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Abstract:  

 

 Previous estimates of the effect of the creation of protected areas (PAs) on natural conservation 9 are 
biased by staggered protection and confounder environmental policies. We address these 10 biases by 
employing a cohort-time refined estimator using Amazon Basin data from 2003 to 11 2020. We also 
uncover policy-relevant dynamic patterns that remained hidden in previous 12 papers’ aggregate effects. 
Our findings show that PAs’ effects on deforestation, fires and illegal 13 artisanal mining were biased in at 
least 50% by staggered protection. Failure to control for 14 confounder policies deflated the effect on 
deforestation in 13%, and inflated the effects on fires 15 and mining in 16% and 25%. We also observe a 
rise in deforestation two years before 16 protection, an evidence of forward-looking behaviour. Moreover, 
PAs’ effects increased with 17 ageing, suggesting that enforcement is subject to learning. Effects were 
heterogeneous, with 18 both moderately and severely restricted PAs mitigating fires and mining, but only 
the severely 19 restricted mitigating deforestation. The effects of conservation unit PAs managed by 
national or 20 subnational governments were unequivocal only on mining, whereas indigenous land PAs 
21 successfully curbed deforestation, fires and mining. Therefore, with dynamic and heterogeneous 22 
effects, PA creation should leverage the strengths of different government levels and PA types, 23 while 
also anticipating forward-looking reactions. 
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1 Introduction 29 

Protected areas (PAs) have been repeatedly attested to be effective in conserving natural capital, 30 

especially highly ecologically valuable ecosystems such as forests and wetlands (Sze et al., 31 

2022, Shi et al., 2020, Herrera et al., 2019, Wendland et al., 2015, Barnes et al., 2023). They 32 

have been shown to avoid deforestation, fires, and related carbon emissions, to increase bird 33 

diversity, and to reduce poverty (Barnes et al., 2023, Sims, 2010, Ferraro and Hanauer, 2014). 34 

The extension of protected land has expanded globally by 92% since the 1990s, now embracing 35 

15.4% of Earth’s land (Kuempel et al., 2018, Persson et al., 2021). Despite the abundance of PA 36 

studies, there are two reasons why new investigations are needed. Firstly, from the policy 37 

planning perspective, whether the cost of protection, measured as forgone income from primary 38 

activities, is outweighed by ecological benefit, is an empirical question which is highly 39 

dependent on local and time-variant factors (Persson et al., 2021, Lima and Peralta, 2017). 40 

Secondly, the methods so far adopted in the estimation of protected areas’ (PAs’) effect are 41 

biased by staggered creation of PAs over time (across multiple cohorts) and by unobservable 42 

drivers of PAs’ effectiveness. What may lead to a distorted allocation of public funds for such 43 

policy and competing policies. Most studies seek to mitigate only the bias from non-random 44 

selection of sites for protection by relying on matching on observable covariates (Arriagada et 45 

al., 2016). This approach does not effectively address biases arising from influential non-46 

observables. Factors, such as concomitant changes in environmental policy, or local 47 

characteristics, are not adequately accounted for. This is particularly relevant given that 48 

enforcement of deforestation prohibitions not coinciding with PAs has intensified from 2004 to 49 

2014 in our region of study, the Amazon Basin (Assunção et al., 2020, Hargrave and Kis-Katos, 50 

2013, Börner et al., 2015). One potential solution is to explore, after matching, (“within”) 51 

variation across time with a differences-and-differences (DiD) approach, thus avoiding 52 

unobservable geographical variation sources and explicitly controlling for observed policy 53 

changes. This approach, which is rarely adopted (exceptions being Shi et al. 2020 and Keles et 54 

al., 2023), is limited by a second source of bias, the “negative weights” attached automatically 55 

to PA cohorts by standard DiD estimators, which aggregate all cohorts together, irrespective of 56 

their potentially heterogeneous effects (Goodman-Bacon, 2021, Callaway and Sant’Anna, 57 

2021). Consequently, the causal interpretation of the treatment effect parameter may be 58 

compromised. 59 

To address the aforementioned inaccuracies, this paper proposes a new methodological 60 

procedure to estimate the effect of PAs. It consists in, after the commonly adopted matching 61 

approach, applying Callaway and Sant’Anna’s (2021) cohort-refined DiD estimator to unveil, 62 

with an event study, cohorts violating the parallel trends assumption. By removing these cohorts 63 

(hereafter also called “groups”), the aggregate treatment effect estimate obtained is both causal 64 



3 
 

and accurate. By incorporating event study and cohort-refined DiD estimation to analysis, we 65 

innovatively expand the toolbox of PAs’ effect identification. Furthermore, the challenge of 66 

measuring non-PA anti-deforestation policy efforts is addressed by leveraging publicly 67 

available proxies. At last, protection performance is measured in terms of two types of forest 68 

disturbance, deforestation and fires, the latter a source of forest degradation, and also in terms of 69 

a highly damaging form of natural resource exploitation, illegal artisanal mining. 70 

Research has so far largely overlooked the dynamic nature of protection’s effect, especially 71 

delays and anticipations of changes in outcomes relative to the beginning of protection. This 72 

important dimension is pioneeringly made visible in this study by introducing a novel 73 

econometric technique that enables the consideration of non-immediate effects in the planning 74 

of PAs. This aspect holds great importance as the mere creation of PAs alone is insufficient to 75 

ensure effectiveness. Systematic enforcement, including on-field patrolling, is needed (Afriyie 76 

et al., 2021, Kuempel et al., 2018, Geldman et al., 2015). The performance of enforcement is 77 

dynamic for being contingent on several factors, such as (i) the underlying drivers of the 78 

decision to pursue forbidden activities, including deforestation and burning, such as agricultural 79 

prices (Assunção et al., 2015, Hargrave and Kis-Katos, 2013), (ii) the enforcement budget 80 

available (Kuempel et al., 2018, Jachman, 2008, Silva et al., 2019), and (iii) the process of 81 

learning how to enforce protection in the particular social-biophysical context of each PA 82 

(Geldman et al. 2015, Afriyie et al., 2021, Kuempel et al., 2018). 83 

Therefore, despite being so far presented as instantaneous by econometric studies, protection’s 84 

effect is dynamic as both the threats facing PAs and the capacity to withstand them oscillate 85 

over time and may affect different cohorts differently. The knowledge about this dynamics, 86 

which is available in scattered form across PA studies not necessarily relying on econometrics, 87 

is used for the first time in this paper to inform estimation and interpretation of protection’s 88 

effect. 89 

Our findings reveal significant biases arising from (i) unobservable heterogeneity not addressed 90 

by matching, which deflated effect on deforestation in 73%, (ii) staggered protection, which at 91 

least halved the effect on both deforestation, fires and mining, (iii) non-parallel trends, whose 92 

biases ranged from a 39% deflation to a 11% inflation and (iv) concurrent policy changes, 93 

which deflated the effect on deforestation in 13% and inflated the effect on fires and mining in 94 

16% and 25%, respectively. After removing these biases, protection proved doubtlessly 95 

effective. Additionally, it was particularly noteworthy the strong evidence of an increase in 96 

deforestation occurring two years before PA creation, which is consistent with forward-looking 97 

behaviour by illegal deforesters. These agents, anticipating that the probability of being 98 

sanctioned for illegal deforestation will rise in the post-protection period, “rush” to deforest in 99 
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the pre-protection period (a behaviour evidenced by Temudo, 2012, and Pedlowsky et al., 100 

1999). 101 

Additionally, we observed heterogeneous effects across PA types, both aggregating or not 102 

across cohorts. Conservation units, which are managed either by national or subnational 103 

governments and do not necessarily ban farming, experienced more deforestation than 104 

unprotected land in six years of the pre-protection period, including the aforementioned rise two 105 

years before protection. Such type of event occurred only once in indigenous lands, whose 106 

utilisation is constrained to traditional peoples’ practices. Importantly, the event arose 107 

approximately when the lengthy process of indigenous lands’ creation generally starts and was 108 

reverted in the subsequent year to a deforestation level below that of unprotected lands. Which 109 

may be another evidence of forward-looking behaviour, with an initial forest rush aborted after 110 

learning that governmental presence had already increased locally. Consistently with the 111 

specific dynamic patterns of the different PA types, only indigenous lands presented an 112 

unambiguously aggregate negative impact on deforestation. These lands also inhibited fires and 113 

mining, which was also true for conservation units, except for subnational ones, where fires 114 

were more frequent than in unprotected land. Severely restrictive protected areas were more 115 

effective in avoiding the two types of forest disturbance, but not mining. A final dynamic 116 

pattern worth mentioning is the gradual intensification of the inhibition of deforestation, fire and 117 

mining, across PA’s lifetime, confirming that enforcement is subjected to gains from learning. 118 

Our research thus makes significant contributions to the literature evaluating the impact of PAs 119 

(e.g., Pfaff et al., 2015, Herrera et al., 2019, Wendland et al., 2015, Shi et al., 2020, Keles et al., 120 

2023). We address critical sources of bias that have not been comprehensively considered in 121 

previous studies measuring PAs’ effects. Specifically, we update the standard methodology with 122 

recent discoveries about the inaccuracies introduced by a homogeneous aggregation of 123 

heterogeneous treatment cohorts (Goodman-Bacon, 2021, Roth, 2022, Callaway and Sant’Anna, 124 

2021). The resort to Callaway and Sant’Anna’s (2021) cohort-refined estimator not only 125 

mitigate biases, but also reveals dynamic patterns that were hidden in the aggregate effects 126 

reported by previous studies. These patterns are both consistent with a forward-looking model 127 

of deforesters’ behaviour we developed and highly relevant for planning PAs’ implementation. 128 

They shed light on the evolution of protection's influence on deforestation. To the best of our 129 

knowledge, no other research has empirically investigated delays and anticipations associated 130 

with the creation of PAs5. 131 

The next section summarizes extant knowledge about the dynamics of protection’s effect, 132 

presenting a theoretical model demonstrating that forward-looking behaviour is a 133 

                                                           
5 Despite, perhaps, Keles et al. (2023), but with the important difference that authors’ treatment is not the 

creation of PAs, but their downgrading, downsizing or degazettement. 
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microfoundation of protection’s effect dynamics. Methods follow and results are then presented. 134 

They are confronted with previous studies in the discussion section. A short conclusion section 135 

closes the paper. 136 

2 Literature and theory 137 
In this section we stablish the empirical and theoretical foundations of the dynamics of PAs’ 138 

effects. We start with a taxonomy of dynamics and demonstrate its theoretical consistency with 139 

a forward-looking behaviour model. Then evidence on effects’ dynamics collected by previous 140 

studies is presented. 141 

2.1 Theory 142 
The available knowledge about the temporal patterns of protections’ effect may be summarized 143 

into four types of dynamics, combining two dimensions, namely: (1) timing relative to 144 

protection outset, i.e., either (1.a) pre-protection or (1.b) post-protection and, (2) direction of 145 

effect, which is either (2.a) positive or (2.b) negative (figure 1). 146 

Figure 1 Four types of dynamic effects, post-protection decay (a), pre-protection 147 

decay (b), post-protection rise (c) and pre-protection rise (d). 148 

 149 

The four types of dynamics are consistent with basic economics. To demonstrate that, we now 150 
present and simulate a theoretical model whose main microfoundation is forward-looking 151 
expectations formed by the representative resource-extracting household. For simplicity, we 152 
focus on one type of extraction - or, more precisely, suppression of - forest resources, 153 
deforestation, since the other forms considered in the paper, fires and mining, are associated 154 
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with deforestation6. The model is essentially one of intertemporal consumption decision in 155 
which households’ savings can be only accumulated in the form of land. Following the classical 156 
Ricardian analysis, land is available in different qualities, or “grades”, which differ in the gross 157 
per-hectare return yielded.  158 

Owned land can be only expanded via deforestation and for this a right to deforest must be 159 
purchased by the current market price. This is the first component of deforestation’s cost, which 160 
is referred to as “endogenous price”. Its main function is introducing (perfect) competition for 161 
land in the model, thus leading to the equalisation of net return across different land grades 162 
(another crucial foundation of Ricardos’ analysis; Blaug, 1997). The second component, 163 
referred to as “exogenous price”, is policy-based, corresponding to the expected sanction the 164 
household is continuously exposed to, due to legal and illegal deforestation rights exchanged in 165 
the market. More precisely, rights are issued either officially by government, or illegally, by 166 
pioneer land grabbers and both are purchased by the household. 167 

Creation of PAs is understood strictly as an increase in the exogenous price of low-quality land, 168 
since, in practice, it consists in a (permanent and local) rise of expected sanction on illegal 169 
resource appropriation, which generally takes place where agriculture is less profitable. The 170 
assumptions here presented are formalised in what follows.  171 

2.1.1 Assumptions 172 
The representative household (HH) maximises the instantaneous CRRA utility function below, 173 

with ct denoting contemporaneous consumption and η the relative risk aversion coefficient (η > 174 

0). 175 

𝑢(𝐶𝑡) =
𝐶𝑡

(1−𝜂)

1 − 𝜂
 176 

The budget constraint has, on the income side, the gross earnings from investment on land, 177 

π(Ai,t). Expenditures comprise consumption and deforestation cost. The latter unfolds into the 178 

endogenous market-based price, pi,t, and into the exogenous policy-based price, mit. That is: 179 

∑(p𝑖,𝑡 + m𝑖,𝑡). D𝑖,𝑡

𝑁

𝑖=1

+ C𝑡 = ∑ π𝑖(A𝑖,𝑡)

𝑁

𝑖=1

 180 

The gross return function is quadratic with a single interior maximum, “Amax”: 181 

π𝑖(A𝑖,𝑡) = 𝛿𝑖 (𝐴𝑚𝑎𝑥. A𝑖,𝑡 −
A𝑖,𝑡

2

2
) , 𝑖 = 1, … , 𝑁 182 

The larger gross return yielded by land of higher quality is captured with a greater δi. 183 

Deforested land is accumulated, growing with deforestation and, for simplicity, is not subject to 184 

depreciation: 185 

A𝑖,𝑡 = A𝑖,𝑡−1 + D𝑖,𝑡−1, 𝑖 = 1, … , 𝑁 186 

                                                           
6 What is evidenced, for the case of fires, by Aragão and Shimabukuro (2010), with a 81% rate of 
increased deforestation pixel also exhibiting increased fire frequency. For the case mining, see Asner 
and Tupayachi (2017). 
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Compiling all expressions and equations, the HH problem is: 187 

max{𝐶𝑡,{𝐷𝑖,𝑡,𝐴𝑖,𝑡},𝑖=1,…,𝑁}𝐸0 {∑ 𝛽𝑡 [
C𝑡

1−𝜂

1 − 𝜂
+ ∑ 𝜆𝑖,𝑡(A𝑖,𝑡−1 + D𝑖,𝑡−1 − A𝑖,𝑡)

𝑁

𝑖=1

∞

𝑡=0

188 

+ 𝜆𝐵𝐶,𝑡 [∑π𝑖(A𝑖,𝑡)

𝑁

𝑖=1

− ∑(p𝑖,𝑡 + m𝑖,𝑡). D𝑖,𝑡

𝑁

𝑖=1

− C𝑡]]} 189 

The representative issuer of deforestation rights must incur a cost of taking control of land, 190 

which involves building of (unpaved or paved) roads and minimal infrastructure. It maximises 191 

profit in a perfectly competitive market for rights: 192 

𝑀𝑎𝑥{D𝑖,𝑡
𝑆 }{p𝑖,𝑡D𝑖,𝑡

𝑆 − 𝐶(D𝑖,𝑡
𝑆 )} 193 

Total cost is assumed as cubic, as standard in microeconomics and, consequently, marginal cost 194 
is quadratic. The rights’ market clearing condition, which determines the endogenous price, is: 195 

D𝑖,𝑡
𝑆 (p𝑖,𝑡) = D𝑖,𝑡 196 

2.1.2 Simulations 197 
The steady state of the model was calibrated to a set of parameters meant to be as general as 198 

possible – data sources are found in appendix 4, which also contains the equations of the 199 

dynamic system. For simplicity, only two land grades were assumed, low quality or i = L, and 200 

high quality or i = H. The model’s internal consistency was evaluated by conceiving the 201 

exogenous price components as stochastic shocks unexpected to the household. A near-202 

negligible correlation between the shocks mR and mNR, of 0.1%, was assumed. Besides the 203 

confirmation of consistency, relevant responses to the shocks were observed, namely: 204 

 Deforestation of a specific land grade responded negatively to the exogenous component of 205 

its own price and positively to the exogenous component of the other grade's price (different 206 

land grades were substitutes); 207 

 The endogenous component of deforestation price worked as a self-correction mechanism 208 

decreasing after a positive shock to the exogenous component, thus re-stablishing the long-209 

run equilibrium; 210 

 Consumption increased with a positive shock to the exogenous price component, which is in 211 

accordance with the “return-on-savings” mechanism behind intertemporal consumption 212 

choice (i.e., with an unexpected fall in the return of assets, it becomes less attractive to 213 

save). 214 

Now, to simulate PA creation, it was introduced a shock to low-quality land that was both fully 215 

expected and durable, lasting from half of the period on, i.e., on t = 10 since a time horizon of 216 

twenty instants was assumed (Figure 2). The exogenous price of high-quality land was kept 217 

unchanged. The forest rush effect was doubtless. It was followed by a three-stage trajectory, 218 
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which started with a smooth increase, proceeding to stagnation and then ending with smooth 219 

decrease. At the end, deforestation inside PAs was smaller, uncovering a post-decay effect. 220 

Importantly, high-quality-land-deforestation followed the exactly opposite trajectory, what is 221 

another indication that crowding-out of deforestation is a potential side-effect of PA creation. 222 

Consumption fell gradually before the shock, attesting that consumption smoothing was at play, 223 

rising sharply afterwards, again because of the decreased return-on-savings. Interestingly, a 224 

slightly larger consumption level was achieved. The reason for this is that, without capital 225 

accumulation, only land accumulation, savings are fully converted in land. The forest rush, by 226 

prematurely increasing deforestation, expanded land, what increased future income, enabling 227 

consumption to increase. The endogenous price of low-quality land followed own deforestation, 228 

which is expected as it was demand for deforestation that responded to the shock (and not 229 

supply of deforestation shocks). 230 

The two dynamic effects lacking, pre-fall and post-rise, were also generated by the model, but 231 

with an expected shock on exogenous price of high-quality land. The reasons were analogously 232 

the same as in the shock to low-quality land price. The former was due to the rush to deforest 233 

outside PAs, which meant allocating HH budget with priority to such locations, with not much 234 

resources left for deforesting inside. Now post-rise occurred as substitution of high-quality for 235 

low-quality land deforestation - the two can be also observed in Figure 2, by mentally switching 236 

all variables indexes from “L” to “H” and vice-versa. 237 

  238 
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Figure 2 Perfect foresight simulation, low-quality land exogenous price (m_L) 239 

shocked at t = 10 240 

 241 

2.2 Evidence 242 

2.2.1 PAs’ effects dynamics 243 
Besides theoretically sound, the four types of effect dynamics have also being observed by 244 

previous investigations about the process through which protected areas inhibit detrimental 245 

resource extraction. Starting with a negative post-protection effect means the absence of effect 246 

in the first year of protection and the presence of a negative effect in subsequent years. This 247 

dynamic type could be attributed to the gradual improvement of PA enforcement, as staff takes 248 

time to learn how to optimise patrolling in the specific set of biophysical and social conditions 249 

faced, what, according to Geldman et al. (2015), is in line with management theory (see also 250 

Afriyie et al., 2021). Also, PAs performance was found to improve over time (Geldman et al., 251 

2015, Paiva et al., 2015). Resource extractors may take advantage of these initial enforcement 252 

caveats to keep their activity. 253 

A post-protection rise in deforestation may result from relatively weaker enforcement inside 254 

rather than outside protected areas, which pushes deforestation towards PAs, as shown by the 255 

theoretical model. This dynamics is even more likely if the budget invested in PAs is mainly 256 

used for their establishment (e.g., to indemnify expropriations), whereas the budget invested 257 

outside of PAs flows mainly to enforcement (Kuempel et al., 2018, Nolte et al., 2013). 258 

Moreover, budget managers may implicitly assume that protected lands are less exposed to 259 
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threats than unprotected, with enforcement prioritizing the latter (as noticed by Kuempel et al., 260 

2018). Another reason, which is driven by the political cycle, is the loss of credibility of 261 

particular PAs, including those that are at risk of being degazetted or downsized (Keles et al., 262 

2023, Kingler and Mack, 2020, Carrero et al., 2022). This tenure ambiguity may be more 263 

profitable to deforesters than the unambiguity of particular unprotected public lands. For 264 

instance, Carrero et al. (2022, figure 3), found fractions of self-declared private properties 265 

overlapping with protected areas that were larger than those overlapping with agrarian 266 

settlements and military areas. Local land users may also increase deforestation and other forms 267 

of natural resource degradation inside PAs whose creation defied their interests, as a form of 268 

contestation (Debelo, 2012, Holmes, 20147). 269 

Now turning to changes occurring before protection, the literature is much less informative 270 

about them. Anticipated response of deforesters, or other resource users, to the restrictions 271 

imposed by protection, are infrequently mentioned, despite being fully consistent with the 272 

assumption of forward-looking agents. A negative pre-protection effect may be motivated by 273 

extractors revising their expectations of enforcement upwards after learning that a land area is to 274 

be protected. Indeed, governmental presence increases right since anthropological and 275 

ecological studies start being undertaken as means to inform the creation decision8. Keles et al. 276 

(2023, fig.7) indeed found negative ex-ante effects of protection in particular Amazonian 277 

locations (such as Pará state). That would be captured, in the theoretical model, by a positive 278 

and permanent shock in mL representing not creation itself, but the outset of the process of 279 

creation, what would anticipate the decay in deforestation in low-quality land.  280 

Pre-protection effects may be also positive. The future protection of a land parcel could trigger 281 

its deforestation in the present, through the increased sanction likelihood mechanism explored in 282 

the theoretical model. A first example is the “forest rush” induced by the prospect of creating a 283 

new PA in Guinea-Bissau, which led local traditional people to believe their land rights would 284 

be revoked (Temudo, 2012). They reacted in advance by resorting to many strategies to secure 285 

forest land, such as thinning forest canopy to plant market-value trees and replacing forest with 286 

orchards. Protest slashing-and-burning took place in a more advanced (and heated) stage of 287 

protection contestation (Temudo, 2012). A second example, reported by Pedlowsky et al. 288 

(1999), is the “rush for land” in the Brazilian state of Rondônia, triggered by the announcement 289 

of conservation units’ creation, a process that was slowly implemented. A third example of an 290 

anticipated response to PA creation that (could have) raised environmental degradation is found 291 

                                                           
7 In the case study of Holmes (2014), peasants set fires near the borders of a PA as means to contest it. 
8 Conservation units and indigenous lands go through, respectively, two and five stages involving State 

presence, to be legally created (Brazil, 9985/2000 and 1775/1996, FUNAI, 2023). During the pre-creation 

assessment studies, agricultural, extractive and other activities may be forbidden and non-indigenous 

people re-settled outside (Brazil, 9985/2000 and 1775/1996). 
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in Baragwhanath and Bayi (2020). The authors make clear that contestation of indigenous lands, 292 

including invasion by non-indigenous resource users and deforesters, is possible up until the 293 

fourth and final phase of the creation process, which takes ten years and half in average to be 294 

achieved, in the Brazilian case (FUNAI, 2023). 295 

2.2.2 Confounder policies 296 
Since we seek, besides detecting PAs’ effects dynamics, to estimate an aggregate effect across 297 

treatment exposure length, there is need to worry about another source of bias observed in the 298 

literature analysing our outcome variables. This is the implementation, in the Amazon, of other 299 

concurrent environmental policies affecting deforestation, fires and mining. Intensification of 300 

the enforcement of laws constraining these activities in non-protected government owned-lands 301 

is a key example which, in the theoretical model, is captured by mH
 (Assunção et al., 2020, 302 

Morello et al., 2020, Damonte, 2018). Another example is stronger enforcement inside PAs, 303 

which, albeit also captured by mL, is an intervention that differs from the one we focus, which is 304 

the creation of PAs (Geldman et al. 2015). Failure to control for these policies, which, for not 305 

consisting in PA creation, work as confunders, may either inflate or deflate the effect of PAs. 306 

More precisely: 307 

1. There is deflation if confounder policies reduce forest disturbance more intensively 308 

outside rather than inside PAs (figure 3, chart 2). I.e., if lowering disturbance in the 309 

control group in a larger magnitude (after controlling, ATT should increase in absolute 310 

magnitude). Putting alternatively, in this case other policies and protection are forces 311 

acting upon pixels with different treatment statuses;  312 

2. There is inflation if confounder policies decrease forest disturbance more intensively 313 

inside rather than outside PAs (that is, the indirect spill-over effect must be larger than 314 

the direct effect; figure 3, chart 3). I.e., when they diminish disturbance in the treated 315 

group in a larger magnitude (after controlling, ATT should decrease). In this case, 316 

protection and other policies both act upon treated pixels (they are forces that add up to 317 

each other). 318 

  319 
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Figure 3  Deflation and inflation by confounder policies (control = black, 320 

treated = grey) 321 

 322 

 323 

3 Empirical method and data 324 

3.1 Identification strategy 325 

Our empirical goal is double, both testing for the presence of the four types of dynamics and 326 

accurately estimating the overall effect of PAs, i.e., the effect aggregated across the length of 327 

exposure to protection. The main barriers we face to proceed are two sources of bias. First, 328 

untreated pixels are not all of them comparable to the treated. Second, with cohorts of pixels 329 

defined in terms of length of exposure to protection, aggregating them in a standard way could 330 

automatically attach negative weights to some cohorts. To mitigate these biases, we adopt an 331 

identification strategy. It estimates the effect of PAs, which is represented by β in the equation 332 

below. The associated binary variable, “PA”, takes value one if the i-th pixel is protected in the 333 

t-th year, and null value otherwise. Covariates are subsumed to vector X. The dependent 334 

variable, Y, is a generic environmental outcome. 335 

Yit = γ + βPAit + XitΓ + ai + λt + uit, i = 1,…,N, t = 2003,...,2020 336 

Three main identification challenges are faced, (i) self-selection of the i-th site to be protected, 337 

(ii) staggered creation of PAs over time, which may lead to heterogeneous effects, and, (iii) 338 

potential confounding factors from omitted concurrent changes. To mitigate associated biases, 339 

matching was used in the first step to increase balance and the common extent of support 340 

between treated and untreated (control) observations. Secondly, we implement the group-time 341 

differences-in-differences approach developed by Callaway and Sant’Anna (2021) using 342 

covariates and fixed effects to estimate the average treatment effect on the treated (ATT). This 343 

two-step approach allows us to deal with self-selection on covariates and time-invariant 344 

unobservables, as well as to accurately calculate the average effect of PAs by appropriately 345 

accounting for group (cohort) heterogeneities. 346 

1.Actual (PA effect 

only)

2.Deflation by non-

PA policy

3.Inflation by non-

PA policy
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One-to-one covariate matching on Mahalanobis distance (dij) was pursued with replacement, as 347 

imprecisely represented by the equation below, with Z being a covariate vector with the same 348 

variables of X and some more (Morgan and Winship, 2007, chap.4, StataCorp, 2013). 349 

PAi = α + ZiΠ + ei, i = 1,…,N, t = 2003 350 

𝑑𝑖𝑗 = {(𝑍1 − 𝑍0)′𝑉𝑁𝑥𝑁
−1  (𝑍1 − 𝑍0)}

1
2 351 

In which the covariate values for treated and control groups are denoted by Z1 and Z0, 352 

respectively, and “V” is Z’s sample variance-covariance matrix. 353 

Matching was performed using data from the first year of the dataset, 2003, in order to minimise 354 

the contamination of untreated pixels by the treated. The treated group consisted in all pixels 355 

protected in some year of the analysis period whereas the control group contained only the 356 

never-protected. Since the covariate vectors for deforestation, from one side, and fires and 357 

mining, from another side, differed, given that only in the latter case deforestation was included, 358 

matching was separately implemented for each set of dependent variables. Based on the 359 

matching approach, we removed (i) controls not sufficiently comparable to the treated and (ii) 360 

treated pixels that could not find sufficiently comparable controls. The exclusion of treated 361 

observations relied on a one standard deviation (SD) caliper for each and all covariates (similar 362 

as in Arriagada et al., 2016 and Wendland et al., 2015)9.  363 

After restricting the sample to comparable pixels, we proceeded with the DiD estimator 364 

developed by Callaway and Sant’Anna (2021) which was based on the outcome regression 365 

specification. The group-time estimates were aggregated at exposure-length level, in order for 366 

an event study to be carried out as means to pre-test the parallel trends assumption ensuring 367 

identification. Further aggregation, across all exposure lengths, generated the overall effect 368 

estimate. But before computing it, we excluded groups violating the parallel trends assumption. 369 

These are hereafter referred to as “critical groups”, and understood as those with significant 370 

group-time ATTs belonging to a pre-treatment exposure length, that, for its turn, was 371 

significant. These exclusions were step-wisely implemented, whenever a previous round of 372 

group removal was not enough to drive all pre-treatment effects null10. The event study 373 

                                                           
9 A half SD caliper was also considered as an alternative (and more rigorous) option. But since the 

matching quality gain it brought per unit of observation excluded was substantially smaller than the one 

yielded by the one SD caliper, only results generated by the latter are reported. Additionally, the sample 

size reduction the half SD caliper entailed was great enough to prevent generation of the group-time 

estimates. 
10 At most three rounds were required in all cases, with fires requiring mostly two rounds (five of the 

eight subsamples considered) and deforestation requiring mostly three rounds (four of the eight 

subsamples). Mining was an exception as in the subsample with indigenous lands and institutional 

covariates, four rounds were required. Still for such outcome variable, in the high quality of management 

subsample, three rounds were needed and, in all other subsamples, at most two rounds. 
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estimates, more precisely, the significance of pre-treatment effects, re-generated at each round, 374 

guided the operation. 375 

The robustness of the “critical groups” approach to group selection was assessed by comparing 376 

the associated overall ATTs with those generated by an alternative group selection approach 377 

based on Goodman-Bacon’s (2021) decomposition. It revealed the weights in the standard two-378 

way fixed-effects estimates of each binary comparison between never-treated and a specific 379 

cohort group, showing which cohorts were the top five in weight – these comparisons, in which 380 

strictly the never treated are taken as untreated units, were focussed in consistency with our 381 

matching convention of including only never-treated pixels in the control group. Three matched 382 

subsamples were the object of the robustness test: (i) whole Amazon Basin, (ii) only the 383 

Brazilian fraction of the Basin, without institutional covariates and (iii) Brazilian fraction with 384 

institutional covariates. In all these three, the top five cohorts in weight represented at least 66% 385 

of the total weight11, which is a major share of the variation identifying ATT. Even with 386 

Goodman-Bacon’s (2021) decomposition implemented separately in each subsample vs. 387 

dependent variable combination, it pointed, in all of them, to the same top five cohorts, namely, 388 

2005, 2006, 2008, 2009 and 2016. Considering only these cohorts, Callaway and Sant’Anna’s 389 

(2021) estimator was then ran for all six combinations. 390 

3.2 Data 391 

3.2.1 Outcome variables 392 
Three are the outcomes based on which effectiveness of protection is assessed. First, 393 

suppression of primary and secondary natural vegetation, i.e., pristine and regeneration, 394 

respectively,  the most common dependent variable in empirical PA studies. We also look to 395 

fires as an indicator of forest degradation, which, despite apparently less ecologically impactful, 396 

is being attested, by a growing body of research, as at least as damaging as deforestation (Qin et 397 

al., 2019, Barlow et al., 2016, Matricardi et al., 2020). The third outcome is a highly damaging 398 

form of resource extraction, artisanal mining of surface or near-surface mineral deposits, which 399 

consists mainly in goldmining (Teixeira et al., 2021, Moreno-Louzada and Menezes-Filho, 400 

2023). Indeed, at least in Brazil, a substantial part of gold deposits are located inside or near 401 

PAs (Rizzotto et al., 2022), as attested by sanctioned offenses data from the Brazilian 402 

conservation unit authority (ICMBIO, 2024). 403 

3.2.2 Subsamples and covariates 404 

Ten “subsamples” were analysed, all of them at the geographical scale of 25 km2 pixels and at 405 

the annual time scale from 2003 to 2020. The first sample covered the entire Amazon Basin, 406 

delimited accordingly with hydrological and ecological criteria (see Eva and Huber, 2005). It 407 

                                                           
11 This share was above 75% for four of the six combinations. 
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overlaps, at least partially, the territories of nine South-American countries, with Brazil 408 

occupying about 60% of the whole region. The second sample contained solely the Brazilian 409 

portion of the Basin (hereafter referred to as “Brazilian Amazon” for simplicity12). It was the 410 

only part of the Amazon Basin for which data was available to control for confounder policies. 411 

Remote-sensing mining data was also only available for Brazil. Abusing the meaning of 412 

“sample”, what is here referred to as the third “subsample”, also captured only Brazil, but 413 

included institutional covariates proxying non-PA-creation policies implemented 414 

simultaneously with creation. In order to measure the effect of specific types of PAs, a common 415 

practice in the literature (Herrera et al., 2019, Amin et al., 2019), five additional subsamples 416 

included only treated pixels belonging to a specific PA type. Whereas the first two types 417 

corresponded to conservation units, either managed by national or subnational governments, the 418 

third type corresponded to indigenous lands. The last two subsamples also referred to 419 

conservation units, but grouped according with two levels of severity of protection constraints. 420 

First, units permitting only indirect resource use (where only ecological management and 421 

tourism are allowed), and those permitting direct use, i.e., extraction and (limited) removal of 422 

vegetation cover by inhabitants. All specific types of PAs we consider may exhibit particular 423 

protection effect dynamics given their particular constraints to natural resource exploitation and 424 

land usage, as well as the different agencies responsible for their management (Amin et 425 

al.,2019, Qin et al.,2023, Carrero et al.,2022). 426 

The eighth subsample was an imposition of the limited availability of data about quality of 427 

management of PAs. The institution in charge of conservation units (ICMBIO) surveys units 428 

annually and, based on that, generates a five level index, which was aggregated in two levels, 429 

low-to-medium and high management quality (ICMBIO, 2024). The data available did not 430 

covered all units, as some did not fill the survey form and others could not be found in the 431 

original dataset, due to the lack of, or inconsistency in, the few variables available for unit 432 

retrieval. Only 30% of the units in our sample could be included in analysis. Only the latest 433 

survey year, 2022, was considered. 434 

The final subsample comprised only pixels at 20 km from natural gold deposits. The locations 435 

of these deposits, informed by the Brazilian Geological Service (SGB, 2024), were used to 436 

select pixels where goldmining activity could take place. More precisely, pixels with at least 437 

five percent of their area within 20 km of the deposits were allocated to a subsample hereafter 438 

referred to as “gold reserve pixels”. Pursuing analysis within this subsample avoided an 439 

                                                           
12 We highlight that the fraction of the Amazonian Basin falling in the Brazilian territory does not 

coincide with the two more commonly adopted geographical delimitations of the Brazilian Amazon, 

which are either of ecological or legal nature (being termed “Brazilian Amazon biome” and “Legal 

Brazilian Amazon”). 
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overestimation bias due to the possibility of artisanal mining being less likely inside PAs 440 

because of a lack of mineral reserves.  441 

The covariates based on which pixels were matched (vector “Z”) belonged to three classes: (1) 442 

meteorological (temperature, precipitation and maximum cumulative water deficit), (2) land use 443 

and land cover (extent of farming, of forest and other natural landscapes, forest fragmentation 444 

and, in the case of fires, deforestation of primary and secondary vegetation), and (3) land 445 

profitability (distance to roads, rivers, populated areas and urban zones, population, terrain's 446 

elevation and slope and soil quality). All these variables were geoprocessed and aggregated to 447 

pixel-year level. With fires and mining as dependent variables, two extra covariates were 448 

included, the extents of deforestation of primary and secondary vegetation. 449 

The post-matching DID estimation included the time-variant subset of the matching variables, 450 

Xit, in order to compensate for the static nature of matching - in line with Goodman-Bacon’s 451 

(2021) statement that time-variant covariates attenuate staggered treatment bias. In addition, one 452 

of the “subsamples” contained four institutional variables explicitly controlling for confounder 453 

policies. These variables were municipal expenditure on environmental governance, area of 454 

properties embargoed due to illegal deforestation, and distance to the nearest environmental 455 

police headquarters (FINBRA, 2023, IBAMA, 2023a and 2023b). The first two variables were 456 

available only at the municipal level, and since all the three variables were time-invariant, they 457 

were interacted with a time trend to prevent elimination by the fixed-effects estimator - the three 458 

institutional covariates were available only for Brazil. 459 

3.2.3 Sample reduction 460 

The population variable exhibited great discrepancy between protected and non-protected 461 

pixels, with a large standard deviation in the second group (coefficient of variation = 16). 462 

Because of that, outlier pixels in population were eliminated from analysis before matching 463 

(what reduced fourfold the population's variable coefficient of variation). These pixels, whose 464 

population level was above the 99th percentile of the whole dataset (1,297 inhabitants/25 km2 by 465 

2003), were either urban or considerably closer to urban zones - 20% of them were at zero 466 

distance from urban towns, a percentage which was of 0.1% for non-outlier pixels; in addition, 467 

distance to urban towns was, among outlier pixels, statistically smaller in average (p-value < 468 

0.01%). Outlier population pixels were thus unlikely to give place to deforestation, so that 469 

keeping them could contribute to an underestimation of the treatment effect. 470 

Before matching, and in accordance with Callaway and Sant’Anna (2021, footnote 2), pixels 471 

treated before the second year of analysis (2004) were dropped, along with outlier pixels– thus 472 

ensuring that all treated pixels were observed also in their pre-treatment state. 473 
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3.2.4 Artisanal mining 474 

The mining dependent variable was retrieved from Mapbiomas (2024), being originally 475 

generated from satellite imagery. It captured the land area occupied by artisanal mining of gold 476 

and other minerals (“garimpo”) and was available only for the Brazilian portion of the Amazon 477 

Basin. The data was converted to binary variables indicating whether either artisanal mining, in 478 

general, or goldmining, specifically, occurred in each pixel-year. The analysis of mining was 479 

ran both within the subsample of pixels at 20 km from gold deposits and with the whole sample, 480 

as means for assessing estimates’ robustness; in the former case only the goldmining dependent 481 

variable was part of analysis. Other subsamples were also considered, namely, indigenous lands, 482 

and conservation units permitting either direct or indirect resource usage. 483 

4 Results 484 

4.1 Main effects13 485 

Tables 1 to 3 show the average treatment effect on the treated (ATT), estimated by multiple 486 

approaches (columns (1) to (7)), for deforestation, fires and mining. Starting with deforestation, 487 

in the matched subsamples14, three violations of parallel trends assumption, in the form of 488 

significant pre-treatment effects, were observed in the event studies. These occurred at exposure 489 

lengths of -15, -9 and -2 years, the first two displaying significant negative effects and the last 490 

one showing a positive effect (Appendix 2, figure A.2.1.1) - lag -9 was not significant in the 491 

unmatched sample. To address the issue, we excluded the critical groups, namely 2006, 2013, 492 

2016 and 2019, thus ensuring parallel trends. 493 

In the unmatched sample, the overall ATT was of -0.0236, while in the matched sample, with 494 

and without the 1 SD caliper, it was larger in absolute magnitude, of -0.0294 and -0.0278 (table 495 

1). But in the case in which the parallel trends assumption was met, i.e., without the critical 496 

groups, the ATT was of -0.025, showing that failure to meet the assumption was biasing 497 

upwards in 11%, in absolute value terms, the estimate (table 8). This last estimate was over 498 

twice as large, in absolute value, as those with DiD-FE regressions, revealing that the negative 499 

weights bias, coupled with non-parallel trends, diminished the absolute size of the ATT (table 500 

1). 501 

Fires were similarly subjected to parallel trends violations (in lags -11,-10, -6, -4, -1), which 502 

biased ATT downwards in 39% (Tables 2 and 8). Both the failure to match and the lack of a 503 

post-matching analysis deflated ATT, with non-staggered post-matching deflating further (table 504 

2). Similar findings were obtained for mining, whose estimates here mentioned refer only to 505 

                                                           
13 Results based on the half SD caliper are omitted. The results reported are based on the 1 SD caliper, 

which achieved a satisfactory balance between matching quality and sample size (see Appendix 2). 

14 An assessment of matching quality is provided in Appendix 1. 
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indigenous lands, due to the nullity of the effects, and to the impossibility of estimating some of 506 

the group-time effects, in the subsample with all PAs (see table A.3 in the appendix). 507 

Significant pre-trends occurred at seven of the twelve exposure lengths (namely, -11, -10, -9,-8,-508 

6,-5,-4), with failure to address this issue deflating the effect in 25%. The bias from not 509 

conducting a postmatching analysis was smaller, of 1%, but the main bias was not addressing 510 

the staggered nature of PAs, which deflated the effect in 90% (tables 3 and 8).  511 

With the institutional variables that were available only for Brazil, 13% larger, 16% smaller and 512 

25% smaller ATTs were estimated for deforestation, fires and mining, respectively, compared 513 

with a Brazilian subsample without institutional covariates (table 8). Therefore, concurrent non-514 

PA policies decreased deforestation more largely outside PAs, whereas they decreased fires and 515 

mining more intensely inside PAs. 516 

Regarding ATT heterogeneity, only indigenous lands and a specific type of conservation unit, 517 

the most severely restrictive one (indirect use), were effective in preventing deforestation. 518 

Indigenous lands were slightly more effective, with an estimate closer to that for whole-PAs’ 519 

effect than severely restrictive conservation units. Different patterns were observed for fires and 520 

mining, which were blocked by indigenous lands and national conservation units. Subnational 521 

units unexpectedly presented a higher internal fire frequency than unprotected land, but, 522 

expectedly, diminished mining in a smaller magnitude – given the less limited resources 523 

available for management and enforcement at the national, rather than state, level (Herrera et al., 524 

2019). Units differing on degree of protection stringency were all effective, but again the most 525 

restrictive were most effective, except for mining, for which the opposite was true. 526 

There was no evidence that areas with higher quality of management avoided a larger extent of 527 

deforestation or fires; in fact, non-effectiveness prevailed, irrespective of how good 528 

management was. Such irrelevance of management quality was only reinforced by the mining 529 

results, which showed that both low-to-medium and high quality PAs diminished such form of 530 

resource exploitation (table 7). 531 

  532 



19 
 

Table 1  Effect of PAs on deforestation using several approaches: matching sample 533 
and post-matching DID, DiD-FE and group-time estimates 534 

 

(1) (2) (3) Group-time 

Matching 

only 
DiD DiD-FE (4) (5) (6) (7) 

   
Unmatched, 

all groups 

Matched, 

no caliper, 

all groups 

Matched, 

1 SD 

caliper, 

all groups 

Matched, 1 

SD caliper, 

only non 

sig.pre-

treat.groups 

Average 

treatment 

effect on 

the treated 

(ATT) 

-0.0067*** -0.0124*** -0.0124*** -0.0236* -0.0294* -0.0278* -0.025* 

 
(0.0013) [0.0017] [0.0016] [0.0019] [0.003] [0.0032] [0.0037] 

        

N 594,702 594,702 594,702 2,235,996 725,724 594,702 415,080 

N clusters NA 33,039 33,039 124,222 40,318 33,039 23,060 

 535 

Table 2  Effect of PAs on fire using different approaches: matching sample and 536 
postmatching DID, DiD-FE and group-time estimates 537 

 

(1) (2) (3) Group-time 

Matching 

only 
DiD DiD-FE (4) (5) (6) (7) 

   
Unmatched, 

all groups 

Matched, no 

caliper, all 

groups 

Matched, 1 

SD caliper, 

all groups 

Matched, 1 

SD caliper, 

only non 

sig.pre-

treat.groups 

Average 

treatment 

effect on 

the treated 

(ATT) 

-0.0575*** -0.0052*** -0.0052*** -0.0153*** -0.0360*** -0.0369*** -0.0601*** 

 
[0.0008] [0.0012] [0.0011] [0.0014] [0.0026] [0.00291] [0.0073] 

        

N 592,380 592,380 592,380 2,235,996 726,048 592,380 209,628 

N clusters NA 32,910 32,910 124,222 40,336 32,910 11,646 

 538 

 539 

 540 

 541 
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Table 3  Effect of PAs on artisanal mining using several approaches: matching 542 
sample and postmatching DID, DiD-FE and group-time estimates, Brazilian indigenous 543 
PAs only 544 

  (1) (2) (3) (4) 

  Matching only DID-FE 

Group-time, 

matched 1 SD, 

all groups 

Group-time, 

matched 1 SD, 

only non-sig. 

pre-treat. 

groups 

ATT -0.045*** -0.00437* -0.034*** -0.045*** 

SE [0.0013] [0.0019] [0.0046] [0.0064] 

N 168,264 168,264 168,264 91,296 

Clusters 9,348 9,348 9,348 5,072 

 545 

Table 4  Effect of PAs on deforestation: Brazilian Amazon and PA-types’ samples, 546 
group-time estimates after exclusion of critical groups 547 

 

(1) (2) (3) (4) (5) (6) (7) (8) 

All 

protected 

areas, 

without 

institu-

tional 

covariates, 

Amazon 

Basin 

All 

protected 

areas, 

without 

institu-

tional 

covariates, 

Brazilian 

Amazon 

All 

protected 

areas, with 

institutional 

covariates, 

Brazilian 

Amazon 

Only 

indigenous 

lands, 

Amazon 

Basin 

Only 

subnational 

conservation 

units, 

Amazon 

Basin 

Only 

national 

conservation 

units, 

Amazon 

Basin 

Only 

indirect 

conservation 

units, 

Amazon 

Basin 

Only direct 

conservation 

units, 

Amazon 

Basin 

        

ATT -0.025* -0.0279*** -0.0321*** -0.0243*** 0.0022 -0.0113 -0.0227* -0.0028 

 
[0.0037] [0.0068] [0.0053] [0.0066] [0.0095] [0.0071] [0.0093] [0.0059] 

         
N 415,080 145,224 241,074 106,830 57,762 88,038 84,366 141,948 

N clusters 23,060 8,068 13,393 5,935 3,209 4,891 4,687 7,886 

 548 

  549 
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Table 5  Effect of PAs on fire: Brazilian Amazon and PAs types’ samples, group-550 
time estimates after exclusion of critical groups 551 

  

(1) (2) (3) (4) (5) (6) (7) (8) 

 All 

protected 

areas, 

without 

institu-

tional 

covariates, 

Amazon 

Basin  

 All 

protected 

areas, 

without 

institu-

tional 

covariates, 

Brazilian 

Amazon  

 All 

protected 

areas, with 

institu-

tional 

covariates, 

Brazilian 

Amazon  

 Only 

indigenous 

lands, 

Amazon 

Basin  

 Only 

subnational 

conservation 

units, 

Amazon 

Basin  

 Only 

national 

conservation 

units, 

Amazon 

Basin  

 Only 

indirect 

conservation 

units, 

Amazon 

Basin  

 Only direct 

conservation 

units, 

Amazon 

Basin  

                

ATT -0.0601*** -0.0624*** -0.0538*** -0.0352*** 0.0323*** -0.0552*** -0.0499*** -0.0318*** 

 
[0.0073] [0.0096] [0.0065] [0.0049] [0.0076] [0.0065] [0.0053] [0.0067] 

         

N 209,628 201,546 201,546 119,052 89,028 99,414 107,802 203,994 

N clusters 11,646 148,914 201,546 6,614 4,946 5,523 5,989 11,333 

 552 

Table 6  Effect of PAs on mining: PAs types’ samples, Brazil, group-time estimates 553 
after exclusion of critical groups 554 

 
(1) (2) (3) (4) (5) (6) 

 

Indigenous 

lands, without 

institutional 

covariates 

Indigenous 

lands, with 

institutional 

covariates 

Only 

subnational 

conservation 

units, Brazil 

Only national 

conservation 

units, Brazil 

Only indirect 

conservation 

units, Brazil 

Only direct 

conservation 

units, Brazil 

ATT -0.0448481*** -.0360017*** -0.0312038*** -.0793828*** -.0498855*** -0.0542048*** 

SE [0.0064] [0.00799] [0.0087] [0.0087] [0.00976] [0.0062] 

N 91296 81,612 99,648 83,556 75,978 175,896 

Clusters 5072 4,534 
5,536 

 
4,642 4,221 9,772 

 555 

  556 
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Table 7  Effect of Brazilian PAs of medium-to-low and high quality of management: 557 
group-time estimates after exclusion of critical groups 558 

  

Deforestation Fires Mining 

High quality 

Low-to-

medium 

quality 

High quality 
Low-to-medium 

quality 
High quality 

Low-to-

medium quality 

ATT 0.0024 0.0653** -0.0266+ -0.06837*** -0.0321* -0.0684*** 

SE [0.0147] [0.0216] [0.0147] [0.0079] [0.0149] [0.0079] 

N 61,578 217,746 64,998 217,098 37,062 198,360 

Clusters 3,421 12,097 3,611 12,061 2,059 11,020 

Note: management quality was measured by the authority in charge of Brazilian conservation units, based 559 
on a multidimensional indicator developed by the own authority and based on questionnaires responded 560 
by the staff of the areas (ICMBIO, 2024). Not all PAs were evaluated.  561 

 562 

Table 8  Four biases in naïve estimation (relative [and absolute] calculation) 563 

  Deforestation Fires Artisanal mining 

"Matching alone" bias -73 % [-1.84%] -4 % [-0.26%] 1 % [0.04%] 

Staggered protection bias -50 % [-1.26%] -91 % [-5.49%] -90 % [-4.05%] 

Unparalleled trends bias 11 % [0.28%] -39 % [-2.32%] -25 % [-1.1%] 

Concurrent policy bias -13 % [-0.42%] 16 % [0.86%] 25 % [0.88%] 

Note: relative bias is calculated as biased/unbiased – 1, that is, as the percentage in which biased absolute 564 
estimate exceeds the unbiased absolute estimate. Consistently, absolute bias was calculated as abs(biased) 565 
– abs(unbiased), with “abs” standing for absolute value. Artisanal mining numbers refer to indigenous 566 
lands only. 567 

 568 

4.2 Robustness test 569 

Regarding deforestation, robustness was achieved both in sign and magnitude of estimates, the 570 

latter differing in no more than 14%. This is shown in table 9, which compares critical cohort 571 

exclusion with the inclusion of top-five cohorts in the weights obtained as part of Goodman-572 

Bacon’s (2021) decomposition. Nevertheless, in the case of fires (table 10), robustness was 573 

restricted to estimates’ sign, due to discrepancies of at least 40%, which suggested inflation of 574 

effect’s size. Therefore, it is cautious to expect, in practice, lower effects on fires than those 575 

shown in the previous tables. The same is true regarding mining, whose estimates differed not 576 

only in size, but also in significance if based on the groups selected with the robustness test 577 

criterion (Table 11). 578 

Furthermore, the direction of change in effects after controlling for concurrent policies was also 579 

robust for the deforestation and fires, but not for mining. In all three cases, the magnitude of 580 

change was smaller in the robustness test. 581 

 582 

 583 
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Table 9  Robustness test, deforestation 584 

 

(1) (2) 
 

(3) (4) 
 

(5) (6) 
 

All PAs 
 

Only Brazilian PAs 
Only Brazilian PAs with inst. 

var. 

Critical 

groups 

Top-five 

weights 

(rob.) 

Percent 

diff 

[(2)/(1) -

1] 

Critical 

groups 

Top-five 

weights 

(rob.) 

Percent 

diff 

[(4)/(3) -

1] 

Critical 

groups 

Top-five 

weights 

(rob.) 

Percent 

diff 

[(6)/(5) -

1] 

         

ATT -0.025* -0.0255*** 2% -0.028*** -0.0319*** 14% -0.0321*** -0.0342** 7% 

 
[0.0037] [0.0037] 

 
[0.0068] [0.0045] 

 
[0.0053] [0.0046] 

 

          
N 415,080 431,550 

 
145,224 349,776 

 
241,074 349,776 

 
N clusters 23,060 23,975 

 
8,068 19,432 

 
13,393 19,432 

 
 585 

Table 10  Robustness test, fires 586 

  

(1) (2)   (3) (4)   (5) (6)   

All PAs   Only Brazilian PAs 
Only Brazilian PAs with inst. 

var. 

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(2)/(1) 

-1]  

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(4)/(3) 

-1]  

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(6)/(5) 

-1]  

                  

ATT -0.0601*** -0.0273*** -55% -0.0624*** -0.0338*** -46% -0.0538*** -0.0321*** -40% 

 
[0.0073] [0.0030] 

 
[0.0096] [0.0039] [0.0065] [0.0042] 

                    

N    209,628     429,750       148,914     348,138  

 

   201,546     348,138  

 N clusters     11,646      23,875          8,273      19,341        11,197      19,341    

 587 

Table 11  Robustness test, mining 588 

  

(1) (2)   (3) (4)   

Brazilian indigenous lands Brazilian indigenous PAs with inst. var. 

 Critical groups  

 Top-five 

weights 

(rob.)  

 Percent 

diff 
 Critical groups  

 Top-five 

weights 

(rob.)  

 Percent 

diff 

[(2)/(1) -

1]  

[(4)/(3) -

1]  

          
 

ATT -0.045*** -0.01 -78% -0.0360017*** -0.016+ 44% 

  [0.0064] [0.0069] 
 

[0.0079] [0.00871] 
 

              

N 91,296 98,100   81,612 97,164   

N clusters 5,072 5,450   4,534 5,398   
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4.3 Dynamic effects 589 
 590 

Figure 4 Event Study, whole 1 SD caliper sample, all groups 591 

 592 

In this section we provide further information about the significant pre and post-treatment 593 

effects, interpreting them as manifestations of the four types of effect dynamics depicted in 594 

figure 1. Only systematic effects are examined, i.e., those whose significance was observed in 595 

more than one “subsample”, namely: (i) all PA types, (ii) indigenous lands, (iii and iv) 596 

subnational or national conservation units, (v and vi) Brazil with or without institutional 597 

covariates. The event studies here described, which contain all groups, without any attempt to 598 

address significant pre-treatment effects, are found in figure 4 and in appendix 2. 599 

A noteworthy finding is the positive pre-protection effect on deforestation observed at lag -2 in 600 

all five samples, except for the one involving only indigenous lands (figure 4; Appendix 2, 601 

figures A.2.1.1, A.2.2.1, to A.2.3.1). This effect can be attributed to the group treated in 2006. 602 

Its deforestation level in 2004 was larger than unprotected pixels. The group’s pixels were 603 

evenly distributed between subnational and national conservation units in Brazil and most of 604 

them belonged to “direct-use” units, which are more permissive regarding resource extraction 605 

and land usage (Nolte et al., 2013). Importantly, this positive pre-treatment effect 606 

counterbalanced the negative pre-treatment effect of the 2009 group which was also captured 607 

into lag -2’s effect. 608 
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Positive and negative pre-treatment effects on deforestation at lags -10 and -9, respectively, 609 

were observed for the case of indigenous lands and in the Brazilian sample with institutional 610 

covariates. Focussing on indigenous lands, the two effects were due to the group treated in 611 

2016. It must be highlighted that even with the effects observed many years before creation, 612 

they were still within the time span that indigenous lands take to be created (FUNAI, 2023)15. 613 

This suggests that these effects may be evidence of deforesters’ forward-looking behaviour. The 614 

initially perceived gain, ten years before protection, from rushing to harvest forest resources and 615 

claim land, may disappear after one year as deforesters learn that governmental presence truly 616 

increased in the zone that is to be protected. 617 

Negative pre-protection effects on fires four years and eleven years before protection were 618 

systematically observed across all matched sub-samples (except, for the pre-effect at lag -4, for 619 

subnational conservation units). Whereas the pre-effect at lag -4 had its origin in Brazilian 620 

national conservation units and indigenous lands, the one at lag -11 also occurred in subnational 621 

conservation units. The cohorts associated with these pre-treatment effects were 2008, 2009 and 622 

2016, for the case of lag -4, and 2016 for lag -11 (judging for the most recurrent critical group in 623 

each case). 624 

Another peculiarity of conservation units’ event studies for deforestation was the six positive 625 

pre-treatment effects, considering both national and subnational units (at lags -13, -7, -5, -3, -2, -626 

1), whereas only one positive pre-treatment effect was observed in indigenous lands (at lag -10). 627 

This is another evidence that conservation units are more prone to experiencing rises in 628 

deforestation prior to protection. A similar, albeit weaker, pattern was observed for fires. 629 

Whereas conservation units presented two or three positive pre-treatment effects, indigenous 630 

lands presented only one. The converse was seen for mining, in which case significant pre-631 

treatment effects were more numerous among indigenous PAs16. Also, a negative pre-protection 632 

effect four years before protection was observed for mining. 633 

A related result is that the lack of overall significance of subnational PAs against deforestation 634 

was due, in the sample without critical groups, to the significant inhibition effect up to the fifth 635 

year after creation being counterbalanced by a “stimulation effect”, i.e., a larger inner 636 

deforestation, seven years and also ten to twelve years after creation. The same was observed 637 

for fires, whose level was larger inside subnational units than in unprotected land, with positive 638 

                                                           
15 The average duration of the creation process was of 10.5 years among the 127 Brazilian indigenous 

lands whose initial and final phases of creation dates were both available and consistent – meaning, by 

consistency, the initial date coming before the final date. 
16 Seven significant pre-treatment effects against at most three for specific types of conservation units; 

national units are an exception as they had almost the same number of significant effects of indigenous 

PAs. 
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post-protection effects observed in leads 2, 8, 9, 11, 13 and 14. All post-treatment effects, up to 639 

sixteen years after creation were significantly negative in the case of mining. 640 

Regarding post-treatment effects on deforestation, two prominent patterns emerge. Firstly, a 641 

two-year delay in the impact was observed only in indigenous lands. This could be attributed to 642 

enforcement not increasing immediately after the creation of indigenous lands (BenYishay et al. 643 

2017). Secondly, a (approximately gradual) effect magnification was observed in all six 644 

subsamples (appendix 3, figures A.2.1.1, A.2.2.1, up to A.2.6.1, but except for A2.4.1). It is an 645 

evidence that enforcement staff takes time to learn how to improve their performance. Gradual 646 

magnification was also true for fires, except in the case of subnational units, where fires were 647 

more frequent than in unprotected land. It was also observed for mining, in indigenous lands 648 

and conservation units’ subsamples. Such pattern may be both evidence of “learning-by-649 

enforcing” and, relatedly, of reduced deforestation, which is a main purpose of fire usage. A 650 

delayed decrease was also true in indigenous land, but at one year after protection. 651 

To confirm and better understand the pre-rise in deforestation, leads of the time-variant 652 

treatment variable were added to a two-way fixed effects model, as seen below: 653 

𝑦𝑖,𝑡 = β0 + δ𝑑_𝑃𝐴𝑖,𝑡 + ∑ 𝛼𝑗𝑑_𝑃𝐴𝑖,𝑡+𝑗

𝐿

𝑗=1

+ β1𝑥𝑖,𝑡 + 𝑎𝑖 + 𝑢𝑖,𝑡 654 

Up to six leads were considered as this was the level of a proxy for the duration of the PA 655 

creation process17. The most consistent patterns revealed by results were the positive second 656 

lead and the negative sixth lead (table 12). Which means that deforestation, fires and mining 657 

decreased six years before creation of conservation units, which is when the average unit started 658 

being created. It also means that, importantly, the three outcomes rose two years before creation, 659 

which is another evidence of the forest rush. 660 

  661 

                                                           
17 Since creation time was not a public information, we relied on a proxy, the average number of years 

separating the start, by the competing authority, of the bureaucratic process leading to creation, and 

creation itself, a proxy for creation time. This is inexact because creation may have started before the 

bureaucratic process. The average of a sample of 15 conservation units was 5.13 years. 



27 
 

Table 12 Treatment lead tests, FE regressions  662 

 

Deforestation Fires Mining 

All PAs 

Subnational 

conservation 

units 

National 

conservation 

units 

All PAs 

Subnational 

conservation 

units 

National 

conservation 

units 

All PAs 

(Brazil) 

Subnational 

conservation 

units (Brazil) 

National 

conservation 

units (Brazil) 

         

Negative leads 3 
 

6 6 6 6 6 6 6 

Positive leads 2 2 2,4 2 2, 5 2 
 

2,3 2,5 

F-stat 126.76 133.81 189.49 281.37 68.14 161.28 8.26 101.93 148.39 

p-value <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 0.2195 <0.01% <0.01% 

          

N 594,702 143,298 256,266 592,380 141,696 255,978 473,940 111,330 204,282 

Clusters 33,039 7,961 14,237 32,910 7,872 14,221 26,330 6,185 11,349 

 663 

4.4 Further robustness tests 664 
The robustness of matching was assessed with an alternative approach. It selected controlled 665 

and treated pixels as those within 50 or 100 km of PAs' boundaries, but, respectively, either 666 

outside or inside a PA. Distances were calculated in order to accommodate the time variation of 667 

pixel-to-boundary distance, due to the staggered nature of protection. As the result, matching-668 

based effects on deforestation proved non-robust in terms of sign, which was positive in the 669 

robustness test and without controlling for institutional factors (appendix 3, tables A.4 and A.5). 670 

When controlling, sign was robust, but ATTs' magnitudes were up to 88% larger. For the case 671 

of fires, estimates' sign proved robust, but the magnitude did not, with distance-based ATTs 672 

systematically smaller in up to 75%. Nevertheless, since spatial proximity does not ensure 673 

protected and unprotected pixels are satisfactorily comparable, these discrepancies should be 674 

taken as indication that deforestation effects' signs may be heterogeneous in the spatial 675 

dimension, and that both deforestations' and fires' effects magnitudes are spatially 676 

heterogeneous. 677 

5 Discussion 678 

A methodological contribution was made in this study by devising and applying a novel causal 679 

inference approach to estimate the impact of protected areas’ on deforestation, which was robust 680 

to self-selection of sites for protection, to the staggered nature of protection, to unobservable 681 

drivers of protection and to confounders introduced by concurrent environmental policies. The 682 

proposed analytical framework includes two key components, which are new to the literature 683 

branch assessing PAs’ effect. First, cohort-time refined effect estimates. Second, an event study 684 

examination of effect’s dynamics across protection length. It was demonstrated the need to 685 

remove some cohorts in order to ensure identification by the means of the parallel trends 686 

assumption, something ignored so far in the specific literature at the cost of a considerable bias, 687 
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as here evidenced. These exclusions refined the variation found in the observational dataset 688 

available, isolating its causal component. Besides ensuring identification, the approach unveiled 689 

important dynamic patterns in the effect, including a deforestation above the unprotected level 690 

at two years before protection and a progressively magnified decrease after protection, the latter 691 

also the case for fires and mining. Furthermore, specific dynamics were observed by type of PA, 692 

with conservation units being more exposed to pre-protection rises in deforestation and fires, 693 

but not in mining. 694 

The different effects of the different PA types, detected in the present paper, align with previous 695 

research in the field. A larger effect on deforestation was estimated by Nelson and Chomitz 696 

(2011, table 7) for indigenous lands, but, conversely, Amin et al. (2019), estimated conservation 697 

units to have a bigger effect. Diverging from the two studies and also from this paper, Herrera et 698 

al. (2019) estimated equivalent effects for the two PA types. But the greatest opposition to this 699 

paper’s results, in which indigenous lands had either the first or second largest inhibition effect 700 

on deforestation, fires and mining, comes from BenYishay et al. (2017), who found a null effect 701 

of such PA type18. The divergence may be due to three differences with the analysis here 702 

conducted. First, BenYishay et al’s. (2017) estimates relied strictly on before-and-after 703 

variation, as their sample contained only indigenous lands. In contrast, in this paper and in the 704 

majority of studies measuring deforestation inhibition by indigenous’ lands - which all found a 705 

significantly negative effect -, the control group is made of non-PAs (Nelson and Chomitz, 706 

2011, Qin et al., 2023, Herrera et al., 2019, Amin et al., 2019). This is an issue because 707 

indigenous people generally already inhabit the land whose property right they claim. Therefore, 708 

pressure on forest resources after recognition should not change considerably, exactly as 709 

BenYishay et al. (2017) found. Secondly, the author’s measure of deforestation is a proxy that 710 

does not directly captures forest suppression, differing from the metric adopted here and in most 711 

of the literature. Third, despite that authors have also relied on matching, their period of analysis 712 

started eight years before the one adopted in this paper. To finish, the delayed impact of 713 

indigenous lands on deforestation, here uncovered, may be a reason why the authors, by 714 

ignoring effect dynamics, failed to attest the effectiveness of such change. 715 

The substantial biases due to confounder policies is an indirect evidence that these polices 716 

considerably altered outcome variables. What finds parallel in previous studies. Many of them 717 

have demonstrated the effectiveness of the Brazilian deforestation control program from 2004 to 718 

2014, which involved not only the creation of PAs, but also rationing of agricultural credit to 719 

illegal deforesters and increasing on-site and remote monitoring and sanctioning (Assunção et 720 

al., 2020, Hargrave and Kis-Katos, 2013, Börner et al., 2015). Nevertheless, despite some 721 

                                                           
18 This explanation is in direct opposition to what is argued by Nelson and Chomitz (2011) regarding fires 

at the Latin American and Caribbean level. 
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studies measuring the PA effect mentioning, en passant, these concomitant interventions, none 722 

have explicitly controlled for them in their empirical analyses. A rather indirect approach, of 723 

breaking down analysis in pre and post-2004 sub-periods, was followed by Pfaff et al. (2015). 724 

This, despite automatically eliminating confounders in the pre-2004 period, fails to deliver a 725 

bias-free estimate reflecting the post-2004 sub-period, which is the most policy-relevant phase, 726 

given the substantial change in the incentives to deforestation triggered by the enhanced policy 727 

(Börner et al., 2015). Nevertheless, Pfaff et al.’s (2015) and this paper’s results converge for 728 

deforestation, but not for fires or mining. The authors found a slightly lower effect in the post-729 

2004 sub-period and here, similarly, a smaller effect on deforestation was detected without 730 

controlling for the non-PA policies strengthened after 2004. But a larger effect was found for 731 

fires and mining, a discrepancy with Pfaff et al., (2015) which resides in two particularities of 732 

this paper. First, that non-PA policies were explicitly controlled for. Second, the analysis period 733 

begun four years later and ended twelve years after. Additionally, BenYishay et al. (2017) found 734 

no influence of post-2004 policy strengthening, after interacting a 2004 binary variable with 735 

indigenous land legalisation (a measure of the stage of completion of indigenous lands’ 736 

creation), at odds with the results in this paper, which may be attributed to the differences 737 

between this and authors’ studies, as described in the previous paragraph. 738 

Despite not assessed by previous studies, the PA effect dynamics found in this paper aligns with 739 

results and arguments from other papers. For instance, the enhancement of the effect on 740 

deforestation and fires along the post-protection period is both in line with studies of PA 741 

enforcement arguing that such activity is subject to learning and also with the few empirical 742 

results available showing that the effect increases along protection time (Geldman et al. 2015, 743 

Afriyie et al., 2021, West et al., 2022, fig.5, Duncanson et al., 2023). For another side, the post-744 

protection rise in fires inside subnational PAs could be due to enforcement being reduced some 745 

years after creation, in line with studies pointing that protection is only effective under diligent 746 

monitoring and sanctioning (Lima and Peralta, 2017, p.810, Kuempel et al., 2018, Afriyie et al., 747 

2021). 748 

Regarding pre-protection effects, conservation units sometimes undergo a conflicting process of 749 

creation, with contestation from local actors (Brito, 2010, p.63, Temudo, 2012, Pedlowski et al., 750 

1999). This could explain the six positive pre-protection effects on deforestation that 751 

conservation units were exposed to, the most notorious of them occurring two years before 752 

creation. The significance of such pre-treatment effect was unequivocal and persistent even after 753 

elimination of some groups, being a robust finding of this paper which has no parallel in the 754 

literature so far. Fires were also subject to (a few) positive pre-protection effects. The policy 755 

relevance of these findings is clear: policymakers should be aware that the creation of 756 

conservation units induces a “forest rush” two years before its legal completion, so that 757 
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enforcement in the zone to be legally protected must be increased in advance as a preventative 758 

measure. 759 

A leap in deforestation was observed by about the moment that the legal process of indigenous 760 

land establishment is started, which is of 10.5 years before completion. This suggests a potential 761 

rush to appropriate land and forest resources before prohibition. This is in line with 762 

Baragwhanath and Bayi (2020) result that only areas where indigenous property has been fully 763 

legally recognised can reduce deforestation. But, diverging from authors’ results, the leap was 764 

followed, in the ninth year before full recognition of indigenous rights, by a fall in deforestation, 765 

probably due to the increased presence of the State during the early phase of PA creation. This 766 

is an indication that the mere possibility of indigenous property recognition may change the 767 

behavior of forward-looking deforesters. 768 

That PAs effectively avoided mining is not at odds with the literature, despite the recent growth 769 

of the activity inside these areas (Moreno-Louzada and Menezes-Filho, 2023, Asner and 770 

Tupayachi, 2017). The mechanism is the same as for deforestation and fires. As in the 771 

theoretical model, the higher likelihood of sanction within PAs counterbalances the incentive 772 

from the presence of natural reserves. But that is only true where enforcement is systematically 773 

present, which is not the case for all PAs (Asner and Tupayachi, 2017, Weisse and Naughton-774 

Treves, 2016). Therefore, our results suggest, indirectly, that enforcement of Brazilian PAs has 775 

been enough to contain, or at least mitigate, artisanal mining. This is remarkable, given the 776 

attractiveness of the activity in the region and its negative environmental, and also social, 777 

consequences (Teixeira et al., 2021, Asner and Tupayachi, 2017, Weisse and Naughton-Treves, 778 

2016). 779 

6 Concluding remarks 780 

The results achieved show that PAs' effects estimates from previous studies are likely to be 781 

biased due to unobservable drivers of protection effectiveness, uniform aggregation of PA 782 

cohorts with heterogeneous effects, non-parallel trends and failure to control for simultaneous 783 

non-protection policy. We showed that the parallel trends assumption is powerful enough to 784 

avoid these biases, together with explicit policy covariates, provided that cohorts are 785 

appropriately selected. This last task, which has been so far ignored in PA literature, must 786 

become a standard practice, the same way that matching already is. 787 

The non-robustness of the magnitudes of fires’ and mining’s effects to the “critical groups” 788 

selection approach shows that consistent justification of criteria is needed, as well as an 789 

assessment of robustness. A related implication is that different PA cohorts may have different 790 

histories of damage inhibition, being more and less effective at different stages of their lifetime, 791 

another reason for avoiding aggregations that treats them as homogeneous. 792 
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It is noteworthy that, despite PAs' effect on mining have proved more robust, this damage 793 

source, differently from deforestation and fires, is subject to the natural barrier of absence of 794 

mineral reserves. Thus, instead of a proof of effectiveness of institutional protection, this can be 795 

merely evidence of effectiveness of “natural protection” and thus of non-additionality of PAs 796 

against mining. 797 

The policy implications of the findings are noteworthy. The effect dynamics must be accounted 798 

for in the cost-benefit analysis informing decisions about creating new protected areas. They 799 

may make a difference depending on the social discount rate adopted. Importantly, policy-800 

makers should also be aware that publicizing the information that a site will be protected may 801 

lead to an increase in forest disturbance, as forward-looking deforesters anticipate losing access 802 

to forest resources. This possibility proved strong enough in regards to conservation units’ 803 

capacity to inhibit deforestation, outweighing any perceived increases in enforcement during the 804 

creation process. 805 

Emphasis should be placed on the “forest rush” effect observed two years before the creation of 806 

conservation units. It is a warning that PA creation should not be seen solely as a legal process 807 

of changing the tenure status of a geographical zone, but, more broadly, as means to align the 808 

expectations of forward-looking resource extractors with governmental conservation goals. That 809 

means signalling that sanction probability will not only increase after creation, but immediately, 810 

thus leaving no time for a resource exploitation rush. 811 
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Appendix 1 Matching quality, all PAs 990 

A.1 Deforestation 991 
In the first stage of analysis, a one-to-one covariate matching with replacement on the 992 

Mahalanobis distance metric was pursued. It induced a clear improvement in the level of 993 

covariate balance, as compared with the matched sample. A slight further improvement was 994 

achieved with the introduction of the 1 SD caliper, but a more restrictive caliper, of half SD, 995 

brought no improvement (Table A.1.1, figures A.1.1 to A.1.4). 996 

Table A.1.1  Matching sample sizes and percentage of covariates whose balance was “of 997 
concern” or “bad” 998 

 999 

Matching  Treated   Control   Total  % reduction %concern %bad 

Before matching     33,469       90,753    124,222  0% 22 35 

No caliper     33,469         6,849      40,318  -68% 5 0 

1 SD Caliper     26,755         6,284      33,039  -73% 0 0 

0.5 SD Caliper     14,973         4,627      19,600  -84% 0 0 

 1000 

Figure A.1.1 Common support graph, non-caliper matching, before matching (left) and 1001 

after matching (right) 1002 

 1003 

 1004 

  1005 
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Figure A.1.2 Common support graph, 1SD-caliper matching, before matching (left) and 1006 

after matching (right) 1007 

 1008 

  1009 
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Figure A.1.3 Balance graph, non-caliper matching 1010 

 1011 

  1012 
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Figure A.1.4 Balance graph, 1SD-caliper matching 1013 

 1014 

 1015 

A.2 Fires and mining 1016 
The covariate set used for matching in the case of fires and mining was the same as in the case 1017 

of deforestation, except for two additional variables, primary and secondary deforestation. 1018 

Because of that small difference, nearly the same matching quality results were achieved 1019 

(visually, i.e., in graphical terms, the results seem to be exactly equal; see graphs A.1.5 to A.1.8 1020 

below). 1021 

 1022 

Table A.1.2  Matching sample sizes and percentage of covariates whose balance was “of 1023 
concern” or “bad” 1024 

Matching  Treated   Control   Total  % redux %concern %bad 

Before matching     33,469       90,753    124,222  0% 21 37 

No caliper     33,469         6,867      40,336  -68% 6 0 

1 SD Caliper     26,648         6,262      32,910  -74% 0 1 

0.5 SD Caliper     14,774         4,522      19,296  -84% 0 0 

 1025 

 1026 

  1027 
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Figure A.1.5 Common support graph, non-caliper matching, before matching (left) and 1028 

after matching (right) 1029 

 1030 

 1031 

Figure A.1.6 Common support graph, 1SD-caliper matching, before matching (left) and 1032 

after matching (right) 1033 

 1034 

 1035 

 1036 
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 1037 

Figure A.1.7 Balance graph, non-caliper matching, before matching (left) and after 1038 

matching (right) 1039 

 1040 

 1041 

Figure A.1.8 Balance graph, 1SD-caliper matching, before matching (left) and after 1042 

matching (right) 1043 

 1044 

 1045 
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Appendix 2 Event study plots 1046 
 1047 

A.2.1 Whole 1-SD caliper sample 1048 

A.2.1.1  All groups 1049 

 1050 

  1051 
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Figure A.2.1.1 Event Study for deforestation, whole 1 SD caliper sample, all groups (blue 1052 
= pre-treatment, red = post-treatment) 1053 

 1054 

Figure A.2.1.2 Event Study for fires, whole 1 SD caliper sample, all groups (blue = pre-1055 
treatment, red = post-treatment) 1056 

 1057 
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A.2.1.2 Without critical groups 1058 

Figure A.2.1.3 Event Study for deforestation, whole 1 SD caliper sample, without critical 1059 
groups 1060 

 1061 

Figure A.2.1.4 Event Study for fires, whole 1 SD caliper sample, without critical groups 1062 

 1063 
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A.2.2 Brazil-only sample (with institutional covariates) 1064 

A.2.2.1  All groups 1065 

Figure A.2.2.1 Event Study for deforestation, Brazil-only sample with institutional 1066 
variables, all groups 1067 

 1068 

Figure A.2.2.2 Event Study for fires, Brazil-only sample with institutional variables, all 1069 
groups 1070 

 1071 
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Figure A.2.2.3 Event Study for mining, Indigenous lands subsample with institutional 1072 
variables, all groups 1073 

 1074 

Note: due to the nullity of PAs’ effect in the subsample with all Brazilian PAs, this plot refers to the 1075 
Brazilian indigenous lands subsample, where the effect was significant. 1076 

 1077 

A.2.2.2 Without critical groups 1078 
Figure A.2.2.4 Event Study for deforestation, Brazil-only sample with institutional 1079 
variables, without critical groups 1080 



47 
 

 1081 

Figure A.2.2.5 Event Study for fires, Brazil-only sample with institutional variables, 1082 
without critical groups 1083 

 1084 

 1085 
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Figure A.2.2.6 Event Study for mining, Brazil-only sample with institutional variables, 1086 
without critical groups 1087 

 1088 

Note: due to the nullity of PAs’ effect in the subsample with all Brazilian PAs, this plot refers to the 1089 
Brazilian indigenous lands subsample, where the effect was significant. 1090 

 1091 

  1092 
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A.2.3 Brazil-only sample (without institutional covariates) 1093 

A.2.3.1 All groups 1094 

Figure A.2.3.1 Event Study for deforestation, Brazil-only sample without institutional 1095 
variables, all groups 1096 

1097 
Figure A.2.3.2 Event Study for fires, Brazil-only sample without institutional variables, all 1098 
groups 1099 

 1100 
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Figure A.2.3.3 Event Study for mining, Brazil-only sample without institutional variables, 1101 
all groups 1102 

 1103 

A.2.3.2 Without critical groups 1104 

Figure A.2.3.4 Event Study for deforestation, Brazil-only sample without institutional 1105 
variables, without critical groups 1106 

 1107 
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Figure A.2.3.5 Event Study for fires, Brazil-only sample without institutional variables, 1108 
without critical groups 1109 

 1110 

Figure A.2.3.6 Event Study for mining, Brazil-only sample without institutional variables, 1111 
without critical groups 1112 

 1113 
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 1114 

A.2.4 Subnational conservation units 1115 

A.2.4.1 All groups 1116 
Figure A.2.4.1 Event Study for deforestation, Subnational conservation units, all groups 1117 

 1118 

Figure A.2.4.2 Event Study for fires, Subnational conservation units, all groups 1119 
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 1120 

Figure A.2.4.3 Event Study for mining, Subnational conservation units, all groups 1121 

 1122 

  1123 
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A.2.4.2 Without critical groups 1124 

Figure A.2.4.4 Event Study for deforestation, Subnational conservation units, without 1125 
critical groups 1126 

 1127 

Figure A.2.4.5 Event Study for fires, Subnational conservation units, without critical 1128 
groups 1129 

 1130 
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Figure A.2.4.6 Event Study for mining, Subnational conservation units, without critical 1131 
groups 1132 

 1133 

A.2.5 National conservation units 1134 

A.2.5.1 All groups 1135 
Figure A.2.5.1 Event Study for deforestation, National conservation units, all groups 1136 

 1137 
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Figure A.2.5.2 Event Study for fires, National conservation units, all groups 1138 

 1139 

Figure A.2.5.3 Event Study for mining, National conservation units, all groups 1140 

 1141 

 1142 

 1143 
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 1144 

A.2.5.2 Without critical groups 1145 

Figure A.2.5.4 Event Study for deforestation, National conservation units, without critical 1146 
groups 1147 

 1148 

OBS: not all critical groups were excluded because only one group would have remained, which was 1149 
considered to lead to a non-reliable (too specific) overall ATT. That is why significant pre-treatment 1150 
effects remained. 1151 

Figure A.2.5.5 Event Study for fires, National conservation units, without critical groups 1152 
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 1153 

 1154 

 1155 

Figure A.2.5.6 Event Study for mining, National conservation units, without critical 1156 
groups 1157 

 1158 

 1159 
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A.2.6 Indigenous lands 1160 

A.2.6.1 All groups 1161 

Figure A.2.6.1 Event Study for deforestation, Indigenous lands, all groups 1162 

 1163 

Figure A.2.6.2 Event Study for fires, Indigenous lands, all groups 1164 

 1165 
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Figure A.2.6.3 Event Study for mining, Indigenous lands, all groups 1166 

 1167 

A.2.6.2 Without critical groups 1168 
Figure A.2.6.4 Event Study for deforestation, Indigenous lands, without critical groups 1169 

 1170 

Figure A.2.6.5 Event Study for fires, Indigenous lands, without critical groups 1171 
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 1172 

Figure A.2.6.6 Event Study for mining, Indigenous lands, without critical groups 1173 

 1174 
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A.2.7 Indirect use conservation units 1176 

A.2.7.1 All groups 1177 

Figure A.2.7.1 Event Study for deforestation, indirect conservation units, all groups 1178 

 1179 

  1180 
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 1181 

Figure A.2.7.2 Event Study for fires, indirect conservation units, all groups 1182 

 1183 

Figure A.2.7.3 Event Study for mining, indirect conservation units, all groups 1184 

 1185 
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A.2.7.2 Without critical groups 1186 

Figure A.2.7.4 Event Study for deforestation, indirect conservation units, without critical 1187 
groups 1188 

 1189 

Figure A.2.7.5 Event Study for fires, indirect conservation units, without critical groups 1190 

 1191 
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Figure A.2.7.6 Event Study for mining, indirect conservation units, without critical groups 1192 

 1193 

 1194 

A.2.8 Direct use conservation units 1195 

A.2.8.1 All groups 1196 

Figure A.2.8.1 Event Study for deforestation, indirect conservation units, all groups 1197 
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 1198 

Figure A.2.8.2 Event Study for fires, indirect conservation units, all groups 1199 

 1200 

Figure A.2.8.3 Event Study for mining, indirect conservation units, all groups 1201 
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 1202 

 1203 

A.2.8.2 Without critical groups 1204 

Figure A.2.8.4 Event Study for deforestation, direct conservation units, without critical 1205 
groups 1206 

 1207 
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Figure A.2.8.5 Event Study for fires, direct conservation units, without critical groups 1208 

 1209 

Figure A.2.8.6 Event Study for mining, direct conservation units, without critical groups 1210 

 1211 

 1212 

 1213 
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 1214 

Appendix 3 Additional tables 1215 
 1216 

Table A.3 Effect of PAs on mining, Brazilian PAs, alternative dependent variables 1217 
(whole artisanal mining or gold mining) and subsamples (near gold reserves or not) 1218 

  

Brazilian PAs 

Brazilian PAs, 

Y = gold 

(only) 

Brazilian PAs 

within 20km 

of gold 

reserves, Y = 

gold (only) 

ATT 0.0005488 0.0005811 0.0950574 

SE [ .0005432  ] [.0005056] [.1941719  ] 

 N             473,940             473,940               55,260  

 Clusters               26,330               26,330                3,070  

 1219 

Table A.4 Robustness test based on 50km and 100km internal and external buffers 1220 
from PAs’ boundaries: deforestation 1221 

  

All PAs, 50 

km buffered 
All PAs instt, 

50 km 

buffered 

All PAs, 100 

km buffered 
All PAs instt, 

100 km 

buffered 

    

ATT .0047424 *** -0.0029307*** .0052005 ***  -.0030422 *** 

SE [ .0001126 ] [0.0001174 ] [ .0001014 ] [0.000093] 

          

 N          1,488,731             990,848          1,703,583          1,174,506  

 Clusters               74,884               47,886               92,681               63,507  

 1222 

  1223 
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Table A.5 Robustness test based on 50km and 100km internal and external buffers 1224 
from PAs’ boundaries: fires 1225 

  

All PAs, 50 km 

buffered 
All PAs instt, 50 

km buffered 

All PAs, 100 km 

buffered 
All PAs instt, 

100 km buffered 

    

ATT -.013563  *** -.025101*** -.0148688 *** -0.0231495 

SE [ .0028774 ] [.0037408 ] [ .0024932 ] [0.0031783] 

 N          1,559,166             990,848          1,789,979          1,254,632  

 Clusters               78,063               47,886               97,337               67,894  

 1226 

 1227 

Appendix 4 The DSGE model 1228 
 1229 

Table A.6 Parameters assumed in the simulations 1230 

Parameter Name Assumed level Source 

η CRRA coefficient 2 
Costa-Jr and Cintado (2018, 
table 3), Lucas (1999) and 

Klima et al. (2019) 

β Discount factor 0.99 

Klima et al. (2019), 
Annicchiarico et al.(2012) 
and Palma and Portugal 

(2014). 

δL 
Gross return 

coefficient, low-quality 
land 

0.5 Assumed by authors 

δH 
Gross return 

coefficient, high-
quality land 

1 Assumed by authors 

Amax 
Optimal accumulated 

area level 
0.4 Assumed by authors 

α1 
Coefficient of quantity 

in the deforestation 
right supply function 

0.5 Assumed by authors 

α2 

Coefficient of squared 
quantity in the 

deforestation right 
supply function 

1 Assumed by authors 

 1231 

The dynamic system of the DSGE model is found below for i = L, H. It was simulated in 1232 
Dynare®. 1233 
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