2008. 
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Table 6 - Results for sample-E 1996 – 2007. 

A – with k=1 

  Random effects Fixed effects GMM 

Regressors 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

Energy 

Use CO2 CH4 CO 

ln(yt-n) 0.9900 0.9937 0.9981 0.9786 0.7516 0.7869 0.7415 0.5090 0.3383 0.6769 0.5155 0.4856 

 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.006] [0.000] [0.000] [0.000] 

ln(s) 0.0322 0.0195 -0.0016 0.0186 0.0437 0.0058 0.0109 0.0273 0.0084 0.0054 0.0047 -0.0054 

 

[0.000] [0.000] [0.614] [0.002] [0.055] [0.224] [0.080] [0.010] [0.204] [0.273] [0.377] [0.616] 

ln(n+d+g) -0.0765 -0.0913 0.0054 -0.0113 -0.0584 -0.0849 0.0112 -0.0872 -0.0570 -0.0752 0.0024 -0.1174 

 

[0.000] [0.000] [0.528] [0.000] [0.001] [0.000] [0.219] [0.000] [0.000] [0.000] [0.800] [0.000] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0044 0.0027 0.0008 0.0094 0.1240 0.1041 0.1299 0.2933 0.4707 0.1695 0.2878 0.3137 

Time (years) 158.14 252.14 817.68 73.68 5.59 6.66 5.34 2.36 1.47 4.09 2.41 2.21 

B – with k=4 

ln(yt-n) 0.9386 0.9206 0.9550 0.8768 -0.0509 0.1708 0.1348 -0.2444 -0.0372 0.0072 0.0509 -0.0942 

 
[0.000] [0.000] [0.000] [0.000] [0.430] [0.002] [0.002] [0.000] [0.013] [0.743] [0.023] [0.034] 

ln(s) 0.0365 0.0011 0.0046 -0.0182 0.0578 0.0055 0.0203 0.0294 0.0049 0.0015 0.0062 -0.0125 

 
[0.059] [0.991] [0.632] [0.296] [0.095] [0.574] [0.046] [0.097] [0.519] [0.818] [0.340] [0.421] 

ln(n+d+g) -0.0522 -0.0333 0.0262 -0.0764 0.0077 -0.0221 0.0127 -0.0477 -0.0510 -0.0772 0.0050 -0.1188 

 
[0.010] [0.061] [0.083] [0.002] [0.781] [0.046] [0.00] [0.010] [0.000] [0.000] [0.573] [0.000] 

Temporal dummy Yes Yes Yes Yes Yes Yes Yes Yes No No No No 

Convergence 0.0092 0.0120 0.0067 0.0190 - 0.2558 0.2901 - - - 0.4310 - 

Time (years) 75.52 57.87 103.99 36.41 - 2.71 2.39 - - - 1.61 - 

*P-values between brackets. *Convergence rate was estimated only for significant parameters. 

 

We found moderate evidence of convergence in CO2 emissions in the Services sector (RE 

and FE models), while for CH4 the evidence of convergence is strong, as shown in the model 

estimated using the generalized method of moments of Arellano and Bond (1991). For the 

emissions relevant for energy use and carbon monoxide the evidence is weak, since RE estimates 

report low convergence rates. 

 

5. Conclusions 

This article focused on the empirical estimation of the convergence hypothesis of 

greenhouse gases emissions, a test of interest to many works in the environmental economics 

literature. An understanding of the dynamics of major pollutants is critical to the adoption of 

appropriate policies related to global warming. Many models of computable general equilibrium are 

used to estimate future trends for climate change and they assume a certain degree of convergence 

between countries and sectors. If however, per capita emissions are not converging, these models 

can be seriously incorrect, generating bad environmental policy recommendations. 
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In this study we contribute to the literature in three respects. First, possible inconsistencies in 

the estimation of the convergence hypothesis are controlled using robust estimators for panel data, 

as the fixed effects and a GMM of Arellano and Bond (1991). This procedure demonstrates that the 

convergence rate rises significantly compared to conventional estimates, such as POLS or GLS of 

random effect, the latter used in this work.  

We found evidence of convergence for large data samples, for instance in our sample that 

includes all sectors of WIOD, more than 14 553 observations distributed in 39 countries. Unlike in 

previous literature, this evidence seems to be regardless to the sample size, even when the GLS of 

random effects is used in the estimate. Finally, we expanded our analysis to other greenhouse gases, 

not only cross-country data on CO2 emissions. We use the emissions relevant for energy use - 

major source of global warming, methane emissions, CH4, and monoxide carbon emissions, CO.  

 As expected, the result was very heterogeneous across sectors and among pollutants.  

Robust evidence of convergence in CH4 emissions was found in Agriculture and Food Industry 

(Sample-A), and in the Service macro sector (Sample-E) as shown by our three estimators (RE, FE, 

and GMM). The result is valid in both time-intervals, four and one year, for the lag in the rate of 

convergence. The fixed effects estimate also suggests convergence in CH4 emissions in the Mining 

industry (Sample-B), Manufacturing industry of durable goods (Sample-D), and non-durable goods 

(Sample-C). 

Carbon dioxide emissions performed more moderately because random and fixed effect 

models only the reported statistically significant estimates in samples E, and C. We also found 

moderate evidence in the sample that includes all sectors of WIOD. However, emissions for energy 

use, mostly non-renewable, were found in the samples B and D. For carbon monoxide emissions, 

we found weak evidence of convergence because only the estimator random effects tends to report 

statistically significant parameters and low convergence rates. However, given the violation of the 

strict exogeneity assumption of this estimator, it is more accurate to assert that there was perhaps no 

evidence of convergence on the use of this pollutant in any sample set estimated. 

Furthermore, although this work advances empirical evidence on the hypothesis of 

convergence in GHG emissions, building a multi-sectorial panel data using the data from WIOD, it 

must be noted that the conclusions are valid in a small time horizon, 11 years. In particular, the 

consideration of one lag to test convergence, as adopted in the literature, may be insufficient for a 

consistent empirical evaluation. Perhaps for this reason, we found high rates of convergence in 

almost all gases with n = 1. Such a result, however, tends to be only valid for some pollutants when 

the time horizon is enlarged, n=4. Despite this, we can only say that the evidence in terms of per 
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capita convergence was found for some greenhouse gases and are distributed very heterogeneously 

among sectors. 
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