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1 Introduction

The issue of protection of intellectual property rights (IPR) through patents presents the

policymaker with a tradeoff. This can be understood as one of comparing the ineffi ciency

arising frommarket power with that arising from insuffi cient incentives for technical progress.

Part of the literature on IPR protection (including, for instance, Tandon, 1982; Judd,

1985; and Gilbert and Shapiro, 1990) concludes that an infinite patent length is socially op-

timal. A more recent and larger portion of this broad literature (see, for instance, Horowitz

and Lai, 1996; Koléda; 2004; Horii and Iwaisako, 2007; Futagami and Iwaisako, 2007; Fu-

rukawa, 2007; Bessen and Maskin, 2009; and Chen and Iyigun, 2011), though, makes the

case for finite-term patents.

Nevertheless, two papers in this more recent strand of the literature (Kwan and Lai,

2003; Cysne and Turchick, 2012), using a horizontal innovation R&D model, point back

in the direction of the results obtained in the 1980’s and 1990. There, a "lab-equipment"

endogenous growth model (Rivera-Batiz and Romer, 1991) coupled with an exogenous imita-

tion rate is solved in an analytical, exact fashion. That solution is applied to study the policy

tradeoffbetween weaker levels of IPR protection (which boost consumption in the short run)

and stronger levels (which aid growth). The latter of these two papers shows that, under

logarithmic utility, this tradeoff has a "corner solution", in the sense that the government

should necessarily choose to prescribe and seek to enforce an infinite patent length. That is,

the "static effi ciency" / "short term" / "level of GDP" view in the optimal IPR protection

policy debate (more protection resulting in greater monopoly rents and deadweight losses

and lower current production and consumption levels) would be dominated by the oppos-

ing "dynamic effi ciency" / "long term" / "growth of GDP" view (more protection boosting

technology-based growth and thus yielding higher future consumption levels).

In these works, a simplification proposed in Romer (1990) is in order: the R&D sector

(which produces designs for new capital goods) and the intermediate sector (which employs

2



these designs to produce capital goods) can be amalgamated. That is, the inventor and

the producer of a specific capital good can be interpreted as the same firm. However, in

these works, the only instrument government has in order to curtail monopoly power is

the adjustment of patent length (or some policy variable assumed to move one-to-one with

length).

The present work recognizes that the issue of optimal IPR protection is not unidimen-

sional. Here, as in Rivera-Batiz and Romer (1991), R&D firms seek to protect their intel-

lectual property through patents, and license these patents to the producers of intermediate

goods, who belong to a different sector of the economy. IPR protection can be affected not

only through patent length regulation, but also patent breadth. Licensing fees provide a

simple and direct way to measure patent breadth. In fact, when breadth is set at a higher

(lower) level, inventors’fear of erosion of their monopoly power through legally successful

imitation is reduced (increased), and are therefore able to extract more (less) rent, charging

a higher (lower) fee.

Our baseline scenario is one in which the government is able to adjust the level of patent

breadth, alongside with patent length, through specific IPR protection policy. Other works

addressing the issue of the optimal level of patent breadth (in different growth models) are

Gilbert and Shapiro (1990), Klemperer (1990), Li (2001), Goh and Olivier (2002), Furukawa

(2007) and Chu and Furukawa (2011). Here it will be shown that, although the same

short-run-vs.-long-run tradeoff mentioned for patent lengths is also present in the choice of

optimal breadths, there is not a single view that should be prevalent in the determination of

the optimal mix of IPR protection policies. While the dynamic effi ciency view should still

be dominant in the choice of the level of patent length (even if there is room to raise IPR

protection in terms of breadth instead), both the dynamic and the static effi ciency views

will be important in the determination of patent breadth. By lowering patent breadths,

government is able to trade offa modest negative long-term effect on growth for a substantial

positive short-term effect on consumption.
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An alternative scenario would be one in which setting patent length or breadth to some

specific level is beyond the capacity of the policymaker, and is actually done by judges and

justices, given their level of discretion and/or whatever constraints entering their decision

problem, such as jurisprudence. In either case, it will be shown that, by enacting specific

regulations in the R&D and in the capital goods sectors, the decentralized economy can

generate a socially optimal allocation.

A delicate issue in this type of model is that of time consistency. Once a high level of

IPR protection is granted, a myopic government may be tempted to break patents, thus

collecting not only the long-run benefits, but also the short-run ones. In order to treat this

issue, we also analyze equilibria where the optimal mix of IPR protection policies is invariant

with respect to the current mix. As explained above, this will actually be a restriction on

the model’s set of equilibria only along the breadth dimension.

The model is introduced in the next section. In section 3 we solve (in an exact fashion,

no linearizations involved) for the equilibrium path, and verify that the present model allows

for a rigorous presentation of the IPR protection tradeoff faced by the policymaker with

respect to patent breadth. In section 4, the exact solution found in the previous section will

be applied in order to discuss optimal levels for patent length and breadth. Section 5 deals

with the intertemporal consistency issue of IPR protection policies, while section 6 deals

with the issue of social optimality of the decentralized equilibrium. Section 7 concludes.

2 The model

The present R&D endogenous growth model is based on Kwan and Lai (2003) and Gancia

and Zilibotti (2005, section 2.3). The main addition to their story will be that innova-

tors/inventors may choose to license their patents.
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Households maximize

U =

∫ ∞
0

e−ρt log ctdt

subject to ḃt = wt+rtbt−ct, where consumption c is in terms of the final good, w is the wage

(labor is inelastically supplied to the final-good sector), r is the rate of return on assets held

b, given b0 and the usual no-Ponzi game condition. This yields the standard Euler equation

γ := ĉ = r − ρ (1)

(throughout the paper, "ˆ" will stand for growth rate), as well as the transversality condition

r > γ (innocuous since ρ > 0).

Firm i ∈ I produces final goods according to the homogeneous production function

Yi = L1−αi

∫ A

0

xαi,jdj,

where Li is labor input (inelastically supplied and constant over time), xi,j is the quantity of

index-j intermediate good being used as input, α ∈ (0, 1) and A is the measure of existing

intermediate goods. In order to maximize profit 1Yi−wLi−
∫ A
0
pjxi,jdj, the demand of firm

i for capital good j satisfies

xi,j = Li

(
α

pj

) 1
1−α

.

Let

xj :=
∑
i∈I

xi,j = L

(
α

pj

) 1
1−α

, (2)

where L :=
∑

i∈I Li, be aggregate demand for j. Note that xi,j/Li = xj/L, so

Y :=
∑
i∈I

Yi =
∑
i∈I

L1−αi

∫ A

0

(
Lixj
L

)α
dj =

∑
i∈I

Li

∫ A

0

(xj
L

)α
dj = L1−α

∫ A

0

xαj dj.

In order to protect its intellectual property (and subsequent profit), firm j (the inventor
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of intermediate j) has a choice between relying on industrial secrecy or applying for a patent.

As stressed in Lemley and Shapiro (2005), patents are of a probabilistic nature. They only

make it possible for j to sue a competing company who seems to have copied its invention;

they do not guarantee j will win the suit. And once they lose, although the patent is still

there, it becomes useless since j’s market power has eroded anyway. It thus makes sense

thinking of real, effective patent lengths as random variables, even though law prescribes a

nominal, fixed duration.1

Let [0, Ac] be the set indexing capital goods which have been successfully copied (meaning

perfect substitutes are already being legally produced and marketed), while (Ac, A] are those

still being effectively protected. Following Krugman (1979), we assume that the measure Ac

follows

Ȧc = m (A− Ac) , (3)

wherem ≥ 0 is the imitation/patent-termination rate, and A (0) and Ac (0) are given. Patent

termination only occurs when one of the A − Ac currently patented goods gets succesfully

copied.

It may be noted that a patent term T can be associated with m in a natural way. If

m = 0, no imitation ever occurs, and T = ∞. If m > 0, assuming that patent termination

time follows an exponential distribution with parameter m (patents last m−1 on average)

and that innovators are risk neutral, they will be indifferent between the certain profit

stream
∫ T
0
πe−rsds = (π/r)

(
1− e−rT

)
and the average present value of their future prof-

its
∫∞
0

(∫ t
0
πe−rsds

)
me−mtdt = (π/r)

∫∞
0
(1− e−rt)me−mtdt = (π/r) (1−m/ (r +m)) =

π/ (r +m). Equating these two expressions gives2

m =
r

erT − 1 . (4)

1For a similar model with deterministic patent terms, see Iwaisako and Futagami (2003).

2Expression 4 is equivalent to equation 30 in Kwan and Lai (2003).
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Because the imitation rate m is exogenous to the innovator, and does not depend on

his decision between relying on secrecy or applying for a patent and therefore disclosing

its invention (see Gallini, 2002; and Erkal, 2005, for a discussion and treatment of this

possibility), and since there are no costs such as maintenance fees for patents, in equilibrium

the innovator will necessarily apply for a patent. Upon its granting, it may be licensed to

other firms who wish to produce that capital good. The licensees must pay to the licensor

a royalty fee δ > 0 per unit sold of that good during the patent lifetime. This will be our

measure of patent breadth, since more (less) breadth is necessarily associated with a higher

(lower) probability that the inventor will effectively maintain his monopoly power during

the patent lifetime, and hence with the expectation of extracting more (less) monopoly rents

and the charging of a higher (lower) δ.

For the time being, we assume that patents’breadth level belongs to the policymaker’s

toolkit, and can effectively be achieved through patent legislation. It could be argued that,

in reality, to a large extent, patent breadth is determined directly by judges who analyze

suits of violation of IPR, based on the available jurisprudence and/or on their personal views

of fairness (or other personal inclinations), which cannot be altered at the policymaker’s will.

This interpretation will be dealt with in section 6.

The market for capital goods is monopolistically competitive. Firms producing interme-

diate j face the marginal cost 1 + δ, since they must purchase one unit of final good (at a

price normalized at 1) in order to produce one unit of intermediate good, besides paying the

royalty fee δ to firm j (the inventor of intermediate j). Since these capital goods enter the

homogeneous production function of the final goods sector in a symmetric fashion, firm j

must charge the price pj = 1 + δ during the lifetime of the patent, and pj = 1 from that

point on.3 Thus, the quantity demanded of intermediate j in equilibrium, according to (2),

3Becker and Lu (2010) use royalty rate data collected from RoyaltySource and show its positive correlation

with markup, so that royalty rates (whenever the information is available and believed to be reliable) can

also be used as a measure of market concentration.
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is4

xj =

 xc = Lα
1

1−α , if j ∈ [0, Ac]

xm = L
(

α
1+δ

) 1
1−α , if j ∈ (Ac, A]

. (5)

Since there is free entry into the R&D sector, the present value of the returns from

inventing capital good j must equal the cost of invention β > 0. That is, if m = 0, β =∫∞
0
πe−rsds = π/r, and if m > 0, β =

∫∞
0

(∫ t
0
πe−rsds

)
me−mtdt = π/ (r +m). Thus, in

either case, since π = δxm, we get

β = L
δ

r +m

(
α

1 + δ

) 1
1−α

, (6)

whence

r =
L

β
δ

(
α

1 + δ

) 1
1−α

−m. (7)

Therefore this economy presents no transitional dynamics for the interest rate r, which

immediately responds to changes in m and/or δ so that the arbitrage relation (7) remains

valid. Since the value of inventions, π/ (r +m), as a function of δ increases up to δ = 1/α−1

and decreases thereafter (see (6)), a δ > 1/α− 1 policy would never be binding, in the sense

that inventors themselves would prefer to license their inventions for less. Thus, we restrict

attention to the [0, 1/α− 1] interval for the policy variable δ.5

Still because δ (α/ (1 + δ))
1

1−α increases with δ in this interval, equation (7) shows that

greater incentives to potential innovators in terms of a stricter patent protection regulation,
4It should be noted that at the moment j is invented, say at time t1, it equals A (t1). During the lifetime

of its patent it still belongs to the (Ac (t) , A (t)] interval (the second line in (5)), corresponding to the lower,

monopoly production xm. Once its patent becomes ineffective (assuming m > 0), say at time t2, then

j = Ac (t2), and from that point on, we have j ∈ [0, Ac (t)] (the first line in (5)), corresponding to the higher,

competitive production xc.

5This is in agreement with the model in Kwan and Lai (2003) and Cysne and Turchick (2012), where

maximum IPR protection in terms of patent breadths is implicitly assumed: δ = 1/α − 1 ⇒ pj = 1/α and

xm = Lα
2

1−α .
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whether in terms of breadth (a larger δ) or length (a lower m), lead to a higher equilibrium

interest rate, in order to match their proceeds.

Equations (4) and (7) taken together confirm that the patent termination rate m is

negatively correlated with the measure of patent length T . Just rewrite (4) as

T =
1

r
log
(
1 +

r

m

)
=

1

r +m−m log
r +m

m
, (8)

and since r +m has no dependence on m from (7),

∂T

∂m
=
1

r2
log

r +m

m
+
1

r

m

r +m

(
−r +m

m2

)
=
1

r2

(
log
(
1 +

r

m

)
− r

m

)
< 0.

The parameter m can thus be legitimately interpreted as an inverse measure of IPR protec-

tion in terms of patent length (not only the inverse of the first moment of the distribution

of lengths). We may refer to it as the "inverse-length parameter".

The resource constraint of the economy reads

C + βȦ = Y −X, (9)

where C := Lc is aggregate consumption, Y = L1−α
∫ A
0
xαj dj = L1−α (Acx

α
c + (A− Ac)xαm) is

total output and X :=
∫ A
0
xjdj = Acxc+(A− Ac)xm is total intermediate goods production.

It may be noted that, substituting (5) in these expressions, one gets X =

L
(
Acα

1
1−α + (A− Ac) (α/ (1 + δ))

1
1−α

)
≤ L

(
Acα

1
1−α + (A− Ac)α

1
1−α/ (1 + δ)

α
1−α

)
= αY ,

where equality holds only if inventors have no monopoly power at all, that is, δ = 0.
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3 Equilibrium

From (9) and (5) one gets

Â =
L

β

[
Ac
A

(
α

α
1−α − α

1
1−α

)
+
A− Ac
A

((
α

1 + δ

) α
1−α

−
(

α

1 + δ

) 1
1−α
)]
− C

βA
.

Following Kwan and Lai (2003), consider two new variables, a scaled version of consumption,

h := C/ (βA), and the fraction of intermediate goods that have already lost their patents,

g := Ac/A. Differentiating h and g with respect to time and plugging in the expression for

Â yields the model’s equilibrium dynamics:

 ġ = m+ (κ2 −m) g + κ1g
2 + gh

ḣ = (γ + κ2)h+ κ1gh+ h2
, (10)

where κ1 :=
(
1− α + δ − (1− α) (1 + δ)

1
1−α

)
(r +m) / (αδ) and κ2 :=

− (1− α + δ) (r +m) / (αδ) (where r + m comes from (7)). It may be noted that

both κ1 and κ2 are negative.6

If m+ γ > 0, the only possible steady state (corresponding to a balanced growth path in

the original variables of the model) with a positive consumption level (this will be checked

below) is (
g, h
)
=

(
m

m+ γ
,−κ1

m

m+ γ
− γ − κ2

)
. (11)

In case m + γ = 0, since m ≥ 0 and γ ≥ 0, we have m = γ = 0, whence (10) leads to a

continuum of (non-isolated) steady states of the form
(
g, h
)
= (x,−κ1x− κ2) ,∀x ∈ [0, 1].

The assumption of a steady state for h implies that Â is asymptotically equal to γ. Hence

we impose that the parameters are such that r is at least as large as ρ, whence plugging (7)

6For κ2 this is clear. As for κ1, Bernoulli’s inequality gives (1 + δ)
1

1−α > 1 + δ/ (1− α), whence 0 <

− (1− α+ δ) + (1− α) (1 + δ)
1

1−α = −αδκ1/ (r +m), and κ1 is negative indeed.
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into (1) yields a nonnegative growth rate. For the reader’s convenience, we collect this and

all the aforementioned constraints into the feasibility set

F :=

{
(m, δ) ∈ R+ ×

[
δ,
1

α
− 1
]
: m ≤ L

β
δ

(
α

1 + δ

) 1
1−α

− ρ
}
,

where δ ∈ (0, 1/α− 1) is such that (L/β) δ (α/ (1 + δ))
1

1−α = ρ. Since (L/β) δ (α/ (1 + δ))
1

1−α

is continuous in δ, this δ exists if we additionally assume (and we do so) ρ <

(L/β) (1/α− 1)α
2

1−α . And since it is a strictly increasing function of δ, δ is well defined, so

that lower values of δ cannot take place in F , while larger values can (consider pairs (0, δ)

for instance).

Again from (7) one can see that the restriction imposed within F is simplym ≤ r+m−ρ,

or ρ ≤ r. Thus (1) yields a nonnegative growth rate γ = r − ρ ≥ 0 indeed. Transversality

holds automatically from ρ > 0 and (1). As for the validity of the h > 0 condition within

F , note that h increases with m (because −κ1 is positive; because (7) shows that κ1 and κ2

do not depend on m since r+m does not either; and because the same equation shows that

both m/ (m+ γ) = m/ (r +m− ρ) and −γ = ρ− (r +m) +m increase with m). Therefore

it is suffi cient to consider the m = 0 case, for which h = −γ − κ2 = ρ − (r +m) − κ2 =

ρ+ ((1− α + δ) / (αδ)− 1) (r +m) = ρ+ (1− α) (1 + δ) (r +m) / (αδ) > 0.

The system of differential equations (10) is one of the (matricial) Riccati type, and can be

solved in an exact fashion by the method proposed in Levin (1959, Theorem 2), according to

which solutions to (10) can be found via solutions to the auxiliary system of linear differential

equations 
ẋ

ẏ

ż

 =


0 0 m

0 m+ γ 0

−κ1 −1 m− κ2



x

y

z

 .
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We are only interested in the saddle path, which will take the form

 g (t)

h (t)

 =
 ζ

0

+ 1

1− g0−g
g0−ζ e

−(γ+κ2+κ1ζ)t

 g − ζ

h

 , (12)

where g0 is the given g (0) (since both A (0) and Ac (0) are given), and ζ :=(
m− κ2 +

√
(m− κ2)2 − 4κ1m

)
/ (2κ1) is the negative root of κ1x2 + (κ2 −m)x+m = 0.

The m+ γ = 0 case leads to trivial (degenerate) positive consumption equilibrium "paths":

(g (t) , h (t)) = (g0,−κ1g0 − κ2) =
(
g, h
)
.

Since h (t) /h = (g (t)− ζ) / (g − ζ), we can solve for h0 (= h (0)):

h0 =
g0 − ζ
g − ζ h. (13)

Therefore changes in m affect h0 through their impact on ζ and γ = r +m −m − ρ (with

r +m given by (7)), while δ affects h0 through those same channels, plus κ1 and κ2.

The positivity of h0 derives directly from that of h within F . An alternative expression

that will be useful in Proposition 1 below is

h0 = (κ1ζ −m− γ)
(
1− g0

ζ

)
. (14)

In fact, the expression for the steady state (11) and the identity κ1ζ
2 + (κ2 −m) ζ +m = 0

give

(g − ζ) (m+ γ − κ1ζ) = m+ (−κ1g −m− γ) ζ + κ1ζ
2 = (−κ1g − γ − κ2) ζ = hζ,

whence (13) yields (14).

It can be shown that the lab-equipment model equips us with a rigorous explanation

of the well-established intuition that the issue of IPR protection in terms of patent length
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presents policymakers with a tradeoff: too low hinders growth, too high cuts immediate

consumption.7 The next proposition shows that the present model yields this same IPR

protection tradeoff in terms of breadth. In other words, say government has decided to

strengthen patent protection only in terms of breadth, from δ to δ′ > δ. Then the growth

rate of consumption γ (which is also the long-run growth rate of the economy) will be raised

to γ′ > γ, but there will be an immediate downward jump in consumption h, from h0 = h

to h′0 < h.

Proposition 1 The pursuance of stronger IPR protection through an increase in the patent

breadth level brings, cœteris paribus, (i) faster long-run growth of the economy ("dynamic

effi ciency gains"), and (ii) an immediate negative effect on consumption ("static effi ciency

losses").

Proof. Take (m, δ) ∈ F with δ < 1/α − 1. For (i), we must show that ∂γ/∂δ > 0.

Expression 7 gives

∂r

∂δ
=

L

β
α

1
1−α

(
(1 + δ)−

1
1−α − 1

1− αδ (1 + δ)−
1

1−α−1
)

=
L

β

(
α

1 + δ

) 1
1−α
(
1− 1

1− α
δ

1 + δ

)
=
1− α (1 + δ)

δ

r +m

(1− α) (1 + δ)
. (15)

From the Euler equation (1), we see that ∂γ/∂δ = ∂r/∂δ, which is positive.

For (ii), we must prove ∂h0/∂δ < 0. In order to derive (14) with respect

to δ, we must perform a few auxiliary calculations. First note that κ1 + κ2 =

− (1− α) (1 + δ)
1

1−α (r +m) / (αδ) which, from (7), equals − (L/β) (1− α)α
α

1−α , indepen-

7See Cysne and Turchick (2012), propositions 1 and 2.
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dent from δ. Therefore

∂κ1
∂δ

= −∂κ2
∂δ

=
αδ − (1− α + δ)α

(αδ)2
(r +m) +

1− α + δ

αδ

∂r

∂δ

=
− (1− α)2 (1 + δ) + (1− α + δ) (1− α (1 + δ))

αδ2
r +m

(1− α) (1 + δ)

=
− (1− α) (1 + δ) + 1− α + δ (1− α (1 + δ))

αδ2
r +m

(1− α) (1 + δ)

=
δ (− (1− α) + 1− α (1 + δ))

αδ2
r +m

(1− α) (1 + δ)
= − r +m

(1− α) (1 + δ)
.

Secondly, implicit differentiation of κ1ζ
2 + (κ2 −m) ζ +m = 0 gives

∂ζ

∂δ
= −

∂κ1
∂δ
ζ2 + ∂κ2

∂δ
ζ

2κ1ζ + κ2 −m
= −

∂κ1
∂δ
ζ2 − ∂κ1

∂δ
ζ

2κ1ζ + κ2 −m

=
ζ2 (1− ζ)

2κ1ζ
2 + (κ2 −m) ζ

∂κ1
∂δ

= −ζ
2 (1− ζ)
κ1ζ

2 −m
r +m

(1− α) (1 + δ)
.

It is also instrumental (see (14)) to compute

∂ (κ1ζ −m− γ)
∂δ

=
∂κ1
∂δ

ζ + κ1
∂ζ

∂δ
− ∂γ

∂δ

=

(
−ζ − κ1

ζ2 (1− ζ)
κ1ζ

2 −m
− 1− α (1 + δ)

δ

)
r +m

(1− α) (1 + δ)

= −
(
ζ
(
κ1ζ

2 −m
)
+ κ1ζ

2 (1− ζ)
κ1ζ

2 −m
+
1− α (1 + δ)

δ

)
r +m

(1− α) (1 + δ)

= −
(
ζ (κ1ζ −m)
κ1ζ

2 −m
+
1− α (1 + δ)

δ

)
r +m

(1− α) (1 + δ)

and
∂
(
1− g0

ζ

)
∂δ

=
g0

ζ2
∂ζ

∂δ
= − 1− ζ

κ1ζ
2 −m

g0
r +m

(1− α) (1 + δ)
.
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Thus

∂h0
∂δ

=
∂ (κ1ζ −m− γ)

∂δ

(
1− g0

ζ

)
+ (κ1ζ −m− γ)

∂
(
1− g0

ζ

)
∂δ

= −


(
ζ(κ1ζ−m)
κ1ζ

2−m + 1−α(1+δ)
δ

)(
1− g0

ζ

)
+

(κ1ζ −m− γ) 1−ζ
κ1ζ

2−mg0

 r +m

(1− α) (1 + δ)

= −

 ζ(κ1ζ−m)
κ1ζ

2−m + 1−α(1+δ)
δ
−(

κ1ζ−m
κ1ζ

2−m +
1
ζ
1−α(1+δ)

δ
− (1−ζ)(κ1ζ−m−γ)

κ1ζ
2−m

)
g0

 r +m

(1− α) (1 + δ)

= −

 ζ(κ1ζ−m)
κ1ζ

2−m + 1−α(1+δ)
δ
−(

ζ(κ1ζ−m)+(1−ζ)γ
κ1ζ

2−m + 1
ζ
1−α(1+δ)

δ

)
g0

 r +m

(1− α) (1 + δ)
. (16)

The last term in square brackets is an affi ne function of g0 taking, at the extreme g0 = 0,

the value
ζ (κ1ζ −m)
κ1ζ

2 −m
+
1− α (1 + δ)

δ
,

which is positive (we know that κ1ζ−m ≥ γ from (14), and γ ≥ 0 within F ). At the extreme

g0 = 1, it equals

− γ (1− ζ)
κ1ζ

2 −m
+

(
1− 1

ζ

)
1− α (1 + δ)

δ
,

again positive. Hence ∂h0/∂δ < 0.

The policymaker thus faces two simultaneous IPR protection tradeoffs in this model: one

in terms of patent length, and another in terms of patent breadth. The next section solves

this bidimensional problem.

4 Optimal patent length and breadth

The inverse-length/breadth pair (m, δ) represents the policy vector of the model, and F the

set where it can be chosen. The parameters L, α, and β are exogenous to the government.
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Although m is a primitive of the model, one could obviously choose to work with T instead.8

We choose m simply for ease of calculation, but we express our results, especially the nu-

merical ones, in terms of T rather than m, for its more direct association with an observable

variable.

Now consider that the government can make a once-and-for-all change in its IPR protec-

tion policy, from (m, δ) ∈ F to (m′, δ′) ∈ F (so that the evolution of Ac is now governed by

(3) with parameter m′).9 For simplicity, say this change takes place at time 0.

Imagine the economy starts in its steady state
(
g, h
)
. Since g cannot jump, g′0 = g.

The interest rate must jump immediately to its new long-term level according to the new

arbitrage relation

r′ +m′ =
L

β
δ′
(

α

1 + δ′

) 1
1−α

. (17)

The dynamical system coeffi cients κ1 and κ2 become κ′1 =(
1− α + δ′ − (1− α) (1 + δ′)

1
1−α
)
(r′ +m′) / (αδ′) and κ′2 =

− (1− α + δ′) (r′ +m′) / (αδ′).10 The rate of growth of consumption γ is given by

the Euler equation

γ′ = r′ − ρ, (18)

and the new steady state is
(
g′, h

′
)
= (m′/ (m′ + γ′) ,−κ′1m′/ (m′ + γ′)− γ′ − κ′2). At the

moment the government employs this policy change, h jumps from h to

h′0 =
g′0 − ζ ′

g′ − ζ ′ h
′
, (19)

8This is a simple change of variables: given (m, δ), (8) and (7) give T , whereas given (T, δ), m can be

derived from those same two equations.

9An alternate scenario, in which the government cannot change (m, δ) directly, will incidentally be dealt

with in section 6 ahead.

10Note that, differently from Cysne and Turchick (2012), where δ is set constant at its maximal level,

here the change in m is not perfectly mirrored by the change in r, that is, r′ +m′ 6= r +m (unless δ′ = δ).
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where ζ ′ =
(
m′ − κ′2 +

√
(m′ − κ′2)

2 − 4κ′1m′
)
/ (2κ′1). As before, we can also write

h′0 = (κ
′
1ζ
′ −m′ − γ′)

(
1− g′0

ζ ′

)
. (20)

Our main goal is to find the optimal government policy vector (m∗, δ∗) = (m′, δ′). For

this purpose, we substitute βA (0)h′0e
γ′t/L for c in the representative agent’s utility func-

tion, which yields the total intertemporal utility level associated with (m′, δ′) accumulated

throughout the new equilibrium path: U∗ (m′, δ′) = (log (βA (0) /L) + log h′0 + γ′/ρ) /ρ.

Thus the government must solve the problem

max
(m′,δ′)∈F

H (m′, δ′, g′0) ,

where H : F × [0, 1]→ R is given by

H (m′, δ′, g′0) := log h
′
0 +

γ′

ρ
(21)

(h′0 and γ
′ are related to (m′, δ′, g′0) through the expressions above). Since H is continuous

and F is compact, existence of (m∗, δ∗) is guaranteed by the Weierstrass Theorem.

4.1 Optimal length

It has been proven (Cysne and Turchick, 2012, proposition 3) that, in the case of a lab-

equipment model with logarithmic utility function, the optimal patent length T ∗ is neces-

sarily infinite, irrespective of the initial length T . This result should also be expected in

the present more general framework if it happened to be the case that the government was

initially offering maximal IPR protection in terms of patent breadth (δ = 1/α − 1), as in

that paper. But if δ < 1/α − 1, it is unclear what the best course of action for the govern-

ment might be. Our framework allows us to consider various policy mix possibilities, such as

17



weakening/strengthening IPR protection in terms of length while strengthening/weakening

it in terms of breadth.

The following proposition partially answers this question.

Proposition 2 In this economy, the optimal patent length T ∗ is infinite, regardless of the

current patent length T or the current patent breadth level δ.

Proof. Fix any δ′ ∈ (δ, 1/α− 1] (and g′0 = g is given). From (8), we must show that

m∗ = 0 (it is immediate to see that (0, δ′) ∈ F ). For this purpose, it is suffi cient to verify

that D1H < 0. We do so in three steps. Let m′ ∈ R+ be such that (m′, δ′) ∈ F .

Step (i): D1H (m
′, δ′, g′0) ≤ D1H (m

′, δ′, 0).

Expression (21), the law of H, together with (18) and (17), yields D1H (m
′, δ′, g′0) =

(1/h′0) ∂h
′
0/∂m

′−1/ρ. The term −m′−γ′ in expression 20 for h′0 has actually no dependence

on m′, again from (18) and (17). The same is true for κ′1 and κ
′
2. Thus we have

∂h′0
∂m′

= κ′1
∂ζ ′

∂m′

(
1− g′0

ζ ′

)
+ (κ′1ζ

′ −m′ − γ′) g
′
0

ζ
′2

∂ζ ′

∂m′
=

(
κ′1 −

m′ + γ′

ζ ′2
g′0

)
∂ζ ′

∂m′

and, from (19),

D1H (m
′, δ′, g′0) =

1

κ′1ζ
′ −m′ − γ′

κ′1 − m′+γ′

ζ′2
g′0

1− 1
ζ′ g
′
0

∂ζ ′

∂m′
− 1
ρ
.

The fraction above with g′0 in both the numerator and denominator can be seen to be

increasing in g′0.
11 The derivative ∂ζ ′/∂m′, in its turn, comes from implicit differentiation of

11It is straightforward to note that (a+ bx) / (c+ dx) is increasing in x if and only if bc − ad ≥ 0. For

the case at stake, it must be the case that κ′1ζ
′ −m′ − γ′ ≥ 0, a fact that follows immediately from (20)

(
(
m′, δ′

)
∈ F implies h′0 ≥ 0, as seen in the previous section).
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κ′1ζ
′2 + (κ′2 −m′) ζ ′ +m′ = 0:

∂ζ ′

∂m′
= − 1− ζ ′

κ′2 −m′ + 2κ′1ζ ′
= − ζ

′ (1− ζ ′)
κ′1ζ

′2 −m′
< 0.

Therefore D1H (m
′, δ′, g′0) ≤ D1H (m

′, δ′, 0).

Step (ii): D1H (m
′, δ′, 0) ≤ D1H (0, δ

′, 0).

Putting g′0 = 0 in the expression for D1H (m
′, δ′, g′0) gives

D1H (m
′, δ′, 0) =

−κ′1
κ′1ζ

′ −m′ − γ′

(
− ∂ζ ′

∂m′

)
− 1
ρ
.

As explained in step (i), the first fraction (which is positive) depends on m′ through ζ ′ only,

whence it decreases with m′. The term in parentheses is also positive, and in order to see

that it also decreases with m′, one must calculate

∂2ζ ′

∂m′2
= −

(
∂ζ′

∂m′ − 2ζ
′ ∂ζ′
∂m′

) (
κ′1ζ

′2 −m′
)
− ζ ′ (1− ζ ′)

(
2κ′1ζ

′ ∂ζ′
∂m′ − 1

)
(
κ′1ζ

′2 −m′
)2

= −
[
−κ′1ζ ′2 −m′ (1− 2ζ ′)

]
∂ζ′

∂m′ + ζ ′ (1− ζ ′)(
κ′1ζ

′2 −m′
)2 = −ζ ′

(κ′2 +m′) ∂ζ′

∂m′ + 1− ζ
′(

κ′1ζ
′2 −m′

)2
and notice that this is positive, since

κ′2 +m′ = −1− α + δ′

αδ′
(r′ +m′) +m′ ≤ −1− α + δ′

αδ′
(r′ +m′) + r′ +m′

= −(1− α) (1 + δ′)

αδ′
(r′ +m′) < 0.

Thus D1H (m
′, δ′, 0) is decreasing in m, and D1H (m

′, δ′, 0) ≤ D1H (0, δ
′, 0).

Step (iii): D1H (0, δ
′, 0) < 0.

For m′ = 0, we get ζ ′ =
(
−κ′2 +

√
κ′22

)
/ (2κ′1) = −κ′2/κ′1 and h

′
= −γ′ − κ′2 (positive
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within F as seen in section 2), so

D1H (0, δ
′, 0) =

−κ′1
κ′1ζ

′ − γ′
ζ ′ (1− ζ ′)
κ′1ζ

′2 − 1
ρ
=

1

−γ′ − κ′2

(
κ′1 + κ′2
κ′2

+
γ′ + κ′2
ρ

)
=

1

h
′

(
κ′1 + κ′2
κ′2

+
r′ − ρ− 1−α+δ′

αδ′ r′

ρ

)

≤ 1

h
′

[
(1− α) (1 + δ′)

1
1−α

1− α + δ′
− (1− α) (1 + δ′)

αδ′
− 1
]
,

where (18) and the fact that r′ ≥ ρ (or γ′ ≥ 0) were employed in the second and third

lines, respectively. The second fraction in the square brackets must be greater or equal to

1, otherwise 1 + δ′ < αδ′/ (1− α) ≤ α (1/α− 1) / (1− α) = 1, a contradiction. The first

fraction grows with δ′, and at its highest (at δ′ = 1/α − 1) it equals α−
α

1−α/ (1 + α). This

can be seen to be strictly less than 2. In fact, one would otherwise have

2 (1 + α) ≤ α−
α

1−α ∴ (2 (1 + α))1−α ≤ α−α ∴

2 (1 + α) ≤
(
2 (1 + α)

α

)α
∴ (2 (1 + α))

1
α ≤ 2

(
1 +

1

α

)
,

which contradicts Bernoulli’s inequality, according to which 2 (1 + 1/α) < 2 (1 + 1)
1
α =

21+
1
α = 2

1
α (1 + (1/α)α) < (2 (1 + α))

1
α . Thus D1H (0, δ

′, 0) < (2− 1− 1) /h′ = 0.

Finally putting all the pieces together, for (m′, δ′) ∈ F , D1H (m
′, δ′, g′0) ≤

D1H (m
′, δ′, 0) ≤ D1H (0, δ

′, 0) < 0. Hence we obtain the (unique) corner solution m∗ = 0.

Proposition 2 allows for an automatic reduction in the dimensionality of the policymaker’s

problem. No longer does he have to look jointly for the socially optimal policy vector

(m∗, δ∗), and he can simply plug in m∗ = 0 into all the expressions in order to find δ∗. This

simplification is a feature of horizontal innovation models, to some extent linked to the fact

that capital goods never become obsolete in this framework.12

12However, this connection is not the full story. If, instead of being fixed at 1, the elasticity of intertemporal
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4.2 Optimal breadth

We now focus our attention on the government’s second policy parameter, patent breadth.

We first check that it is always the case that the maximal level 1/α − 1 (that royalty fee

preferred by innovators when government is unable to fix breadth) is suboptimal. Thus the

government will actually not choose in accordance with the model in Cysne and Turchick

(2012), where patent breadth is fixed at a maximum, and will specify a breadth level δ′ <

1/α − 1 instead. In this way, it will be able to trade off a modest negative long-term effect

on growth (the term involving ∂γ′/∂δ′ in expression (22) ahead) for a substantial positive

short-term effect on consumption (the term involving ∂h′0/∂δ
′).

Proposition 3 In this economy, the social optimal patent breadth level δ∗ is strictly lower

than the maximal breadth level 1/α − 1, regardless of the current patent length T or the

current patent breadth level δ.

Proof. We already know, from Proposition 2, that m∗ = 0. In order to prove that

δ∗ < 1/α− 1, it therefore suffi ces to show that D2H(0, 1/α− 1, g′0) < 0, that is,

[
1

h′0

∂h′0
∂δ′

+
1

ρ

∂γ′

∂δ′

∣∣∣∣
δ′= 1

α
−1
< 0 (22)

(from the definition of δ, it is clear that (0, δ′) ∈ F, ∀δ′ ∈ (δ, 1/α− 1], so it is adequate to

think of this derivative as a left derivative). Here, as in the proof of Proposition 1 (see (15)

and (16)), and using δ′ = 1/α− 1 and m′ = m∗ = 0, we get

∂γ′

∂δ′

∣∣∣∣
δ′= 1

α
−1
=
∂r′

∂δ′

∣∣∣∣
δ′= 1

α
−1
=
1− α (1 + δ′)

δ′
r′

(1− α) (1 + δ′)
= 0

substitution were allowed to take on especially low values (about 1/5 or less, see the figures in Cysne and

Turchick, 2012), then consumers would be less keen to sacrifice current for future consumption, meaning T ∗

could also be finite.

21



and

∂h′0
∂δ′

∣∣∣∣
δ′= 1

α
−1

= −

 κ′1ζ
′2

κ1ζ
2 +

1−α(1+δ′)
δ′ −(

κ′1ζ
′2+(1−ζ′)γ′
κ′1ζ
′2 + 1

ζ′
1−α(1+δ′)

δ′

)
g′0

 r′

(1− α) (1 + δ′)

= −
[
1− κ′1ζ

′2 + (1− ζ ′) γ′

κ′1ζ
′2 g′0

]
r′

(1− α) (1 + δ′)
.

From (17) and Proposition 2 we know that r′ must be (strictly) positive. The term inside

square brackets is an affi ne function of g′0, which at the extreme g
′
0 = 0 takes on the value

1, and at g′0 = 1 equals − (1− ζ ′) γ′/
(
κ′1ζ

′2), which is also positive since γ′ = m′ + γ′ > 0

for (m′, δ′) ∈ F (indeed, (17) and our assumption that ρ < (L/β) (1/α− 1)α
2

1−α give γ′ =

r′ − ρ = r′ +m′ − ρ = (L/β) (1/α− 1)α
2

1−α − ρ > 0). So ∂h′0/∂δ′|δ′=1/α−1 is negative, and

so is D2H(0, 1/α− 1, g′0), thus ending the proof.

Having established its interiority (relative to the [0, 1/α− 1] interval), the optimal level

of patent breadth can be found by plugging (15), (16) and m∗ = 0 into the FOC

[
1

h′0

∂h′0
∂δ′

+
1

ρ

∂γ′

∂δ′

∣∣∣∣
δ′=δ∗

= 0

(or, if this equality does not hold for any δ∗ ∈ (δ, 1/α− 1), then δ∗ = δ).

Factoring out the term r′/ ((1− α) (1 + δ∗)) of both ∂h′0/∂δ
′ and ∂γ′/∂δ′, and making

use of (20) and the fact that ζ ′ = −κ′2/κ′1 when m′ = 0, leads to the implicit formula

1

(κ′2 + γ′)
(
1 +

κ′1
κ′2
g′0

) [
1 +

1− α (1 + δ∗)

δ∗
−
(
1 +

κ′1 + κ′2
κ′22

γ′ − κ′1
κ′2

1− α (1 + δ∗)

δ∗

)
g′0

]
+

1

ρ

1− α (1 + δ∗)

δ∗
= 0. (23)

It should be noted that δ∗ appears also inside the terms κ′1, κ
′
2, and γ′ = r′ − ρ =

(L/β) δ∗ (α/ (1 + δ∗))
1

1−α − ρ above.
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We exemplify these results with the baseline case parameter values used in Kwan and

Lai (2003), α = 0.625, r = 0.065/year, γ = 0.016/year, and δ = 1/α − 1 = 0.600. We also

use T = 20 years, the current patent term in the United States (that work used the previous

length of 17 years).13 The socially optimal patent breadth is calculated as approximately

0.493. Table 1 compares a situation in which government does not alter the policy vector

(T, δ) (first column) with the situation in which it can alter it only in the first variable

(second column), and then with the situation in which it is free to alter both variables (as

is shown in Propositions 2 and 3, it will do so by choosing a maximal patent length but a

nonmaximal patent breadth).

Table 1

α = 0.625, r = 0.065, γ = 0.016, T = 20 (m ≈ 0.024), δ = 0.600

New length/breadth (T ′, δ′) (20, 0.600) (∞, 0.600) (∞, 0.493)

Growth rate γ′: 0.0160 0.0404 0.0393

Short-run "consumption" h′0: 0.2650 0.2322 0.2421

Long-run "consumption" h
′
: 0.2650 0.1920 0.2095

"Utility" H (m (T ′, r′) , δ′, g): −1.0017 −0.6369 −0.6166

As explained in Proposition 1, the obtaining of a higher welfare through revision of

the patent breadth level (−0.6166 versus −0.6369) is accompanied by a larger steady-state

(scaled-)consumption level (0.2095 versus 0.1920) and a bit of a sacrifice in the growth rate

(0.11 percentage points). This higher welfare happens due to h′0 not needing to be cut

down as severely as in the case corresponding to a fixed maximal level of patent breadth.

The utility gain from −1.0017 to −0.6166 means that the drop in steady-state normalized
13For future reference, we note that the values of ρ and L/β consistent with this equilibrium are 0.049

and 1.826, respectively (to see this, one may use (1), and substitute (4) in (7)).

23



consumption h = C/ (βA) from 0.2650 to 0.2095 is more than compensated by the larger

growth rate of the economy (3.93% versus 1.60%).

The two trajectories of h (corresponding to the two last columns of the previous table)

can be compared in Figure 1, which also plots the trajectory corresponding to government

inaction.

0 50 100 150
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0.20

0.22

0.24

0.26

0.28

t

h

(T',δ ')=(20,0.600)
(T',δ ')=(∞,0.600)
(T',δ ')=(∞,0.493)

Figure 1. Time paths for h.

Figure 2 plots c/A (0) = βh′0e
γ′t/L, thus allowing for a better visualization of the bene-

ficial effect of being able to cut down patent breadth. Although we know the dashed curve

has a slightly superior growth rate than the solid curve (they shall meet around year 40), the

latter involves a lesser sacrifice in terms of immediate consumption than the former, hence

being able to generate more welfare. It might be observed that, while the (∞, 0.600) policy

takes about five and a half years to pay off in terms of consumption only, the adoption of
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(∞, 0.493), which corresponds to roughly the same growth rate but also to a significantly

reduced drop in immediate consumption, pays off earlier, in less than four years.
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Figure 2. Time paths of consumption per capita (in terms of A (0)).

Figure 3 shows the behavior of the optimal patent breadth level with respect to both

initial patent length and breadth. As we can see, δ∗depends on δ and T . The higher these

initial IPR protection levels, the lower needs the optimal patent breadth be. This result is in

line with findings regarding optimal patent length policy in Kwan and Lai (2003) and Cysne

and Turchick (2012).
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Figure 3. Optimal patent breadth level.

5 Time-consistent policies

A delicate issue in the present model is that of intertemporal consistency. Once the govern-

ment chooses a high enough level of IPR protection in order to ensure dynamic effi ciency

gains, it is tempted to overlook product imitation and try to obtain static effi ciency gains

as well. For such a government with credibility or reputation issues, the only surviving

steady-state equilibrium would be one with (m, δ) = (m∗, δ∗).

From Proposition 2, it is clear that the optimal patent length policy is necessarily time

consistent (with m = m∗ = 0). Thus, the no-commitment-equilibrium policy mix (m, δ) =

(0, δ∗∗) must be a pair that solves (23). Using g′0 = g = m/ (m+ γ) = 0 , that expression
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becomes
1

κ2 + γ

[
1 +

1− α (1 + δ∗∗)

δ∗∗

]
+
1

ρ

1− α (1 + δ∗∗)

δ∗∗
= 0,

where

κ2 + γ = −1− α + δ∗∗

αδ∗∗
r + r − ρ =

(
1− 1− α + δ∗∗

αδ∗∗

)
r − ρ = −(1− α) (1 + δ∗∗)

αδ∗∗
r − ρ

and

r =
L

β
δ∗∗
(

α

1 + δ∗∗

) 1
1−α

.

With respect to the aforementioned parameter values, we get δ∗∗ ≈ 0.415. That is, the

optimal value for license fees δ∗ ≈ 0.493 found in the previous section must be cut in about

15%, if the government has no reputation in keeping its promises. Table 2 shows the welfare

cost for society of government not having a commitment mechanism, or having such a bad

reputation that the announced policy has no credibility. The first column corresponds to no

policy change at all, the second to optimal change when commitment is not an issue (the

same as in Table 1), and the third to a change to the no-commitment-equilibrium policy.

Table 2

α = 0.625, r = 0.065, γ = 0.016, T = 20 (m ≈ 0.024), δ = 0.600

New length/breadth (T ′, δ′) (20, 0.600) (∞, 0.493) (∞, 0.415)

Growth rate γ′: 0.0160 0.0393 0.0368

Short-run "consumption" h′0: 0.2650 0.2421 0.2513

Long-run "consumption" h
′
: 0.2650 0.2095 0.2245

"Utility" H (m (T ′, r′) , δ′, g): −1.0017 −0.6166 −0.6311

As expected, a government with credibility issues will choose a lower level of patent

breadth, when compared to the equilibrium with commitment of the previous section. In

this case, its inability to commit may be mistaken for myopic preferences.
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6 Social planner’s problem

In this section, we assess the issue of social optimality of the equilibrium policy described

in section 4 for the decentralized economy. The analysis borrows from and extends the one

worked out in Barro and Sala-i-Martin (2004, chapter 6).

In order to do that, we compare it to the centrally planned economy, where a social

planner maximizes the utility of households, U =
∫∞
0
e−ρt log (Ct/L) dt, with respect to the

resource contraint of the economy, (9).

An application of Pontryagin’s Maximum Principle yields

Xs = ALα
1

1−α

(by differentiating the Hamiltonian of the problem with respect to X) and

γs = rs − ρ

(by differentiating the Hamiltonian with respect to C), where

rs :=
L

β

(
1

α
− 1
)
α

1
1−α

(the additive inverse of the growth rate of the costate variable).

A simple comparison of the production of intermediate goods here and in the decentral-

ized economy gives a measure of the static ineffi ciencies stemming from inventors’market

power: X = Acxc + (A− Ac)xm < Acxc + (A− Ac)xc = Axc = ALα
1

1−α = Xs (using
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xm < xc, since δ > 0). A comparison of growth rates evinces the dynamic ineffi ciency:

γ = r − ρ = L

β
δ

(
α

1 + δ

) 1
1−α

−m− ρ ≤ L

β

(
1

α
− 1
)(

α

1 + δ

) 1
1−α

− ρ

<
L

β

(
1

α
− 1
)
α

1
1−α − ρ = rs − ρ = γs

(since δ > 0). It is thus clear that the decentralized equilibrium is not effi cient. No licensing

at all brings about dynamic ineffi ciencies (a lack of incentives for inventors, who are subject

to the technology imitation equation (3)), while positive licensing implies static deadweight

losses.

Nevertheless, it is possible to obtain an effi cient outcome in the decentralized economy,

as long as the government can tax consumers in a lumpsum fashion and use the proceeds to

subsidize both the R&D sector and the purchase of intermediate goods by the final goods

sector. In fact, given any (m, δ), even in a scenario in which the policymaker is unable to

directly mandate on the level of patent breadth δ, as explained in the introduction, he/she

may choose m′ = 0 (the reasoning follows the lines of Proposition 2), then (i) subsidize by

the amount δ the purchase of each unit of yet monopolized capital goods, so that the 1 + δ

entering the expression of xm in (5) becomes 1 + δ − δ = 1, and xm = xc = Lα
1

1−α , so that

X ′ = Acxc + (A− Ac)xm = ALα
1

1−α = Xs, and (ii) subsidize R&D by means of a lower

invention cost β′ such that γ′ = γs, i.e., we must have

β′ =
π′

r′ +m′
=
δxm
r′

=
δxc
γ′ + ρ

=
δLα

1
1−α

γs + ρ
=
δLα

1
1−α

rs
=

δLα
1

1−α

L
β

(
1
α
− 1
)
α

1
1−α

= β
δ

1
α
− 1

,

which will be lower than β (unless δ = 1/α − 1, in which case they are equal). That is, in

order to cope with two sources of ineffi ciencies, the policymaker must resort to two policy

instruments.
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7 Conclusion

Although the issue of intellectual property rights protection, both for patent lengths and

breadths, provides policymakers with a short-run-vs.-long-run tradeoff (Cysne and Turchick,

2012, and Proposition 1 above), we have shown that their solutions are qualitatively different

(a corner one and an interior one, respectively). As confirmed by our numerical analysis, by

fixing a lower patent breadth level, the government is able to trade offa modest negative long-

term effect on growth for a substantial positive short-term effect on consumption, whence it

cannot simply discard the short-run from the analysis. In order to rigorously prove this, we

have relied on the horizontal innovation lab-equipment model of R&D-based growth coupled

with an exogenous imitation rate (so that patent lengths are of a probabilistic nature). Such

a proof was made possible (Propositions 2 and 3) once a closed-form solution to the model’s

dynamics was derived.

On the one hand, the analysis in this work confirms and strengthens a conclusion obtained

in Cysne and Turchick (2012), in the sense that, even when there is plenty of room to increase

IPR protection in terms of breadth, infinite patent lengths will still be optimal. On the

other hand, it distances itself from the conclusion in that paper in that it finds that the

IPR protection tradeoff in terms of breadth will not yield a corner solution of favoring only

innovators (there, δ is fixed at the maximum level of 1/α − 1, which, as we have shown, is

suboptimal).

Due to static and dynamic ineffi ciencies, the decentralized equilibrium is not socially

optimal. However, these ineffi ciencies are reconcilable if the policymaker subsidizes R&D

and the purchase of patent-protected capital goods. An additional source of ineffi ciency

is the lack of a commitment mechanism for the government, and we have shown how this

ineffi ciency can be gauged.

The proposed framework for the analysis of the optimal mix of IPR protection policies is

admittedly a very simple one, and obviously many extensions are possible, such as considering
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different notions of patent breadth, allowing for a lower-than-unity elasticity of intertemporal

substitution (thus challenging the mentioned optimality of infinite patent lifetimes), and

including some actual modelling of government reputation into the analysis. But the present

simplicity is in itself a feature that has allowed us to gain some insight on this problem,

formally test some of our intuitions, and to have a benchmark for the assessment of results

from any extension of this model.
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